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BIFURCATIONS OF SOLITARY WAVES,
PERIODIC PEAKONS AND COMPACTONS OF
A COUPLED NONLINEAR WAVE EQUATION∗
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Abstract For a coupled nonlinear wave equation system, its travelling wave
system just is a singular traveling wave system of the first class depending on
nine parameters. By using the bifurcation theory and method of dynamical
systems and the theory of singular traveling wave systems, in this paper, we
show that there exist parameter groups such that this singular system has
kink and anti-kink wave solutions, periodic solutions, periodic peakons and
compactons as well as different solitary wave solutions.
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1. Introduction
Nonlinear differential equations can be used to describe many complex natural
phenomena. Lots of works have been done to seek possible exact solutions for
these nonlinear evolve equations in various fields of mathematical physics (see,
e.g. [1, 3, 4, 7–11, 19]). Several effective methods in searching for exact solutions
of different nonlinear equations have been used, such as Backlund and Darboux
tranformation approach [4, 7, 9], variable separation approach [10,19],etc..

Additionally, the coupled equations also been used to solve different mathemat-
ical physical problems. Recently, the study of coupled KdV equations has attracts
a lot of attention. The existence of different exact solutions for these coupled KdV
equations have been proved(see [5, 6, 12, 13, 20, 21]). Unfortunately, very little re-
search has been done on the generalized system of coupled KdV equations in the
form:

ut + αv2vx + βu2ux + λuux + γuxxx = 0, vt + δ(uv)x + ϵvvx = 0, (1.1)

where α, β, γ, δ, λ and ϵ are any arbitrary constants. According to [5], under certain
conditions, if v = 0, Eqs.(1.1) turns to KdV and mKdV. Actually, Eqs.(1.1) is
generally used in solid-state physics, plasma physics, hydro physics, quanta field
theory and so on.
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Guha-Roy [5, 6] supposed |ξ| = |x − ct| → +∞ with u(ξ), u′(ξ), u′′(ξ) → 0.
They used transformation u(ξ) = 1

ϕ(ξ) and Weierstrass ellipse function, to obtain
some exact solitary wave solutions in special conditions. In Shang [20], Xu [21]
and Lu [12], by using the ansatze method, they obtained some exact traveling wave
solutions of (1.1). Liu [13] used different undermined coefficient methods to obtain
some bell-shaped and kink-shaped solitary wave solutions. However, the singular
nonlinear traveling wave system corresponding to Eqs.(1.1) can not been found,
and more general conclusions about the qualitative properties of the exact traveling
solutions have not been given.

Different from the above references, in this paper, by using dynamical system
method, we find the singular nonlinear traveling wave system corresponding to (1.1),
under certain parameter conditions. It is important to note that singular traveling
system may be exist peakon, pseudo-peakon, periodic peakon, compacton solution
families as well as many new traveling wave solutions(see [14, 15, 18]). Therefore,
depending on the parameters group of Eqs.(1.1), by using the bifurcation thoery
of the singular nonlinear traveling wave system, we find many new exact traveling
wave solutions of Eqs.(1.1), including some solitary wave solutions, periodic wave
solutions, kink and anti-kink wave solutions, four different periodic peakons and
several compactons, which can not been found in the regular traveling wave syserm.

Considering traveling wave solutions of Eqs.(1.1), we suppose that u(x, t) =
u(x − ct) = u(ξ), v(x, t) = v(x − ct) = ϕ(ξ). Substituting them into (1.1) and
integrating obtained results once, we have

−cu+
1

3
αϕ3 +

1

3
βu3 +

1

2
λu2 + γu′′ − g1 = 0, u =

g + cϕ− ϵ
2ϕ

2

δϕ
, (1.2)

where g1 and g are two intergal constants. Substituting u given by the second
equation of (1.2) into the first equation of (1.2), the general equation is as follows:

ϕ

(
1

2
ϵϕ2 + g

)
ϕ′′ = 2g(ϕ′)2 + a0 + a1ϕ+ a2ϕ

2 + a3ϕ
3 + a4ϕ

4 + a5ϕ
5 + a6ϕ

6,

(1.3)

where

a0 =
g3β

3γδ2
, a1 =

g2

2γδ2
(2βc+ λδ), a2 =

g

2γδ2
(2c2β + 2cλδ − 2cδ2 − gβϵ),

a3 =
1

6γδ2
(3c2λδ + 2c3β − 6c2δ2 − 6cgβϵ− 3gδλϵ− 6g1δ

3),

a4 = − ϵ

4γδ2
(2cδλ+ 2c2β − gβϵ− 2cδ2),

a5 =
ϵ2

8γδ2
(2cβ + δλ), a6 =

1

24γδ2
(8αδ3 − βϵ3).

For g ̸= 0, equation (1.3) is equivalent to the following planar dynamical system:

dϕ

dξ
= y,

dy

dξ
=

2gy2 + a0 + a1ϕ+ a2ϕ
2 + a3ϕ

3 + a4ϕ
4 + a5ϕ

5 + a6ϕ
6

ϕ( 12ϵϕ
2 + g)

, (1.4)
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which has the first integral

H(ϕ, y) =
(ϵϕ2 + 2g)2y2

ϕ4
−
(
a6ϵϕ

4 +
4

3
a5ϵϕ

3 + 2(a4ϵ+ 2a6g)ϕ
2 + 4(a3ϵ+ 2a5g)ϕ

−4(a1ϵ+ 2a3g)

ϕ
− 2(a0ϵ+ 2a2g)

ϕ2
− 8a1g

3ϕ3
− 2a0g

ϕ4

)
= h.

(1.5)

Obviously, when g ̸= 0, system (1.4) is a singular nonlinear traveling wave system
of the first class defined in [14] and [15] with three singular straight lines ϕ = 0 and
ϕ = ±

√
−2g
ϵ , when gϵ < 0.

