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POSITIVE SOLUTIONS FOR A NONLOCAL
PROBLEM WITH CRITICAL SOBOLEV
EXPONENT IN HIGHER DIMENSIONS∗

Xiaotao Qian1,†

Abstract This paper is devoted to a nonlocal problem involving critical
Sobolev exponent and negative nonlocal term. By virtue of a cut-off tech-
nique and the concentration compactness principle, we prove the existence
and asymptotic behavior of positive solutions for the considered problem. In
particular, our results generalize the existence results of positive solutions to
higher dimensions N ≥ 5.

Keywords Variational methods, nonlocal problem, positive solution, critical
Sobolev exponent.
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1. Introduction and main results
In this paper, we consider the following nonlocal problem

−
(
a− b

∫
Ω

|∇u|2dx
)
∆u = λu+ |u|2∗−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where a, b > 0 are constants, λ > 0 is a parameter, 2∗ = 2N/(N − 2) is the critical
Sobolev exponent and Ω is a smooth bounded domain in RN with N ≥ 5.

Problem (1.1), in which the equation has a negative nonlocal term −b
∫
Ω
|∇u|2dx,

is a variant type of the following traditional Kirchhoff problem
−
(
a+ b

∫
Ω

|∇u|2dx
)
∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.2)

which is related to the stationary analogue of the equation
utt −

(
a+ b

∫
Ω

|∇u|2dx
)
∆u = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
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presented by Kirchhoff [6] as an extension of the classical d’Alembert’s wave equa-
tion for free vibration of elastic string. We have to point that the negative sign
of the nonlocal term of (1.1) causes some mathematical difficulties different from
typical Kirchhoff problem, which make the study of this kind of problem particu-
larly interesting. In recent years, many researchers pay attention to such nonlocal
problems with subcritical growth

−
(
a− b

∫
Ω

|∇u|2dx
)
∆u = fλ(x)|u|p−2u, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.3)

where 0 < p < 2∗ and Ω is a smooth bounded domain in RN . When N ≥ 1, 2 <
p < 2∗ and fλ(x) ≡ 1, it was proved in [19] that problem (1.3) admits two nontrivial
solutions. The existence and asymptotic behavior of sign-changing solutions to (1.3)
were given in [11,17]. Duan etc [1] extended the existence result of [19] to the case
of 1 ≤ p < 2∗. Two positive solutions of (1.3) were obtained in [7] under N = 3,
0 < p < 1 and fλ(x) = λ > 0 small enough. When N = 3 and fλ(x) ∈ L

2∗
2∗−p (Ω)

is a sign-changing function, the existence of positive solution of (1.3) for 1 < p < 2
and 3 < p < 6 were respectively established in [8, 13]. For more related results
of (1.3) with general nonlinearities and its variants on whole space, we refer the
readers to [3, 4, 14,15,20,21] and the references therein.

However, there are few papers to deal with the critical nonlocal problems like
(1.1), except [16] and [12]. For N = 4, by using minimization argument and
mountain-pass theorem, Wang etc [16] proved the existence of two positive solu-
tions to the problem

−
(
a− b

∫
R4

|∇u|2dx
)
∆u = λg(x) + |u|2u, x ∈ R4, (1.4)

where g(x) ∈ L4/3(R4) is a nonnegative function. When R4 and λg(x)+|u|2u are re-
placed by a bounded smooth domain Ω ⊂ R4 and λ|u|p−2u+Q(x)|u|2u respectively,
Qian [12] studied how the coefficient function Q(x) of the critical term affects the
number of positive solutions to problem (1.4) with Dirichlet boundary condition,
via Nehari manifold method.

