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INFINITELY MANY SOLUTIONS FOR A
QUASILINEAR KIRCHHOFF-TYPE
EQUATION WITH HARTREE-TYPE

NONLINEARITIES∗

Chuanxi Zhu1,3,† and Li Zhou2,3,†

Abstract In this paper, we consider a new kind of Kirchhoff-type equation
with Hartree-type nonlinearities which is stated in the introduction. Under
certain assumptions on g(u), we prove that the equation has infinitely many
solutions by variational methods.

Keywords Kirchhoff-type quasilinear equation, infinitely many solutions,
change of variables.

MSC(2010) 35J60, 35J20.

1. Introduction
In this article, we study the following quasilinear Kirchhoff-type equation{

−(a+ b
∫
RN |∇u|2dx)∆u− a[∆(u2)]u = (Iα ∗ |u|p)|u|p−2u+ g(u), in RN ,

u ∈ H1(RN ),

(1.1)
where a > 0, b ≥ 0, N ≥ 3, α ∈ (N − 2, N) , 2(N+α)

N < p < 2(N+α)
N−2 , Iα is a Riesz

potential of order α ∈ (N − 2, N) defined by Iα= Γ(N−α
2 )

Γ(α
2 )π

N
2 2α|x|N−α

, where Γ is the

Gamma function. Besides we assume that the function g ∈ C(R,R) verifies:
(g1), there exists constants c0 and 4 < q < 2 · 2∗ such that g(t) ≤ c0(1 + |t|q−1)

for all t ∈ R, where 2∗ = 2N
N−2 if N ≥ 3, 2∗ = ∞ if N = 1 or 2,

(g2) lim
|t|→+∞

G(t)
t4 = +∞, where G(t) =

∫ t

0
g(s)ds,

(g3) G̃(t) = 1
4g(t)t−G(t) ≥ 0, and there exists c1 > 0 and σ > max{1, N

2 } such
that

|G(t)|σ ≤ c1|t|4σG̃(t)
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for t large enough,
(g4) g(−t) = −g(t) for all t ∈ R.
Our paper was motivated by the following aspects. On one hand, the following

so-called modified nonlinear Schrödinger equation{
−∆u+ V (x)u− [∆(u2)]u = h(x, u), in RN ,

u ∈ H1(RN ),
(1.2)

which is a quasilinear problem has attracted more and more attention of scholars.
Because compared to the semilinear problem, the quasilinear problem becomes more
complicated since the effects of quasilinear and non-convex term ∆(u2)u. One of the
main difficulties of quasilinear problems is that there is no suitable space on which
the energy functional is well defined and belongs to C1-class. There have been
serval ideas and approaches used in recent years to overcome the difficulties such as
by minimizations, the Nehari or Pohozaev manifold, and change of variables [5,10].
The main idea of change of variables is that the quasilinear problem can be reduces
to a semilinear one. An Orlicz space framework was used in [10] while the usual
Sobolev space framework was used as the working space in [5]. By this idea and
approach, many researchers prove the existence and multiplicity of solutions of
quasilinear problem. Readers can see [3,7,20,22–24,28] and the references therein.
Furthermore, in [11], Liu developed a perturbation method, the main idea of which
is adding a regularizing term to recover the smoothness of energy functional, so the
standard minimax theory can be applied. Soon after, by applying the perturbation
method, in [12] the authors obtained the existence of infinitely many solutions of
quasilinear problem without symmetry, and in [27], Wu proved the existence of high
energy solutions for the general quasilinear problem.

Also, studying equation (1.1) is partially inspired by the Kirchhoff-type eqaution{
−(a+ b

∫
R3 |∇u|2dx)∆u+ V (x)u = g(x, u), in R3,

u ∈ H1(R3),
(1.3)

where a > 0, b ≥ 0, V : R3 → R is a potential function and g ∈ C(R3×R,R). Prob-
lem (1.3) is a nonlocal problem due to the presence of the term b

∫
R3 |∇u|2dx, which

causes some mathematical difficulties, and at the same time, makes the research
of such problem particular interesting. This problem has an interesting physical
context. Indeed, if we set V (x) = 0 and replace R3 by a bounded domain Ω ⊂ R3

in (1.3), then we get the following Kirchhoff Dirichlet problem{
−(a+ b

∫
Ω
|∇u|2dx)∆u = g(x, u), x ∈ Ω,

u = 0 x ∈ ∂Ω.
(1.4)

It is related to the stationary analogue of the equation

ρ
∂2u

∂t2
−
(ρ0
h

+
E

2L

∫ L

0

∣∣∂u
∂x

∣∣dx)∂2u

∂x2
= 0

which was proposed by G. Kirchhoff as an extension of classical D¡¯Alembert¡¯s
wave equations for free vibration of elastic strings. Kirchhoff¡¯s model takes into
account the changes in length of the string produced by transverse vibrations. Later,
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J.L. Lions introduced a functional analysis approach. After that, (1.3) has been paid
much attention to by several researchers.