If we take g = 0, then a0 = a1 = a2 = 0. System (1.4) becomes a regular planar
Hamiltonian system as follows:

dϕ

dξ
= y,

dy

dξ
=

2

ϵ
(a3 + a4ϕ+ a5ϕ

2 + a6ϕ
3). (1.6)

This system has Hamiltonian

H0(ϕ, y) =
1

2
y2 − 2

ϵ

(
a3ϕ+

1

2
a4ϕ

2 +
1

3
a5ϕ

3 +
1

4
a6ϕ

4

)
. (1.7)

We notice that the authors assume that v = Au + B and k = 0 in Lu [12] and
Liu [13], respectively. These cases just corresponds to our case g = 0, i.e., the
regular case. Therefore, system (1.6) can not have periodic peakon solutions and
compacton solutions.

System (1.4) is a nine-parameter singular traveling system and has high order
nonlinearity. It has very abundant dynamical behavior. In this paper, we first
consider the case of g1 = 0, a6 = a5 = a3 = a1 = 0. By taking α = βϵ3

8δ3 , β =

− δλ
2c , δ = 1

3λ, we have

a0 = − g3

2cγ
, a2 =

g

2γ

(
c+

3gϵ

2c

)
, a4 = − ϵ

4γ

(
c+

3gϵ

2c

)
.

System (1.4) becomes the following four-parameter (c, g, γ, ϵ) singular traveling sys-
tem:

dϕ

dξ
= y,

dy

dξ
=

8cgγy2 − 2g3 + 2gα̂ϕ2 − ϵα̂ϕ4

2cγϕ(ϵϕ2 + 2g)
(1.8)

where α̂ = c2 + 3
2gϵ. System (1.8) has the first integral:

H(ϕ, y) =
(ϵϕ2 + 2g)2y2

ϕ4
− 1

cγ

(
g4

ϕ4
− 2g2(gϵ+ c2)

ϕ2
− 2c2ϵ2 + 3gϵ3

4
ϕ2

)
= h. (1.9)

The different phase portrait orbits of system (1.8) in the phase plane (ϕ, y)
correspond to different traveling wave solutions ϕ(ξ). We will study these traveling
wave solutions ϕ(ξ) and their dynamic behaviors by analysing bifurcations of phase
portraits of (1.8) depending on the parameters c, g, γ, ϵ .
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2. Bifurcations of phase portraits of system (1.8)
In this section, we consider bifurcations of phase portraits of system (1.8) depending
on the parameter group (c, g, γ, ϵ). The associated regular system of system (1.8) is
as follows:

dϕ

dζ
= 2cγϕ(ϵϕ2 + 2g)y,

dy

dζ
= 8cgγy2 − 2g3 + 2gα̂ϕ2 − ϵα̂ϕ4, (2.1)

where dξ = 2cγϕ(ϵϕ2 + 2g)dζ, for ϕ(ϵϕ2 + 2g) ̸= 0.
Because system (2.1) has the same first integrals as that of system (1.8) except

the vector fields direction (see [18]), we will obtain the phase portraits of (1.8) by
investigating the equilibrium points and bifurcations of phase portraits of system
(2.1).

We suppose that cgγϵ ̸= 0. Clearly, if cγ > 0, then there exist two equilibrium
points N1,2(0,±y0) of system (2.1) in the y−axis, where y0 = |g|

2
√
cγ . If gϵ < 0 and

Ys =
g(c2+ 7

4 gϵ)

cγϵ > 0, then there exist two equilibrium points S1,2(−ϕs,±
√
Ys) and

S3,4(ϕs,±
√
Ys) in the two straight lines ϕ = ±ϕs = ±

√
− 2g

ϵ , respectively.
Write that f(ϕ) = ϵα̂ϕ4 − 2gα̂ϕ2 + 2g3,∆ = g2α̂

(
c2 − 1

2gϵ
)
. Hence, when ϕ2 =

ϕ2
1,2 = 1

ϵ

(
g ±

√
∆
α̂

)
, we have f(ϕ1,2) = 0, where ϕ1 < ϕ2.

Let M(ϕj , yj) be the coefficient matrix of the linearized system of system (2.1)
at an equilibrium point E(ϕj , yj) and J(ϕj , yj) = detM(ϕj , yj). We have

J(ϕj , 0) = 2cγϕj(ϵϕ
2
j + 2g)f ′(ϕj),

J(0, y0) = 16cγg4 > 0, J(ϕs,
√

Ys) = −128c2γ2g2Y 2
s < 0,

(traceM(ϕj , 0))
2 − 4J(ϕj , 0) = −4J(ϕj , 0),

(traceM(0, y0))
2 − 4J(0, y0) = 36cγg4 > 0.

By the theory of planar dynamical systems (see [18]), We notice that the equi-
librium point Ej(ϕj , 0) is either a saddle point or a center point. The equilibrium
points N1,2(0, y0) are nodes because cγ > 0. The equilibrium points S1,2 and
S3,4 are saddle points. In the meantime, we write that hj = H(ϕj , 0), hs =
H(±ϕs,±

√
Ys) = − 2gϵ

cγ (c2 + 11
8 gϵ) and h0 = H(0,±y0) = ∞, where H(ϕ, y) is

defined by (1.9).
(1). Assume that gϵ > 0, thus, system (1.8) only has one singular straight

line ϕ = 0, and α̂ > 0, then the condition c2 − 1
2gϵ > 0 implies that ∆ > 0.

