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ON THE STABILITY OF BESSEL
DIFFERENTIAL EQUATION
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Abstract Using power series method, Kim and Jung (2007) investigated the
Hyers-Ulam stability of the Bessel differential equation, x2y′′(x)+xy′(x)+(x2−
α2)y(x) = 0, of order non-integral number α > 0. Also Bicer and Tunc (2017)
obtained new sufficient conditions guaranteeing the Hyers-Ulam stability of
Bessel differential equation of order zero. In this paper, by classical integral
method we will investigate the stability of Bessel differential equations of a
more generalized order than previous papers. Also, we will consider a more
generalized domain (0, a) for any positive real number a while Kim and Jung
(2007) restricted the domain near zero.
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1. Introduction
In 2007, Jung [7] analyzed the solution of the inhomogeneous Legendre differential
equation using the power series method and succeeded in obtaining a partial solution
by applying the result to the Hyer-Ulam stability problem for the Legendre equation.
This is the first example to study the Hyers-Ulam stability of differential equations
by applying the power series method. In the same year, Kim and Jung [9] applied
the idea from [7] for investigating the general solution of the inhomogeneous Bessel
differential equation

x2y′′(x) + xy′(x) +
(
x2 − α2

)
y(x) =

∞∑
m=0

amx
m,

where α is a positive non-integral real number, and then they proved a partial
solution of the Hyers-Ulam stability problem for the Bessel equation in a subclasses
of analytic functions.
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Although the Bessel differential equation of order α that is an integer or half-
integer is very important, Kim and Jung [9] did deal with the Bessel differential
equation of order α that is not integer.

Based on the above results, the aim of our paper is to more efficiently prove the
Hyers-Ulam stability of the Bessel differential equation of order α

x2y′′(x) + xy′(x) +
(
x2 − α2

)
y(x) = 0, (1.1)

where α is a nonnegative real number. And we will consider x ∈ (0, a) = I for any
positive real number a while Kim and Jung [9] restricted x near zero. Specially for
the Hyers-Ulam stability of the Bessel differential equation of order zero, one can
also refer the results by Biçer and Tunç [2].

In 1940, Ulam [19] asked: When is the theorem’s statement still true or nearly
true despite some slight variations in the theorem’s hypotheses?

In the following year, Hyers [4] came up with the first positive answer to Ulam’s
question by proving the stability of the additive functional equation in Banach
spaces. This became the starting point of the Hyers-Ulam stability. Since then,
Hyers’ result has been widely generalized in terms of the control conditions used to
define the concept of an approximate solution (see [16,17]).

Let I be a subinterval of R, let K denote either R or C, and let n be a fixed
positive integer. We consider the differential equation

ψ
(
f(x), y(x), y′(x), y′′(x), . . . , y(n)(x)

)
= 0.

Relatively recently, one started to study the Hyers-Ulam stability of the differ-
ential equations by asking if there exists a constant K > 0 such that the following
statement is true for any ε > 0: If an n times continuously differentiable function
z : I → K satisfies the inequality∣∣∣ψ(f(x), z(x), z′(x), z′′(x), . . . , z(n)(x))∣∣∣ ≤ ε

for all x ∈ I, then there exists a solution y : I → K of the differential equation that
satisfies the inequality |z(x)− y(x)| ≤ Kε for all x ∈ I.

Obłoza is recognized as the first mathematician to study the Hyers-Ulam stabil-
ity of linear differential equations (see [14, 15]). Then, in 1998, Alsina and Ger [1]
continued the study of Obłoza’s Hyers-Ulam stability of differential equations. In-
deed, many mathematician investigated the Hyers-Ulam stability of the first-order
linear differential equations. Some of them can be found in [5, 6, 8, 11,18]. In 2006,
Jung [6] investigated the Hyers-Ulam stability of a system of first-order linear differ-
ential equations with constant coefficients by using matrix method. Then, in 2008,
Wang, Zhou and Sun [20] investigated the Hyers-Ulam stability of linear differential
equations of first order by using the integral factor method.

In recent two decades, many mathematicians have tried to prove the Hyers-Ulam
stability of differential equations using various techniques and they are also paying
attention to the new results of the Hyers-Ulam stability of differential equations
(see for example: [3, 10,12,13]).