On the other hand, if we remove the term ∆(u2)u and set a = 1, b = 0, g = 0,
the equation (1.1) reduces to

−∆u+ V (x)u = (Iα ∗ |u|p)|u|p−2u, (1.5)

which is called nonlinear Choquard type equation. Its physical background can be
found in [14] and references therein. Besides, readers can see [4, 6, 13, 15–19] for
recent achievements.

In recent years, there exists some results about the combination of the two equa-
tions (1.2) and (1.5). For example, Yang in [29] considered the following quasilinear
Choquard equation

−∆u+ V (x)u− [∆(u2)]u = (|x|−µ ∗ |u|p)|u|p−2u, in RN , (1.6)

where N ≥ 3, µ ∈ (0, N+2
2 ), p ∈ (2, 4N−4µ

N−2 ). Also by perturbation method, the au-
thors proved the existence of positive solutions, negative solutions, and high energy
solutions.

Besides, there are also some results about the combination of the two equations
(1.3) and (1.5). For example, Lü in [8] studied the following Kirchhoff-type equation

−(a+ b

∫
R3

|∇u|2dx)∆u+ Vλ(x)u = (Iα ∗ |u|p)|u|p−2u, in R3, (1.7)

where a > 0, b ≥ 0, Vλ(x) = 1 + λg(x), here λ > 0 is a parameter and g(x) is a
continuous potential function on R3,p ∈ (2, 6 − µ). By using the Nehari manifold
and the concentration compactness principle, Lü obtained the existence of ground
state solutions for (1.7) if the parameter λ is large enough.

Inspired by the works mentioned above, we consider the combination of the three
type equations (1.2), (1.4) and (1.5). In our paper, by using change of variables, we
prove the existence of infinitely many solutions of problem (1.1).

Our main result is as follows:
Theorem 1.1. If (g1)-(g4) hold, then problem(1.1) possesses infinite many non-
trivial solutions {un}.

For the convenience of expression, hereafter, we use the following notations:

• E := H1(RN ) is equipped with an equivalent norm ∥u∥ = [
∫
RN |∇u|2dx] 12 ,

• Ls(RN )(1 ≤ s ≤ ∞) denotes the Lebesgue space with the norm |u|s =
(
∫
RN |u|sdx)1/s,

• For any u ∈ H1(RN ) \ {0}, ut is denoted as:

ut =

{
0, t = 0,√
tu(xt ), t > 0,

• For any x ∈ RN and r > 0, Br(x) := {y ∈ RN : |y − x| < r},
• C,C1, C2, ... and c0, c1, c2, ... denote positive constants possibly different in

different lines.

Remark 1.2. It is well known that the embedding E ↪→ Lr(RN ) is compact for
r ∈ [1, 2∗) and E ↪→ Lr(RN ) is continuous for r ∈ [1, 2∗].
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2. Preliminaries
In this section, we will make the change of variables and some lemmas.

Problem(1.1) is the Euler-lagrange equation associated with the natural energy
functional J(u) : E → R defined as follows

J(u) =
1

2

∫
RN

a|∇u|2dx+
b

4

(∫
RN

|∇u|2dx
)2

+

∫
RN

a|u|2|∇u|2dx

− 1

2p

∫
RN

(Iα ∗ |u|p)|u|pdx−
∫
RN

G(u)dx, u ∈ E.

(2.1)

But J is not well defined in general in E. In order to overcome this difficulty,
we apply the technique developed by [5, 10]. We make the change of variables by
v = f−1(u), where f is defined by

f ′(t) =
1√

1 + 2|f(t)|2

on [0,+∞) and f(−t) = −f(t) on (−∞, 0].
First let us recall some properties of the change of variables f : R → R, which

will be used frequently in the sequel of the paper. Proofs may be found in [5,10,20].