(i) When cγ > 0, we have phase portraits Fig.1. (there are two symmetric node
points N1,2(0,±y0) of system (2.1) in y−axis)

(ii) When cγ < 0, we have phase portraits Fig.2. (there is no equilibrium point
of system (2.1) in y−axis)

(2). Assume that gϵ < 0, system (1.8) has three singular straight lines ϕ = 0

and ϕ = ±ϕs = ±
√
− 2g

ϵ , and c2 − 1
2gϵ > 0, then the condition α̂ > 0 implies that

∆ > 0.
(i) When cγ > 0, we have phase portraits Fig.3. (there are two symmetric node

points N1,2(0,±y0) of system (2.1) in y−axis)
(ii) When cγ < 0, we have phase portraits Fig.4. (there is no equilibrium point

of system (2.1) in y−axis)
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(a) c2 − 1
2 gϵ < 0. (b) c2 − 1

2 gϵ = 0. (c) c2 − 1
2 gϵ > 0.

Figure 1. The phase portrait of system (1.8) for gϵ > 0, cγ > 0.

(a) c2 − 1
2 gϵ = 0. (b) c2 − 1

2 gϵ > 0.

Figure 2. The phase portrait of system (1.8) for gϵ > 0, cγ < 0.

(a) α̂ < 0 or α̂ = 0 (b) α̂ > 0, ϕ1 < −2g
ϵ (c) α̂ > 0, ϕ1 = −2g

ϵ . (d) α̂ > 0, ϕ1 > −2g
ϵ .

Figure 3. The phase portrait of system (1.8) for gϵ < 0, cγ > 0.

(a) α̂ > 0, ϕ1 < −2g
ϵ . (b) α̂ > 0, ϕ1 = −2g

ϵ . (c) α̂ > 0, ϕ1 > −2g
ϵ .

Figure 4. The phase portrait of system (1.8) for gϵ < 0, cγ < 0.
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Considering the physical significance, we only discuss the solutions of system
(1.8) corresponding to the bounded orbits shown in Fig.1-Fig.4. Then, we can
obtain the following conclusions:

(i) When gϵ > 0 and cγ > 0, System (1.8) exist uncountable infinite many
periodic wave solutions (see Fig.1 (a), (b), (c)), two pairs of different kink and anti-
kink wave solutions (see Fig.1 (b), (c)), and two symmetrical solitary wave solution
(see Fig.1 (c)).

(ii) When gϵ > 0 and cγ < 0, System (1.8) exist two family of periodic wave
solutions and two symmetrical solitary wave solution (see Fig.2 (b)).

(ii) When gϵ < 0 and cγ > 0, System (1.8) exist uncountable infinite many
periodic wave solutions including large amplitude periodic wave solutions and small
amplitude periodic wave solutions (see Fig.3 (a), (b), (c), (d)), a pair of kink and
anti-kink wave solutions (see Fig.3 (b)), different types of periodic peakon solutions
(see Fig.3 (a),(d)), and many compacton solutions.

(v) When gϵ < 0 and cγ < 0, System (1.8) exist two families of symmetrical
periodic wave solutions, one lower peakon solution and one upper peakon solution
(see Fig.4 (a)), and some compacton solutions.

Remark 2.1. Under some appropriate parameter conditions, system (2.1) will exist
saddle points or nodes. If there are nodes in singular straight line, system might exist
periodic orbits which give rise to periodic wave solutions of system (1.8). If there are
saddle points in singular straight line, system might exist triangle orbits or arched
orbits which give rise to peakons and periodic peakons, respectively. Furthermore,
when system (1.8) has three singular straight lines, saddle points and nodes of
system (2.1) maybe appear in different singular lines at the same time (see Fig.3
(a),(d)), system (1.8) might exist rectangular periodic closed orbits which give rise
to the sawtooth periodic peakons.

3. Exact parametric representations of solutions of
system (1.8)

In this section, we obtain the exact parametric representations of the solutions
mentioned in the above conclusion, by studying the different bounded orbits shown
in Fig.1-Fig.4. The following discussion will give the main results.

The first integral H(ϕ, y) = h can be written as

y2 =
βϕ6 + hϕ4 − 2g2(c2+gϵ)

cγ ϕ2 + 1
cγ

(ϕ2 + 2g
ϵ )

2
, β =

−(2c2 + 3gϵ)

4cγ
=

−α̂

2cγ
. (3.1)

Theorem 3.1. When gϵ > 0 and cγ > 0, corresponding to different bounded orbits
in Fig.1 (a), (b), (c), system (1.8) has different exact explicit solutions (3.4)-(3.10).

Proof. (i) The case of c2 − 1
2gϵ < 0.

System (1.8) has the phase portrait Fig.1 (a) and β < 0. The level curves defined
by H(ϕ, y) = h, h ∈ (−∞,∞) is a family of global closed orbits which pass ϕ−axis
at points (±r1, 0), we obtain from the first equation of system (1.8) that

√
|β|ξ =

∫ ϕ

0

(ϕ2 + 2g
ϵ )dϕ√

(r21 − ϕ2)(ϕ2 − ρ2)(ϕ2 − ρ̄2)
, (3.2)
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where ρ is a complex number. Let u = ϕ2, (3.2) become

2
√
|β|ξ =

∫ u

0

(u+ 2g
ϵ )du√

(r21 − u)u(u− ρ2)(u− ρ̄2)
. (3.3)

By calculating the integration (3.3), we obtain the following parametric represen-
tation of the periodic solutions:

ϕ(χ) = ±
(

r21B(1− cn(χ, k))
(A−B)cn(χ, k) +A+B

) 1
2

,

ξ(χ) =
1

2
√
|β|AB

[
(
2g

ϵ
− r21B

A−B
)χ+

r21
2α1

π(arccos(cn(χ, k)), α2
1

α2
1 − 1

, k)− r21
2
f1

]
,

(3.4)

where a21 = − 1
4 (ρ

2 − ρ̄2)2, b1 = 1
2 (ρ

2 + ρ̄2), A2 = (r21 − b1)
2 + a21, B

2 = b21 +

a21, k
2 =

r41−(A−B)2

4AB , α1 = A−B
A+B . cn(·, k), sn(·, k),dn(·, k) are Jacobin elliptic func-

tions, Π(·, ·, k) is the elliptic integral of the third kind, the function f1(χ) can be
seen in [2].