2. Main Results
The solutions of Bessel differential equation (1.1) are called the Bessel functions of
order α. The most important forms of Bessel differential equations occur when α
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is an integer or half-integer. When α is an integer, the Bessel functions of order
α are known as the cylinder functions or the cylindrical harmonics because they
appear as the solution to Laplace equation in cylindrical coordinates. On the other
hand, when α is a half-integer, the spherical Bessel function of order α appear as
the solution to the Helmholtz equation in spherical coordinates.

Now, we are in the position to prove a type of Hyers-Ulam stability for the Bessel
differential equation (1.1) of order α where α is a nonnegative real number.

Theorem 2.1. Assume that E is a complex Banach space, α is a fixed real number,
and I = (0, a) is an interval with a > 0. Let ε be any positive real constant. Suppose
f : I → E is a twice continuously differentiable function that satisfies the following
conditions:

(i) lim
x→a−

f(x) exists;

(ii) lim
x→a−

f ′(x) exists;

(iii) lim
w→(ln a)−

B(t) exists, where B : (−∞, ln a) → C is a solution of the Riccati

differential equation B′(t)−B(t)2 = e2t − α2.

If f moreover satisfies the inequality∥∥x2f ′′(x) + xf ′(x) +
(
x2 − α2

)
f(x)

∥∥ ≤ ε (2.1)

for all x ∈ I, then there exists a solution h ∈ C2(I, E) of Bessel differential equation
(1.1) such that

∥f(x)− h(x)∥

≤ε exp
{
−ℜ

(∫ x

a

1

z
B(ln z)dz

)}
×
[∫ x

a

1

q

∫ q

a

1

w
exp

{
2ℜ
(∫ q

a

1

z
B(ln z)dz

)
−ℜ

(∫ w

a

1

z
B(ln z)dz

)}
dwdq

]
for all x ∈ I.

Proof. Given any ε > 0, assume that a function f ∈ C2(I, E) satisfies inequality
(2.1) for all x ∈ I. We define J := (−∞, ln a) and the function ϕ : J → E by
ϕ(t) := f(et) for each t ∈ J . Then ϕ ∈ C2(J,E) and

ϕ′(t) = etf ′
(
et
)

and ϕ′′(t) = etf ′
(
et
)
+ e2tf ′′

(
et
)
.

Thus, we have

ϕ′′(t) +
(
e2t − α2

)
ϕ(t) = e2tf ′′

(
et
)
+ etf ′

(
et
)
+
(
e2t − α2

)
f
(
et
)

for all t ∈ J . Since et ∈ I for t ∈ J , inequality (2.1) yields∥∥ϕ′′(t) + (e2t − α2
)
ϕ(t)

∥∥ ≤ ε

for all t ∈ J .
We now set

δ(t) := ϕ′′(t) +
(
e2t − α2

)
ϕ(t) and ϕ1(t) := ϕ′(t) +B(t)ϕ(t)
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for each t ∈ J , where B : J → C is a solution of the Riccati differential equation
B′(t)−B(t)2 = e2t − α2. Then

ϕ′1(t) = ϕ′′(t) +B′(t)ϕ(t) +B(t)ϕ′(t)

= δ(t)−
(
e2t − α2

)
ϕ(t) +B′(t)ϕ(t) +B(t)ϕ′(t)

= δ(t) +
(
B′(t)−

(
e2t − α2

))
ϕ(t) +B(t)ϕ′(t)

= δ(t) +B2(t)ϕ(t) +B(t)ϕ′(t)

= δ(t) +B(t) (B(t)ϕ(t) + ϕ′(t))

= δ(t) +B(t)ϕ1(t)

for any t ∈ J . Hence, it follows that

−B(τ)ϕ1(τ) + ϕ′1(τ) = δ(τ)

for all τ ∈ J .
Multiplying the above identity by exp

{
−
∫ τ

ln a
B(s)ds

}
, we have

−B(τ) exp

{
−
∫ τ

ln a

B(s)ds

}
ϕ1(τ) + exp

{
−
∫ τ

ln a

B(s)ds

}
ϕ′1(τ)