Lemma 2.1. The function f(t) and its derivative satisfy the following properties:
(f1) f is uniquely defined, C∞, and invertible,
(f2) |f ′(t)| ≤ 1 for all t ∈ R,
(f3) |f(t)| ≤ |t|, for all t ∈ R,
(f4) f(t)/t → 1 as t → 0,
(f5) f(t)/

√
t → 21/4, as t → +∞,

(f6) f(t)/2 ≤ tf ′(t) ≤ f(t), for all t > 0,
(f7) f2(t)/2 ≤ tf(t)f ′(t) ≤ f2(t), for all t ∈ R,
(f8) |f(t)| ≤ 21/4|t|1/2, for all t ∈ R,
(f9) there exits a positive constant C such that

|f(t)| ≥

{
C|t|, |t| ≤ 1,

C|t|1/2, |t| ≥ 1,

(f10) there exists positive constants C1 and C2 such that

|t| ≤ C1|f(t)|+ C2|f(t)|2,

for all t ∈ R,
(f11) the function f2(t) is strictly convex,
(f12) |f(t)f ′(t)| ≤ 1/

√
2, for all t ∈ R.

Therefore, after the change of variables, we can write J(u) as

I(v) =
a

2

∫
RN

|∇v|2dx+
b

4

(∫
RN

|f ′(v)|2|∇v|2dx
)2

− 1

2p

∫
RN

(Iα ∗ |f(v)|p)|f(v)|pdx−
∫
RN

G[f(v)]dx.
(2.2)
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Lemma 2.2. (Hardy-Littlewood-Sobolev inequality [9]). Let 0 < α < N, p, q >
1 and 1 ≤ r < s < ∞ be such that

1

p
+

1

q
= 1 +

α

N
,
1

r
− 1

s
=

α

N
.

1. For any f ∈ Lp(RN ) and g ∈ Lq(RN ), one has∣∣∣∣ ∫
RN

∫
RN

f(x)g(y)

|x− y|N−α
dxdy

∣∣∣∣ ≤ C(N,α, p)∥f∥Lp(RN )∥g∥Lq(RN ).

2. For any f ∈ Lr(RN ) one has∥∥∥∥ 1

| · |N−α
∗ f

wwww
Ls(RN )

≤ C(N,α, r)∥f∥Lr(RN ).

From Lemma 2.1-(f3), (f12) and Lemma 2.2, we can get that the function I(v)
given by (2.2) is well defined. Our hypotheses imply that I(v) ∈ C1(E,R) and

⟨I ′(v), w⟩ =a

∫
RN

∇v∇wdx+ b

(∫
RN

|∇v|2

1 + 2f2(v)
dx

)
×
(∫

RN

∇v∇w(1 + 2f2(v))− 2|∇v|2f(v)f ′(v)w

[1 + 2f2(v)]2
dx

)
−
∫
RN

(Iα ∗ |f(v)|p)|f(v)|p−2f(v)f ′(v)wdx−
∫
RN

g[f(v)]f ′(v)wdx.
(2.3)

We note that if v is a critical point of the functional I, then u = f(v) is a critical
point of the functional J , which implies u = f(v) is a solution of problem (1.1).

Lemma 2.3. (Brezis-Lieb lemma [1]). Let s ∈ (1,∞) and {wn} be a bounded
sequence in Ls(RN ). If wn → w almost everywhere on RN , then for any q ∈ [1, s],

lim
n→∞

∫
RN

∣∣|wn|q − |wn − w|q − |w|q
∣∣ s
q dx = 0 (2.4)

and

lim
n→∞

∫
RN

∣∣|wn|q−1wn − |wn − w|q−1(wn − w)− |w|q−1w
∣∣ s
q dx = 0. (2.5)

Lemma 2.4. ( [2,21]). Let X be an infinite dimensional Banach space, X = Y ⊕Z,
where Y is finite dimensional. If I ∈ C1(X,R) satisfies (C)c-condition for all c > 0,
and

1. I(0) = 0, I(−u) = I(u) for all u ∈ X,
2. there exists constants ρ, α > 0 such that I|∂Bρ∩Z ≥ α,

3. for any finite dimensional subspace X̃ ⊂ X, there is R = R(Ẽ) > 0 such that
I(u) ≤ 0 on X̃\BR,

then I possess an unbounded sequence of critical values.
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3. Proof of Theorem 1.1
In this section, we prove the following results and the main theorem.