(ii) The case of c2 − 1
2gϵ = 0.

System (1.8) has the phase portrait Fig.1 (b) and β < 0. The level curves
defined by H(ϕ, y) = h1 are two heteroclinic orbits enclosing the origin (0, 0) and
connecting two equilibrium points (±ϕ1, 0). We have

√
|β|ξ =

∫ ϕ

0

(ϕ2+ 2g
ϵ )dϕ√

(ϕ2
1−ϕ2)3

=[
−
∫ ϕ

0
dϕ√
ϕ2
1−ϕ2

+ (ϕ2
1 +

2g
ϵ )

∫ ϕ

0
dϕ

(ϕ2
1−ϕ2)

√
ϕ2
1−ϕ2

]
, and obtain the parametric represen-

tations of the kink and anti-kink wave solutions:

ϕ(χ) = ϕ1 sinx, χ ∈ (−π

2
,
π

2
),

ξ(χ) =
1√
|β|

[
−χ+ (1 +

2g

ϵϕ2
1

) tanχ

]
.

(3.5)

(iii) The case of c2 − 1
2gϵ > 0.

System (1.8) has the phase portrait Fig.1 (c) in which the phase orbits are very
rich, and β < 0. The following Fig.5 (a)-(e) show the changes of the level curves:

(a) h < h2 (b) h = h2 (c) h2 < h < h1 (d) h = h1 (e) h > h1

Figure 5. The changes of the level curves for gϵ > 0, cγ > 0, c2 − 1
2 gϵ > 0.

The level curves defined by H(ϕ, y) = h, h1 < h < h2 (see Fig.5 (a) and (e)) are
the same as those of the case (i) in theorem 1.
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The level curves defined by H(ϕ, y) = h2 are two equilibrium points (±ϕ2, 0),
and one periodic orbit enclosing (0, 0) and passing ϕ−axis at points (±r1, 0) where
r1 < ϕ2 (see Fig.5 (b)). For the periodic orbit,

√
|β|ξ =

∫ ϕ

0

(ϕ2+ 2g
ϵ )dϕ√

(r21−ϕ2)(ϕ2
2−ϕ2)2

=[
−
∫ ϕ

0
dϕ√
r21−ϕ2

+ (ϕ2
2 +

2g
ϵ )

∫ ϕ

0
dϕ

(ϕ2
2−ϕ2)

√
r21−ϕ2

]
. We have the parametric representa-

tion of the periodic solution as follows(see Fig.6 (a)):

ϕ(χ) = ±
(
ϕ2
2 −

2ϕ2
2(r

2
1 − ϕ2

2)

r21 cos(ω1χ)− 2ϕ2
2 + r21

) 1
2

,

ξ(χ) =
−1√
|β|

[
arcsin

ϕ

r1
+

1

2
(ϕ2

2 +
2g

ϵ
)χ

]
,

(3.6)

where ω1 = ϕ2

√
ϕ2
2 − r21.

(a) Periodic wave (b) Solitary wave of peak type (c) Solitary wave of valley type

Figure 6. The periodic wave and solitary wave of system (1.8).

The level curves defined by H(ϕ, y) = h, h2 < h < h1 are three families of
periodic orbits enclosing (0, 0) and two equilibrium points (±ϕ2, 0) respectively
(see Fig.5 (c)). For the periodic orbits that encloses the origin point and pass
ϕ−axis at points (±r3, 0),

√
|β|ξ =

∫ ϕ

0

(ϕ2+ 2g
ϵ )dϕ√

(r21−ϕ2)(r22−ϕ2)(r23−ϕ2)
. Let u = ϕ2, we

have 2
√

|β|ξ =
∫ u

0

(u+ 2g
ϵ )du√

(r21−u)(r22−u)(r23−u)u
. It gives rise to the following parametric

representations of the periodic solutions:

ϕ(ξ) = ±
(

α2
2r

2
1sn2(ω2ξ, k)

α2
2sn2(ω2ξ, k)− 1

) 1
2

, (3.7)

where α2
2 =

−r23
r21−r23

, k2 =
(r22−r21)α

2
2

r22
, ω2 =

ϵ
√

|β|r22(r21−r23)

2g . For the periodic orbits that
enclose equilibrium points (±ϕ2, 0) and pass ϕ−axis at points (±r1, 0), (±r2, 0),√
|β|ξ =

∫ ϕ

r2

(ϕ2+ 2g
ϵ )dϕ√

(r21−ϕ2)(ϕ2−r22)(ϕ
2−r23)

. Let u = ϕ2, we have

2
√
|β|ξ =

∫ u

r2

(u+ 2g
ϵ )du√

(r21 − u)(u− r22)(u− r23)u
,
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and obtain the following parametric representations of the periodic solutions:

ϕ(χ) = ±
(

r22dn2(χ, k)

1− α2
3sn2(χ, k)

) 1
2

,

ξ(χ) =
1

r2
√
|β|(r21 − r23)

[
(r22 − r23)π(arcsin(sn(χ, k)), α2

3, k) + (
2g

ϵ
+ r23)χ

]
,

(3.8)

where α2
3 =

r21−r22
r21−r23

, k2 =
r23α

2
3

r22
.