Considering that previous works [12,16] treat only four dimensional case, here we
try to prove the existence and asymptotic behavior of positive solutions to critical
problem (1.1) in higher dimensions (i.e., N ≥ 5). Our main difficulties lie in the
presence of the negative nonlocal term and the lack of compactness of the Sobolev
embedding H1

0 (Ω) ↪→ L2∗(Ω). We emphasize that, the arguments used in [12,16] do
not apply here since their arguments heavily rely on the dimension N = 4. In fact,
we should combine a cut-off technique (see [2, 9, 18] for some related applications)
with the concentration compactness principle, in order to overcome these difficulties.

Let H1
0 (Ω) and Lr(Ω) denote the usual Sobolev space equipped with respect

to the norm ∥u∥2 =
∫
Ω
|∇u|2dx and |u|rr =

∫
Ω
|u|rdx, respectively. Let → (⇀)

denote the strong (weak) convergence. We denote by Br(x) the open ball of center
x and radius r > 0. Let S denote the best constant of the Sobolev embedding
H1

0 (Ω) ↪→ L2∗(Ω), namely,

S = inf
u∈H1

0 (Ω)\{0}

∫
Ω
|∇u|2dx(∫

Ω
|u|2∗dx

)2/2∗ .
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Denote by λ1 the first positive eigenvalue of the operator −∆ on Ω. By the Hölder’s
inequality, we easily verify that λ1 > S/|Ω|2/N .

Our first result is the following nonexistence of positive solution to (1.1).

Theorem 1.1. If λ ≥ aλ1, then problem (1.1) has no positive solution.

According to Theorem 1.1, to seek the positive solution of (1.1), it has to be
in the range λ ∈ (0, aλ1). More precisely, our existence theorem can be stated as
follows.

Theorem 1.2. Let δ∗ = min{λ1(N−2)(8b)1/2(aS)N/4

2N/4N1/2 , aS
2|Ω|2/N ,

1

(16bλ2
1|Ω|(N−2))

2/(N−4) }.

If λ ∈ (aλ1 − δ∗, aλ1), then problem (1.1) has at least one positive solution uλ.

Theorem 1.3. Let {λ̄n} be a sequence with λ̄n ↗ aλ1 as n → ∞. Suppose that
uλ̄n

is the positive solution corresponding to λ̄n obtained in Theorem 1.2. Then,
limn→∞ ∥uλ̄n

∥ = 0.

Remark 1.1. In (1.1), if b < 0, it reduces to the traditional Kirchhoff type problem.
For this situation, the existence of positive solution when λ > aλ1 has been proved
in [5, Theorem 1.2]. Comparing this with our results, we see that it is quite different
between b > 0 and b < 0, which indicates that the sign of nonlocal term plays an
important role in the nonlocal problems.

Remark 1.2. Comparing with [12, 16], we use some new methods to extend the
existence result of the case N = 4 to N ≥ 5. Moreover, the asymptotic behavior of
positive solutions of (1.1) is also obtained, which was not observed in [12,16].

The paper contains two more sections. In Section 2, we present some prelimi-
naries. In Section 3, we prove our main results.

2. Preliminaries
The energy functional corresponding to problem (1.1) is

Iλ(u) =
a

2
∥u∥2 − b

4
∥u∥4 − λ

2
|u|22 −

1

2∗
|u|2

∗

2∗ .

As we all know, the weak solutions to (1.1) are exactly the critical points of the
functional Iλ.

Define a smooth cut-off function φ such that
φ(t) = 1, t ∈ [0, 1),

φ(t) = 0, t ∈ (2,+∞),

0 ≤ φ(t) ≤ 1, t ∈ [1, 2],

−2 ≤ φ′(t) ≤ 0, t ∈ [0,+∞).