3.1. Lemmas
Lemma 3.1. Suppose (g1)− (g3) are satisfied, then I(v) satisfies (C)c condition.
Proof. Let {vn} ⊂ E such that I(vn) → c and (1 + ∥vn∥)I ′(vn) → 0. Then there
exists a constant C3 > 0 such that

I(vn)−
1

4
⟨I ′(vn), vn⟩ ≤ C3. (3.1)

Set un = f(vn). Then we first prove {un} is bounded in E. Indeed, set ϕn = f(vn)
f ′(vn)

,
then there is a constant C4 > 0 such that ∥ϕn∥ ≤ C4∥vn∥. Since {vn} is a Cerami
sequence of I, from (3.1) we can obtain

C5 ≥I(vn)−
1

4
⟨I ′(vn), ϕn⟩

=
a

4

∫
RN

(f(vn))
2|∇vn|2dx+

p− 2

4p

∫
RN

(Iα ∗ |f(vn)|p)|f(vn)|pdx

+

∫
RN

[
1

4
g(f(vn))f(vn)−G(f(vn))]dx

≥a

4

∫
RN

(f(vn))
2|∇vn|2dx,

(3.2)

which implies that {∥un∥} is bounded in E and

C6 ≥
∫
RN

G̃(f(vn))dx =

∫
RN

G̃(un)dx. (3.3)

Therefore, passing to a subsequence, we can assume that there exists a u ∈ X such
that 

un ⇀ u in X,

un → u inLs(RN ), ∀ s ∈ [1, 2∗)

un → u a.e. on RN .

Next, we claim that
∫
RN |∇u2

n|2dx is bounded. If
∫
RN |∇u2

n|2dx is unbounded, we
can assume that, up to a subsequence,

∫
RN |∇u2

n|2dx → ∞. Then we set

A4
n =

∫
RN

|∇u2
n|2dx and wn =

un

An
.

Then wn → 0 in Ls(RN ) for s ∈ [1, 2∗), wn → 0 a.e. on RN and {w2
n} is bounded

in E. Hence {wn} is bounded in L2·2∗ . By interpolation, we have wn → 0 in
Ls(RN ) for s ∈ [1, 2 · 2∗). Since I(vn) = J(f(vn)) = J(un), together with (2.1) and
boundedness of {un}, we can get that∫

RN

G(un)dx =
a

2

∫
RN

|∇un|2dx+
b

4

(∫
RN

|∇un|2dx
)2

+
a

4

∫
RN

|∇u2
n|2dx− 1

2p

∫
RN

(Iα ∗ |un|p)|un|pdx− J(un)

≥a

2

∫
RN

|∇un|2dx+
a

4

∫
RN

|∇u2
n|2dx− C7 − J(un),
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which implies
lim

n→+∞

∫
RN

G(un)

A4
n

≥ a

4
. (3.4)

Similar to the idea in [24], for 0 ≤ a < b, let Ωn(a, b) = {x ∈ R : a ≤ |un(x)| < b}.
For any 0 < ε < 1

16 and any r1 > 0, there exists N0 > 0 such that∫
Ω(0,r1)

|G(un)|
|un|4

|wn|4dx ≤
∫
Ω(0,r1)

c0(|un|+ |un|p)
|un|4

|wn|4dx

≤ (c0 + c0r
p−1
1 )

∫
Ω(0,r1)

|wn|
A3

n

dx < ε

(3.5)

for all n > N0. On the other hand, if r0 > 0 is sufficiently large, and if we set
σ′ = σ

σ−1 , from (g3) and (3.3) we have

∫
Ω(r1,+∞)

|G(un)|
|un|4

|wn|4dx ≤
(∫

Ω(r1,+∞)

(
|G(un)|
|un|4

)σdx
) 1

σ
(∫

Ω(r1,+∞)

|wn|4σ
′
dx

) 1
σ′

≤ c
1
σ
1

(∫
Ω(r1,+∞)

G̃(un)dx
) 1

σ
(∫

Ω(r1,+∞)

|wn|4σ
′
dx

) 1
σ′

≤ C8

(∫
Ω(r1,+∞)

|wn|4σ
′
dx

) 1
σ′

< ε

(3.6)
for all n. Combining (3.5) and (3.6) we have∫

RN

|G(un)|
A4

n

=

∫
Ω(0,r1)

|G(un)|
|un|4

|wn|4dx+

∫
Ω(r1,+∞)

|G(un)|
|un|4

|wn|4dx < 2ε <
1

8

for all n > N0, which contradicts (3.4). This shows {
∫
RN |∇u2

n|2dx} is bounded.
Hence {|un|2·2∗} is bounded. Besides, (g1) implies that {

∫
RN G(f(vn))dx} is bounded.