The level curves defined by H(ϕ, y) = h1 contain two heteroclinic orbits which
connect the saddle points (±ϕ1, 0) and enclose the origin (0, 0), two homoclinic
orbits to the equilibrium points (±ϕ1, 0) which pass ϕ−axis at (±ϕm, 0) and enclose
two centor points (±ϕ2, 0) (see Fig.5 (d)). According to the two heteroclinic orbits,
and √

|β|ξ =

∫ ϕ

0

(ϕ2 + 2g
ϵ )dϕ√

(ϕ2
m − ϕ2)(ϕ2

1 − ϕ2)2

=

[
−
∫ ϕ

0

dϕ√
ϕ2
m − ϕ2

+ (ϕ2
1 +

2g

ϵ
)

∫ ϕ

0

dϕ

(ϕ2
1 − ϕ2)

√
ϕ2
m − ϕ2

]
.

We have the following parametric representations of the kink and anti-kink solu-
tions:

ϕ(χ) = ±
(
ϕ2
1 −

2ϕ2
1(ϕ

2
m − ϕ2

1)

ϕ2
m cosh(ω3χ)− 2ϕ2

1 + ϕ2
m

) 1
2

, χ ∈ (−∞,+∞)

ξ(χ) =
−1√
|β|

[
arcsin

ϕ

ϕm
+

1

2
(ϕ2

1 +
2g

ϵ
)χ

]
,

(3.9)

where ω3 = ϕ1

√
ϕ2
m − ϕ2

1. For the two homoclinic orbits,

√
|β|ξ =

∫ ϕm

ϕ

(ϕ2 + 2g
ϵ )dϕ√

(ϕ2
m − ϕ2)(ϕ2 − ϕ2

1)
2

=

[∫ ϕm

ϕ

dϕ√
ϕ2
m − ϕ2

+ (ϕ2
1 +

2g

ϵ
)

∫ ϕm

ϕ

dϕ

(ϕ2 − ϕ2
1)
√
ϕ2
m − ϕ2

]
.

Then, we obtain the parametric representations of homoclinic orbits solutions(see
Fig.6 (b) and (c)):

ϕ(χ) = ±
(
ϕ2
1 +

2ϕ2
1(ϕ

2
m − ϕ2

1)

ϕ2
m cosh(ω3χ) + 2ϕ2

1 − ϕ2
m

) 1
2

, χ ∈ (−∞,+∞)

ξ(χ) =
1√
|β|

[
π

2
− arcsin

ϕ

ϕm
+

1

2
(ϕ2

1 +
2g

ϵ
)χ

]
.

(3.10)

Theorem 3.2. When gϵ > 0 and cγ < 0, we have phase portrait Fig.2. In this
case, system (1.8) has little periodic wave solutions and solitary wave solutions. By
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using corresponding analyses, we have the following exact traveling wave solutions:

ϕ(χ) = ±
(

r23
1− α2

4sn2(χ, k)

) 1
2

,

ξ(χ) =
1

r2
√
β(r21 − r23)

[
r23π(arcsin(sn(χ, k)), α2

4, k) +
2g

ϵ
χ

]
,

(3.11)

where r3 < ϕ1 < r2 < r1 are the intersection values of the level curves H(ϕ, y) = h

and positive ϕ−axis, respectively, and α2
4 =

r22−r23
r22

, k2 =
r21α

2
4

r21−r23
.

ϕ(χ) = ±
(
ϕ2
2 −

2ϕ2
2(ϕ

2
2 − ϕ2

m)

ϕ2
m cosh(ω4χ) + 2ϕ2

2 − ϕ2
m

) 1
2

, χ ∈ (−∞,+∞)

ξ(χ) =
1√
β

[
lnϕm − ln |ϕ+

√
ϕ2 − ϕ2

m| − 1

2
(ϕ2

2 +
2g

ϵ
)χ

]
,

(3.12)

where ϕm is the intersection values of the right homoclinic orbit and ϕ−axis, ω4 =
ϕ2

√
ϕ2
2 − ϕ2

m.

Corresponding to Fig.3, system (1.8) exist three singular strait lines, as well as
different saddles and nodes. Therefore, the system has very rich dynamic behaviors.
That gives rise to various traveling wave solutions including periodic wave solutions,
kink and anti-kink wave solutions and different periodic peakons. We obtain the
following conclusion:

Theorem 3.3. When gϵ < 0 and cγ > 0, corresponding to different bounded orbits
in Fig.3 (a), (b), (c), (d), system (1.8) has different exact explicit solutions (3.13)-
(3.19).

Proof. (i) The case of α̂ < 0.
System (1.8) has the phase portrait Fig.3 (a) and β > 0. The following Fig.7

(a)-(c) show the changes of the level curves:

(a) h < hs (b) h = hs (c) v

Figure 7. The changes of the level curves defined by (1.9) for gϵ < 0, cγ > 0, α̂ < 0.

The level curves defined by H(ϕ, y) = h, h < hs enclose two open curves passing
the ϕ−axis at the (±r1, 0) and a family of periodic orbits enclosing the origin (0, 0)

(see Fig.7 (a)). For the periodic orbits, we have
√
βξ =

∫ ϕ

0

−(ϕ2+ 2g
ϵ )dϕ√

(r21−ϕ2)(ϕ2
2−ϕ2)(ϕ2+r23)

.
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Let u = ϕ2, we have 2
√
βξ =

∫ u

0

−(u+ 2g
ϵ )du√

(r21−u)(r22−u)u(u+r23)
. Then, the following para-

metric representations of the periodic solutions can be obtained:

ϕ(ξ) = ±
(

α̂2
1r

2
3sn2(ω̂1ξ, k)

1− α̂2
1sn2(ω̂1ξ, k)

) 1
2

, (3.13)

where α̂2
1 =

r22
r22+r23

, k2 =
α̂2

1(r
2
1+r23)

r21
, ω̂1 =

r1ϵ
√

β(r22+r23)

−2g .