Associated with functional Iλ, we consider the following truncated functional Iλ,T :
H1

0 (Ω) → R given by

Iλ,T (u) =
a

2
∥u∥2 − b

4
ΦT (u)∥u∥4 −

λ

2
|u|22 −

1

2∗
|u|2

∗

2∗ ,
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where for each T > 0, ΦT (u) = φ
(

∥u∥2

T 2

)
. Clearly, Iλ,T is well defined and Iλ,T ∈

C1(H1
0 (Ω),R). Furthermore, for any u, v ∈ H1

0 (Ω), one has

⟨I ′λ,T (u), v⟩ =
[
a− bΦT (u)∥u∥2 −

b

2T 2
φ′
(
∥u∥2

T 2

)
∥u∥4

] ∫
Ω

∇u∇vdx

− λ

∫
Ω

uvdx−
∫
Ω

|u|2
∗−2uvdx.

For λ < aλ1, let T =
(

aλ1−λ
8bλ1(N−2)

)1/2
and note that

0 ≤ ΦT (u)∥u∥4 ≤ 4T 4 and − 16T 6 ≤ φ′
(
∥u∥2

T 2

)
∥u∥6 ≤ 0. (2.1)

Moreover, it is easy to see that if u is a critical point of Iλ,T such that ∥u∥ ≤ T ,
then u is also a critical point of Iλ. To give the proofs of our main results, we need
the following three lemmas.

Lemma 2.1. Let δ1 = λ1(N−2)(8b)1/2(aS)N/4

2N/4N1/2 . If {un} ⊂ H1
0 (Ω) is a sequence satis-

fying

Iλ,T (un) → c <
1

N

(
aS

2

)N/2

and I ′λ,T (un) → 0, as n→ ∞, (2.2)

then {un} has a convergent subsequence for λ ∈ (aλ1 − δ1, aλ1).

Proof. By the Sobolev inequality, (2.1) and (2.2), we have that

c+ 1 + o(1)∥un∥ ≥Iλ,T (un)−
1

2∗
⟨I ′λ,T (un), un⟩

=
a

N
∥un∥2 +

(
b

2∗
− b

4

)
ΦT (un)∥un∥4

+
b

2 · 2∗T 2
φ′
(
∥un∥2

T 2

)
∥un∥6 −

λ

N
|un|22

≥
(
aλ1 − λ

Nλ1

)
∥un∥2 −

8b

2∗
T 4,

for n large enough. As λ < aλ1, it follows that ∥un∥ is bounded. Thus, there is a
subsequence (still denoted by {un}) and u ∈ H1

0 (Ω) such that
un ⇀ u, in H1

0 (Ω),

un → u, in L2(Ω),

un → u, a.e. in Ω.

Furthermore, according to the concentration compactness principle due to Lions
[10], there exist two measures µ, ν ∈ M(Ω) such that

|∇un|2 ⇀ dµ ≥ |∇u|2 +
∑
j∈J

µjδxj and |un|2
∗
⇀ dν = |u|2

∗
+
∑
j∈J

νjδxj ,

where J is at most a countable index set, {xj} is a sequence of points in Ω and δxj

is the Dirac mass at xj . Meanwhile, for any j ∈ J , we have

µj ≥ Sν
2/2∗

j and µj , νj ≥ 0. (2.3)
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For any ε > 0 small, let ψε
j (x) be a smooth cut-off function centered at xj such that

ψε
j (x) = 1, x ∈ Bε/2(xj),

ψε
j (x) = 0, x ∈ Bc

ε(xj),

0 ≤ ψε
j (x) ≤ 1, x ∈ Bε(xj) \Bε/2(xj),

|∇ψε
j (x)| ≤ 4/ε.

It then follows from the boundedness of {un} and the Hölder’s inequality that,

lim
ε→0

lim
n→∞

∣∣∣∣ ∫
Ω

un∇un∇ψε
jdx

∣∣∣∣
≤ lim

ε→0
lim

n→∞

(∫
Bε(xj)

|∇un|2dx

) 1
2
(∫

Bε(xj)

|un|2|∇ψε
j |2dx

) 1
2

≤ lim
ε→0

C1

(∫
Bε(xj)

|u|2|∇ψε
j |2dx

) 1
2

≤ lim
ε→0

C1

(∫
Bε(xj)

|∇ψε
j |Ndx

) 1
N
(∫

Bε(xj)

|u|2
∗
dx

) 1
2∗

≤ lim
ε→0

C2

(∫
Bε(xj)

|u|2
∗
dx

) 1
2∗

= 0, (2.4)

where C1 and C2 are some positive constants, independent of ε and n. Also,

lim
ε→0

lim
n→∞

∫
Ω

u2nψ
ε
jdx = lim

ε→0

∫
Bε(xj)

u2ψε
jdx = 0. (2.5)