= exp

{
−
∫ τ

ln a

B(s)ds

}
δ(τ),

which implies that

d

dτ

(
exp

{
−
∫ τ

ln a

B(s)ds

}
ϕ1(τ)

)
= exp

{
−
∫ τ

ln a

B(s)ds

}
δ(τ)

for all τ ∈ J .
Integrating both sides of the last equality with respect to τ , we get∫ p

ln a

d

dτ

(
exp

{
−
∫ τ

ln a

B(s)ds

}
ϕ1(τ)

)
dτ =

∫ p

ln a

exp

{
−
∫ τ

ln a

B(s)ds

}
δ(τ)dτ

⇐⇒ exp

{
−
∫ p

ln a

B(s)ds

}
ϕ1(p)− ϕ1(ln a) =

∫ p

ln a

exp

{
−
∫ τ

ln a

B(s)ds

}
δ(τ)dτ,

for any p ∈ J , where we set ϕ1(ln a) := lim
w→(ln a)−

ϕ1(w). Then we have

ϕ1(ln a) = lim
w→(ln a)−

(
ϕ′(w) +B(w)ϕ(w)

)
= lim

w→(ln a)−

(
ewf ′

(
ew
)
+B(w)f

(
ew
))

and w → (ln a)− implies that ew → a−. Also, the existence of ϕ1(ln a) is guaranteed
by conditions (i), (ii) and (iii), and consequently

ϕ1(p) = exp

{∫ p

ln a

B(s)ds

}(
ϕ1(ln a) +

∫ p

ln a

exp

{
−
∫ τ

ln a

B(s)ds

}
δ(τ)dτ

)
(2.2)

for all p ∈ J .
We recall that ϕ1(p) = ϕ′(p) + B(p)ϕ(p) and we multiply this equality by

exp
{∫ p

ln a
B(s)ds

}
to get

exp

{∫ p

ln a

B(s)ds

}
ϕ1(p)=exp

{∫ p

ln a

B(s)ds

}
ϕ′(p)+exp

{∫ p

ln a

B(s)ds

}
B(p)ϕ(p),
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which implies that

exp

{∫ p

ln a

B(s)ds

}
ϕ1(p) =

d

dp

(
exp

{∫ p

ln a

B(s)ds

}
ϕ(p)

)
for all p ∈ J .

Therefore, by integrating both sides of the last equality with respect to p, we
have ∫ t

ln a

exp

{∫ p

ln a

B(s)ds

}
ϕ1(p)dp = exp

{∫ t

ln a

B(s)ds

}
ϕ(t)− ϕ(ln a), (2.3)

for any t < p < ln a, where we set ϕ(ln a) := lim
w→(ln a)−

ϕ(w) = lim
x→a−

f(x), whose

existence is guaranteed by condition (i). By (2.2), we have∫ t

ln a

exp

{∫ p

ln a

B(s)ds

}
ϕ1(p)dp

=

∫ t

ln a

exp

{
2

∫ p

ln a

B(s)ds

}(
ϕ1(ln a) +

∫ p

ln a

exp

{
−
∫ τ

ln a

B(s)ds

}
δ(τ)dτ

)
dp

=

∫ t

ln a

exp

{
2

∫ p

ln a

B(s)ds

}
ϕ1(ln a)dp

+

∫ t

ln a

∫ p

ln a

exp

{
2

∫ p

ln a

B(s)ds−
∫ τ

ln a

B(s)ds

}
δ(τ)dτdp

and by combining the last equality and (2.3), we obtain

exp

{∫ t

ln a

B(s)ds

}
ϕ(t)− ϕ(ln a)

=

∫ t

ln a

exp

{
2

∫ p

ln a

B(s)ds

}
ϕ1(ln a)dp

+

∫ t

ln a

∫ p

ln a

exp

{
2

∫ p

ln a

B(s)ds−
∫ τ

ln a

B(s)ds

}
δ(τ)dτdp,

which implies that

ϕ(t) = exp

{
−
∫ t

ln a

B(s)ds

}
ϕ(ln a)

+ exp

{
−
∫ t

ln a

B(s)ds

}∫ t

ln a

exp

{
2

∫ p

ln a

B(s)ds

}
ϕ1(ln a)dp

+ exp

{
−
∫ t

ln a

B(s)ds

}∫ t

ln a

∫ p

ln a

exp

{
2

∫ p

ln a

B(s)ds−
∫ τ

ln a

B(s)ds

}
δ(τ)dτdp.