Remark 3.1. The level curves defined by H(ϕ, y) = hs are six arch segments (see
Fig.7 (b)). When h → hs, the two segments between two straight lines ϕ = ±

√
−2g
ϵ

are very closed to the two singular straight lines, so that the periodic solutions given
by (3.13) give rise to a family of periodic peakons (see Fig.8).

Figure 8. The periodic peakon or sawtooth cusp wave of system (1.8).

The level curves defined by H(ϕ, y) = h, h > hs are six open curves (see Fig.7
(c)). For the two open curves between two singular straight lines ϕ = ±

√
−2g
ϵ , we

obtain from the first equation of system (1.8) that
√
βξ =

∫ ϕ

0

−(ϕ2+ 2g
ϵ )dϕ√

(r21+ϕ2)(ϕ2−ρ2)(ϕ2−ρ̄2)
.

Let u = ϕ2, we have 2
√
βξ =

∫ u

0

−(u+ 2g
ϵ )du√

u(u+r21)(u−ρ2)(u−ρ̄2)
. The following parametric

representations of the compact solutions can be obtained:

ϕ(χ) = ±
(

r21A(1− cn(χ, k))
(A+B)cn(χ, k)−A+B

) 1
2

, χ ∈ (−χ1, χ1),

ξ(χ) =
−1

2
√
βAB

[
(
2g

ϵ
− r21A

A+B
)χ− r21

2α̂2
π(arccos(cn(χ, k)), α̂2

2

α̂2
2 − 1

, k) +
r21
2
f1

]
,

(3.14)

where a21 = − 1
4 (ρ

2 − ρ̄2)2, b1 = 1
2 (ρ

2 + ρ̄2), A2 = b21 + a21, B
2 = (r21 + b1)

2 + a21, k
2 =

(A+B)2−r41
4AB , α̂2 = A+B

B−A , χ1 = cn−1
(

r21A− 2g
ϵ (A−B)

r21A− 2g
ϵ (A+B)

)
.

(ii) The case of α̂ > 0, ϕ1 < −2g
ϵ .

System (1.8) has the phase portrait Fig.3 (b) and β < 0. The level curves
defined by H(ϕ, y) = h, h < h1 contain a family of periodic orbits enclosing the



2008 J. Zhuang & Y. Zhou

origin point and four open curves passing the ϕ−axis at (±r1, 0), (±r2, 0) where
r1 >

√
−2g
ϵ > r2. The family of global closed orbits have similar parametric rep-

resentations as (3.7), where we use −ω instead of ω. For the open curves be-
tween two straight lines, they have the similar parametric representations as (3.8),

where ξ(χ) needs an extra negative sign and χ ∈ (−χ2, χ2), χ2 = sn−1

√
2g
ϵ +r22

α2
3(

2g
ϵ +r23)

.
Furthermore, according to the open curves which pass the ϕ−axis at (±r1, 0),
we obtain

√
|β|ξ =

∫ r1
ϕ

(ϕ2+ 2g
ϵ )dϕ√

(r21−ϕ2)(ϕ2−r2)(ϕ2−r23)
. Let u = ϕ2, we have 2

√
|β|ξ =∫ r21

u

(u+ 2g
ϵ )du√

(r21−u)(u−r22)(u−r23)u
. It gives rise to the following parametric representations

of the compact solutions(see Fig.9 (a) and (b)):

ϕ(χ) = ±
(

r21
1− α̂2

3sn2(χ, k)

) 1
2

, χ ∈ (−χ3, χ3),

ξ(χ) =
1

r2
√
|β|(r21 − r23)

[
r21π(arcsin(sn(χ, k)), α̂2

3, k) +
2g

ϵ
χ

]
,

(3.15)

where α̂2
3 =

r22−r21
r22

, k2 =
−α̂2

3r
2
3

r21−r23
, χ3 = sn−1

√
1+

ϵr21
2g

α̂2
3

.

(a) Right compacton family (b) Left compacton family

Figure 9. The compacton solution families of system (1.8).

The level curves defined by H(ϕ, y) = h1 are two heteroclinic orbits which
connect the saddle points (±ϕ1, 0) and enclose the origin (0, 0), and two stable
manifolds and two unstable manifolds to equilibrium points (±ϕ1, 0), and two
open curves passing the ϕ−axis at the (±r1, 0) where r1 >

√
−2g
ϵ . For the two

heteroclinic orbits, we have the similar parametric representation as (3.9), where
we use r21 instead of ϕ2

m and ξ(χ) needs an extra negative sign. For the open
curves which pass the points (±r1, 0), we have

√
|β|ξ =

∫ r1
ϕ

(ϕ2+ 2g
ϵ )dϕ√

(r21−ϕ2)(ϕ2−ϕ2
1)

2
=[∫ r1

ϕ
dϕ√
r21−ϕ2

+ (ϕ2
1 +

2g
ϵ )

∫ r1
ϕ

dϕ

(ϕ2−ϕ2
1)
√

r21−ϕ2

]
. Therefore, we obtain the following
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parametric representations of the compact solutions of system (1.8):

ϕ(χ) = ±
(
ϕ2
1 +

2ϕ2
1(r

2
1 − ϕ2

1)

r21 cosh(ω̂2χ)− r21 + 2ϕ2
1

) 1
2

, χ ∈ (−χ4, χ4),

ξ(χ) =
1√
|β|

[
π

2
− arcsin

ϕ

r1
+

1

2
(ϕ2

1 +
2g

ϵ
)χ

]
,

(3.16)

where ω̂2 = ϕ1

√
r21 − ϕ2

1, χ4 = 1
ω̂2

cosh−1(
r21ϕ

2
1−

2g
ϵ (r21−2ϕ2

1)

r21(−
2g
ϵ −ϕ2

1)
).