Since

a

2

∫
RN

|∇vn|2dx =I(vn)−
b

4

(∫
RN

|f ′(vn)|2|∇vn|2dx
)2

+
1

2p

∫
RN

(Iα ∗ |f(vn)|p)|f(vn)|pdx+

∫
RN

G[f(vn)]dx

≤I(vn) +
1

2p

∫
RN

(Iα ∗ |f(vn)|p)|f(vn)|pdx+

∫
RN

G[f(vn)]dx,

it is obviously that {vn} is bounded E. Therefore, by(f2), (f8), (f12) and (g1), a
standard argument shows {vn} has a convergent subsequence in E.

Let {ej} be a total orthonormal basis of E and define Xj = Rej , Yk = ⊕k
j=1Xj ,

Zk = ⊕∞
j=k+1Xj , k ∈ Z, and Yk is finite dimensional.

Lemma 3.2. Suppose (g1) holds, then there exists constants m, ρ, α > 0 such that
I|Sρ∩Zm

≥ α .
Proof. From Lemma 3.8 in [26], we know that for any s ∈ [1, 2∗), βk(s) =

sup
v∈Zk, ∥v∥=1

|v|s → 0. Thus, we can choose an integer m > 1 such that 0 < βm(1) ≪
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1, 0 < βm(p/2) ≪ 1 and

|v|1 ≤ βm(1)∥v∥, |v|p/2 ≤ βm(p/2)∥v∥ ≤ c3∥v∥,∀v ∈ Zm. (3.7)

For any v ∈ Zm with ∥v∥ = ρ < 1, by (f3), (f8), (g1) and (3.7), we have

I(v) =
a

2

∫
RN

|∇v|2dx+
b

4

(∫
RN

|f ′(v)|2|∇v|2dx
)2

− 1

2p

∫
RN

(Iα ∗ |f(v)|p)|f(v)|pdx−
∫
RN

G[f(v)]dx

≥ a

2

∫
RN

|∇v|2dx− 1

2p

∫
RN

(Iα ∗ |f(v)|p)|f(v)|pdx−
∫
RN

G[f(v)]dx

≥ a

2

∫
RN

|∇v|2dx− C9

2p

∫
RN

(Iα ∗ |v|
p
2 )|v|

p
2 dx−

∫
RN

(c0|f(v)|+ c0|f(v)|q)dx

≥ a

2

∫
RN

|∇v|2dx− C9∥v∥p −
∫
RN

(c0|v|+ 2
1
4 c0|v|q/2)dx

≥ a

2

∫
RN

|∇v|2dx− C9∥v∥p − c0βm(1)∥v∥ − 2
1
4 c0βm(q/2)∥v∥q/2

≥ a

2

∫
RN

|∇v|2dx− C9∥v∥p − c0βm(1)∥v∥ − c4∥v∥q/2

= ρ(
aρ

2
− C9ρ

p−1 − c0βm(1)− c4ρ
q−2
2 ) > 0.

(3.8)
Here we use the fact that 0 < βm(1) ≪ 1, which implies that 0 < βm(1) < aρ

2c0
−

C9

c0
ρp−1 − c4

c0
ρ

q−2
2 if m suitable large. Thus, we complete the proof.

Lemma 3.3. Under assumptions (g1) and (g2), for any infinite dimensional sub-
space Ẽ ⊂ E, there holds I(vt) → −∞ as ∥vt∥ → ∞, vt ∈ Ẽ.

Proof. Because

I(vt) =
atN−1

2

∫
RN

|∇v|2dx+
bt2N−2

4

(∫
RN

|f ′(v)|2|∇v|2dx
)2

− tN+α

2p

∫
RN

(Iα ∗ |f(v)|p)|f(v)|pdx− tN
∫
RN

G[f(
√
tv)]dx,

and α > N − 2, we can easily get I(vt) → −∞ as t → +∞.

Corollary 3.4. If (g1) and (g2) hold, then for any finite dimensional subspace
Ẽ ⊂ E, there exists R = R(Ẽ) > 0 such that I(u) ≤ 0, ∀u ∈ Ẽ, ∥u∥ ≥ R.

3.2. Proof of Theorem 1.1
Let X = E, Y = Ym, Z = Zm. Then it is obviously that I(0) = 0 and (g4) implies
that I is even. By Lemma 3.1-3.3 and Corollary 3.4, all conditions of Lemma 2.4 are
satisfied. Thus, I possesses a sequence of critical points {vn} such that I(vn) → ∞
as n → ∞. Namely, problem (1.1) possesses a sequence of nontrivial solutions {un}
such that J(un) → ∞ as n → ∞.
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