(2.4)

Now we define the function g : J → E by

g(t) := exp

{
−
∫ t

ln a

B(s)ds

}
ϕ(ln a)

+ exp

{
−
∫ t

ln a

B(s)ds

}∫ t

ln a

exp

{
2

∫ p

ln a

B(s)ds

}
ϕ1(ln a)dp.
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Then we have g ∈ C2(J,E) and

g′(t) = −B(t) exp

{
−
∫ t

ln a

B(s)ds

}
ϕ(ln a) + exp

{∫ t

ln a

B(s)ds

}
ϕ1(ln a)

−B(t) exp

{
−
∫ t

ln a

B(s)ds

}∫ t

ln a

exp

{
2

∫ p

ln a

B(s)ds

}
ϕ1(ln a)dp

and

g′′(t) = −
(
B′(t)−B(t)2

)
exp

{
−
∫ t

ln a

B(s)ds

}
ϕ(ln a)

−
(
B′(t)−B(t)2

)
exp

{
−
∫ t

ln a

B(s)ds

}∫ t

ln a

exp

{
2

∫ p

ln a

B(s)ds

}
ϕ1(ln a)dp

= −
(
e2t − α2

)
exp

{
−
∫ t

ln a

B(s)ds

}
×
(
ϕ(ln a) +

∫ t

ln a

exp

{
2

∫ p

ln a

B(s)ds

}
ϕ1(ln a)dp

)
.

Note that

g′′(t) =
(
α2 − e2t

)
g(t) (2.5)

for any t ∈ J .
According to (2.4) and the definition of g, we have

ϕ(t)− g(t) = exp

{
−
∫ t

ln a

B(s)ds

}
×
∫ t

ln a

∫ p

ln a

exp

{
2

∫ p

ln a

B(s)ds−
∫ τ

ln a

B(s)ds

}
δ(τ)dτdp

for all p ∈ J . Thus, using the fact that ∥δ(τ)∥ ≤ ε, we obtain

∥ϕ(t)− g(t)∥ ≤ ε exp

{
−ℜ

(∫ t

ln a

B(s)ds

)}
×
[∫ t

ln a

∫ p

ln a

exp

{
2ℜ
(∫ p

ln a

B(s)ds

)
−ℜ

(∫ τ

ln a

B(s)ds

)}
dτdp

]
for any t ∈ J .

Since x ∈ I if and only if lnx ∈ J , it follows from the last inequality that

∥ϕ(lnx)− g(lnx)∥

≤ε exp

{
−ℜ

(∫ ln x

ln a

B(s)ds

)}

×

[∫ ln x

ln a

∫ p

ln a

exp

{
2ℜ
(∫ p

ln a

B(s)ds

)
−ℜ

(∫ τ

ln a

B(s)ds

)}
dτdp

]

=ε exp

{
−ℜ

(∫ x

a

1

z
B(ln z)dz

)}
×
[∫ x

a

1

q

∫ q

a

1

w
exp

{
2ℜ
(∫ q

a

1

z
B(ln z)dz

)
−ℜ

(∫ w

a

1

z
B(ln z)dz

)}
dwdq

]
,

(2.6)
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for any 0 < q < a, where q = ep. Now, by defining the function h : I → E as
h(x) := g(lnx), we have h ∈ C2(I, E) and

h′(x) =
1

x
g′(lnx).