The level curves defined by H(ϕ, y) = h, h > h1 enclose two open curves pass-
ing ϕ−axis at (±r1, 0) where r1 >

√
−2g
ϵ and two open orbits passing y−axis at

node points (0,± |g|
2
√
cγ ), which tend to singular straight lines ϕ = ±

√
−2g
ϵ when

|y| → ∞, respectively. For the open curves passing y−axis, we obtain the similar
parametric representations as (3.2) where ξ(χ) needs an extra negative sign and

χ ∈ (−χ5, χ5), χ5 = cn−1(
B+ 2g

ϵr21
(A+B)

B− 2g

ϵr21
(A−B)

. According to the other two open curves,

we have
√
|β|ξ =

∫ r1
ϕ

(ϕ2+ 2g
ϵ )dϕ√

(r21−ϕ2)(ϕ2−ρ2)(ϕ2−ρ̄2)
, where ρ is a complex number. Let

u = ϕ2, we have 2
√
|β|ξ =

∫ r21
u

(u+ 2g
ϵ )du√

(r21−u)u(u−ρ2)(u−ρ̄2)
. It gives rise to the following

parametric representations of the wave solutions:

ϕ(χ) = ±
(

r21B(1− cn(χ, k))
(A−B)cn(χ, k) +A+B

) 1
2

, χ ∈ (χ6, 2K(k)),

ξ(χ) =
−1

2
√
|β|AB

[
(
2g

ϵ
− r21B

A−B
)χ+

A+B

2B
π(arccos(cn(χ, k)), α̂2

4

α̂2
4−1

, k)− r21B

2A
f1

]
,

(3.17)

where a21 = − 1
4 (ρ

2 − ρ̄2)2, b1 = 1
2 (ρ

2 + ρ̄2), A2 = (r21 − b1)2 + a21, B
2 = b21 + a21, k

2 =

r41−(A−B)2

4AB , α̂4 = A−B
A+B , χ6 = cn−1

(
B+ 2g

ϵr21
(A+B)

B− 2g

ϵr21
(A−B)

)
.

(iii) The case of α̂ > 0, ϕ1 = −2g
ϵ .

System (1.8) has the phase portrait Fig.3 (c) and β < 0. The level curves defined
by H(ϕ, y) = h, h < h1 is a family of global closed orbits enclosing the origin (0, 0)

and passing the ϕ−axis at the (±r1, 0) where r1 <
√

−2g
ϵ . The periodic orbits have

similar parametric representations as (3.4).
The level curves defined by H(ϕ, y) = h1 is one periodic orbit contacting two

singular straight lines ϕ = ±
√

−2g
ϵ at equilibrium points (±

√
2g
ϵ , 0). For the peri-

odic orbit, we have y2 = |β|(−2g
ϵ − ϕ2). Thus, we have the following parametric

representation of periodic wave solution:

ϕ(ξ) = ±
√

−2g

ϵ
sin(|β|ξ). (3.18)

(iv) The case of α̂ > 0, ϕ1 > −2g
ϵ .
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(a) h < h1 (b) h = h1 (c) h1 < h < hs (d) h = hs (e) h > hs

Figure 10. The changes of the level curves for gϵ < 0, cγ > 0, α̂ > 0, ϕ1 > −2g
ϵ .

System (1.8) has the phase portrait Fig.3 (d) and β < 0. The following Fig.10
(a)-(e) show the changes of the level curves:

The level curves H(ϕ, y) = h, h < h1 is a family of periodic orbits enclosing
the origin point(see Fig.10 (a)). They have the same parametric representations as
(3.4).

The level curves defined by H(ϕ, y) = h1 enclose two equilibrium points (±ϕ2, 0)
and one periodic orbit(see Fig.10 (b)). The periocic orbit have the same parametric
representation as (3.6).

When h1 < h < hs, the level curves defined by H(ϕ, y) = h are there families
of smaller periodic orbits(see Fig.10 (c)). They give rise to three families of smaller
amplitude periodic wave solutions which have similar parametric representation as
(3.5) and (3.6) respectively.

Remark 3.2. When h → hs, the family of periodic orbits enclosing the origin
(0, 0) give rise to the sawtooth periodic peakon, the two families of periodic orbits
surrounding the centers (±ϕ1, 0) give rise to the lower cusp wave solution and the
upper cusp wave solution(see Fig.11 (a) and (b)).

(a) Lower cusp wave (b) Upper cusp wave

Figure 11. The periodic peakons of system (1.8).

The level curve defined by H(ϕ, y) = hs is a larger periodic orbit, which enclose
the origin (0, 0) and two equilibrium points (±ϕ1, 0), pass the ϕ−axis at the (±r1, 0)

and two singular straight lines ϕ = ±
√

2g
ϵ at saddle points (±

√
2g
ϵ ,±ys), where

r1 >
√

−2g
ϵ (see Fig.10 (d)). We can obtain the following parametric representation
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of large amplitude periodic wave solution:

ϕ(χ) = ±
(

r21B(1− cn(χ, k))
(A−B)cn(χ, k) +A+B

) 1
2

, χ ∈ (−χ7, χ7),

ξ(χ) =
−1

2
√
|β|AB

[
(
2g

ϵ
− r21B

A−B
)χ+

r21
2α̂5

π(arccos(cn(χ, k)), α̂2
5

α̂2
5 − 1

, k)− r21
2
f1

]
,

(3.19)

where a21 = − 1
4 (ρ

2 − ρ̄2)2, b1 = 1
2 (ρ

2 + ρ̄2), A2 = (r21 − b1)
2 + a21, B

2 = b21 + a21, k
2 =

r41−(A−B)2

4AB , α̂5 = A−B
A+B , χ7 = cn−1

(
B+ 2g

ϵr21
(A+B)

B− 2g

ϵr21
(A−B)

)
.

Remark 3.3. In Fig.10 (d), two singular straight lines separate periodic orbit
into four curve segments. The two curves segments between two singular straight
lines ϕ = ±

√
2g
ϵ define the above sawtooth periodic peakon. The other two curve

segments define the above lower cusp wave solution and upper cusp wave solution
respectively (see Fig.11 (a) and (b)).

Theorem 3.4. When gϵ < 0 and cγ < 0, we have phase portrait Fig.4. In this
case, system (1.8) has little periodic wave solutions and compact wave solutions
(3.20) and (3.21).

Proof. (i) The case of α̂ > 0, ϕ1 < −2g
ϵ .

System (1.8) has the phase portrait Fig.4 (a) and β > 0. The level curves defined
by H(ϕ, y) = h, h1 < h < hs are two families of periodic orbits passing ϕ−axis at
the (±r2, 0), (±r3, 0) and enclosing the equilibrium points (±ϕ1, 0), respectively, and
two open curves passing ϕ−axis at points (±r1, 0), where r3 < r2 <

√
−2g
ϵ < r1.

The periodic orbits have the similar parametric representation as (3.11) where ξ(χ)
needs an extra negative sign.

The level curves defined by H(ϕ, y) = hs are two open curves passing singular
straight lines ϕ = ±

√
2g
ϵ at the saddle points(±

√
2g
ϵ ,±ys) respectively. Now, for

the two open curves, we have y2 =
(ϕ2−r21)(ϕ

2−ρ2)(ϕ2−ρ̄2)

(ϕ2+ 2g
ϵ )2

, where ρ is a complex
number. Then, the segments of the curves between two singular straight lines have
the following parametric representations:

ϕ(χ) = ±
(

r21B(1 + cn(χ, k))
(A+B)cn(χ, k)−A+B

) 1
2

, χ ∈ (−χ8, χ8),

ξ(χ) =
−1

2
√
βAB

[
(
2g

ϵ
− r21B

A+B
)χ− r21B(B −A)

2A(A+B)
π(arccos(cn(χ, k)), α̂2

5

α̂2
5 − 1

, k)

− r21B

2A
f1

]
,

(3.20)

where a21 = − 1
4 (ρ

2 − ρ̄2)2, b1 = 1
2 (ρ

2 + ρ̄2), A2 = (r21 − b1)
2 + a21, B

2 = b21 + a21, k
2 =

(A+B)2−r41
4AB , α̂5 = A+B

B−A , χ8 = cn−1

(
B− 2g

ϵr21(A−B)

−B− 2g

ϵr21(A+B)

)
.
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Remark 3.4. As a limit solution of a family of periodic orbits defined by H(ϕ, y) =
h, h ∈ (h1, hs) when h → hs, the parametric representations (30) of two curve
segments define the lower peakon solution and upper peakon solution of system
(1.8), respectively.

When h > hs, the level curves defined by H(ϕ, y) = h are four unbounded
open curves, and two open curves between two singular straight lines ϕ = ±

√
−2g
ϵ

passing ϕ−axis at points (±r1, 0) and tending the two singular straight lines when
y → ∞, which have the same parametric representations as (30).

(ii) The case of α̂ > 0, ϕ1 > −2g
ϵ .

System (1.8) has the phase portrait Fig.4 (c) and β > 0. The level curves de-
fined by H(ϕ, y) = h1 contain two stable manifolds and two unstable manifolds
to saddle points (±ϕ1, 0), and two open curves between two singular straight lines
ϕ = ±

√
2g
ϵ passing ϕ−axis at the (±r1, 0) and tending the two singular straight lines

when |y| → ∞. For the two open curves, we have
√
βξ =

∫ ϕ

r1

−(ϕ2+ 2g
ϵ )dϕ√

(ϕ2−r21)(ϕ
2
1−ϕ2)2

=[∫ ϕ

r1

dϕ√
ϕ2−r21

+ (ϕ2
1 −

2g
ϵ )

∫ ϕ

r1

dϕ

(ϕ2
1−ϕ2)

√
ϕ2−r21

]
. Therefore, we obtain the following para-

metric representations of the compactons:

ϕ(χ) = ±
(
ϕ2
1 −

2ϕ2
1(ϕ

2
1 − r21)

r21 cosh(ω̂3χ)− r21 + 2ϕ2
1

) 1
2

,

ξ(χ) =
1√
β

[
ln |ϕ+

√
ϕ2 − r21| − ln r1 +

1

2
(ϕ2

1 +
2g

ϵ
)χ

]
,

(3.21)

where ω̂3 = ϕ1

√
ϕ2
1 − r21.

4. Conclusion
In this paper, by using dynamical system method, we study all possible bifurcations
of the singular traveling wave system (1.8), prove that Equ.(1.1) has at least 18
different exact traveling wave solutions, and obtain more richer dynamical behaviors
for the system than references [5, 6, 12, 20, 21] which have used other methods. In
particular, we give the singular traveling wave system of (1.1), and obtain a lot
of new traveling wave solutions not given in [5, 6, 12, 13, 20, 21] which only study
the regular system of (1.1) under some special parameter conditions. These new
traveling wave solutions include sawtooth periodic peakons (3.5), (3.13), upper and
lower periodic peakons (3.6), (3.18), compacton solutions (3.14), (3.16), (3.21), and
some others. The results obtained in the paper are very helpful for the physical
application of the coupled nonlinear wave Eqs.(1.1).
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