Further, it follows from (2.5) that

h′′(x) =
1

x2
g′′(lnx)− 1

x2
g′(lnx) =

α2 − x2

x2
g(lnx)− 1

x2
g′(lnx)

for each x ∈ I. So, we obtain

x2h′′(x) + xh′(x) +
(
x2 − α2

)
h(x) = 0

for all x ∈ I, which implies that h is a solution of Bessel differential equation (1.1).
Taking into account the fact that ϕ(x) = f(ex) for all x ∈ J , we see that

f(x) = ϕ(lnx) for each x ∈ I. By (2.6) we obtain

∥f(x)− h(x)∥

≤ε exp
{
−ℜ

(∫ x

a

1

z
B(ln z)dz

)}
×
[∫ x

a

1

q

∫ q

a

1

w
exp

{
2ℜ
(∫ q

a

1

z
B(ln z)dz

)
−ℜ

(∫ w

a

1

z
B(ln z)dz

)}
dwdq

]
for all x ∈ I. □

3. Example
In this section we will consider the Bessel differential equation of order 1

2 . In this
case, the Riccati differential equation B′(t) − B(t)2 = e2t − α2 = e2t − 1

4 has a
particular solution, B(t) = iet + 1

2 .
So, we have

ℜ
(∫ x

a

1

z
B(ln z)dz

)
= ℜ

(
i(x− a) +

1

2
ln
x

a

)
=

1

2
ln
x

a
.

Therefore, if the function f(x) satisfies the assumptions of Theorem 2.1, then there
exists a solution h(x) of the Bessel differential equation of order 1

2 such that

∥f(x)− h(x)∥ ≤ ε

√
a

x

[∫ x

a

1

a

∫ q

a

1

w

√
a

w
dwdq

]
=

2ε√
x

[∫ x

a

(
1√
a
− 1

√
q

)
dq

]
= 2ε

[√
x

a
− 2 +

√
a

x

]
= 2ε

(
4

√
a

x
− 4

√
x

a

)2

for all x ∈ I.
Hence, by Theorem 2.1, we obtain the following corollary.
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Corollary 3.1. Assume that E is a complex Banach space and I = (0, a) is an
interval with a > 0. Let ε be any positive real constant. Suppose f : I → E is a
twice continuously differentiable function that satisfies the following conditions:
(i) lim

x→a−
f(x) exists;

(ii) lim
x→a−

f ′(x) exists;

(iii) lim
w→(ln a)−

B(t) exists, where B : (−∞, ln a) → C is a solution of the Riccati

differential equation B′(t)−B(t)2 = e2t − α2.
If f moreover satisfies the inequality∥∥∥∥x2f ′′(x) + xf ′(x) +

(
x2 − 1

4

)
f(x)

∥∥∥∥ ≤ ε

for all x ∈ I, then there exists a solution h ∈ C2(I, E) of Bessel differential equation
(1.1) with α = 1

2 such that

∥f(x)− h(x)∥ ≤ 2ε

(
4

√
a

x
− 4

√
x

a

)2

for all x ∈ I.

4. Discussion
Bessel differential equation arises when we find separable solutions of the Laplace
equation and the Helmholtz equation, in cylindrical or spherical coordinates. So,
Bessel differential equation is important for many problems of wave propagation and
static potentials. In solving problems in cylindrical coordinate systems, one obtains
Bessel functions, the solution of the Bessel differential equation, of integer order
α = n, and in spherical problems, one obtains the functionss of half-integer order
α = n + 1

2 . For example, electromagnetic waves in a cylindrical waveguide, heat
conduction in a cylindrical object, dynamics of floating bodies, diffusion problems
on a lattice, etc.

Therefore, we investigated the stability of Bessel differential equations of a more
generalized order than previous paper [9]. And in Theorem 2.1 we assumed that
f ∈ C2(I, E) and f satisfies the inequality∥∥x2f ′′(x) + xf ′(x) +

(
x2 − α2

)
f(x)

∥∥ ≤ ε

for all x ∈ I, while Kim and Jung [9] assumed that f is an analytic function and f
satisfies the inequality (2.1) and

x2f ′′(x) + xf ′(x) +
(
x2 − α2

)
f(x) =

∞∑
m=0

amx
m

with |
∑∞

m=0 amx
m| ≤ K

∑∞
m=0 |amxm| for some constant K.

In fact, to use the method with power series, Kim and Jung [9] did need an
infinitely differentiable function f(x), while we need a twice continuously differen-
tiable function f(x).

At last, we considered the Bessel differential equations on more general domain,
(0, a) where a is a positive real number, while Kim and Jung [9] studied the differ-
ential equations near zero to use the method with power series.
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