Moreover, since for λ ∈ (0, aλ1), we must have T 2 ≤ a
4b and consequently,

a− bΦT (un)∥un∥2 −
b

2T 2
φ′
(
∥un∥2

T 2

)
∥un∥4 ≥ a− 2bT 2 ≥ a

2
. (2.6)

Combining (2.4)–(2.6) and the fact that {unψε
j (x)} is bounded in H1

0 (Ω), we obtain

0 = lim
ε→0

lim
n→∞

⟨I ′λ,T (un), unψε
j ⟩

= lim
ε→0

lim
n→∞

{[
a− bΦT (un)∥un∥2 −

b

2T 2
φ′
(
∥un∥2

T 2

)
∥un∥4

] ∫
Ω

|∇un|2ψε
jdx

+

[
a− bΦT (un)∥un∥2 −

b

2T 2
φ′
(
∥un∥2

T 2

)
∥un∥4

] ∫
Ω

un∇un∇ψε
jdx

−
∫
Ω

(λu2n + |un|2
∗
)ψε

jdx

}
≥ lim

ε→0
lim

n→∞

{
a

2

∫
Ω

|∇un|2ψε
jdx−

∫
Ω

|un|2
∗
ψε
jdx

}
≥a
2
µj − νj ,
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which implies that νj ≥ a
2µj . Then, it is deduced from (2.3) that

νj ≥
(
aS

2

)N/2

or νj = 0.

Next, we show that the first alternative above does not occur. Let us argue by
contradiction and assume that there is some j0 ∈ J such that νj0 ≥

(
aS
2

)N/2. For
λ ∈ (aλ1 − δ1, aλ1), it holds

c+ o(1) =Iλ,T (un)−
1

2
⟨I ′λ,T (un), un⟩

=
b

4
ΦT (un)∥un∥4 +

b

4T 2
φ′
(
∥un∥2

T 2

)
∥un∥6 +

1

N
|un|2

∗

2∗

≥− 4bT 4 +
1

N
|un|2

∗

2∗

≥− 1

2N

(
aS

2

)N/2

+
1

N
νj0

≥ 1

N

(
aS

2

)N/2

,

which is a contradiction with c < 1
N

(
aS
2

)N/2. This gives J is empty and thus, we
conclude that un → u in L2∗(Ω). Hence, using the Hölder’s inequality, we get∣∣∣∣ ∫

Ω

|un|2
∗−1(un − u)dx

∣∣∣∣ ≤ |un|2
∗−1

2∗ |un − u|2∗ → 0, (2.7)

as n→ ∞. Similarly,∣∣∣∣ ∫
Ω

un(un − u)dx

∣∣∣∣ ≤ |un|2|un − u|2 → 0. (2.8)

Since limn→∞ ⟨I ′λ,T (un), un − u⟩ = 0, we can infer from (2.7) and (2.8) that

lim
n→∞

[
a− bΦT (un)∥un∥2 −

b

2T 2
φ′
(
∥un∥2

T 2

)
∥un∥4

] ∫
Ω

∇un∇(un − u)dx = 0,

which yields that ∥un∥ → ∥u∥. This and the weak convergence of {un} in H1
0 (Ω)

imply that un → u in H1
0 (Ω). The proof of Lemma 2.1 is completed.

Lemma 2.2. If λ ∈ (0, aλ1), then the functional Iλ,T satisfies the mountain-pass
geometry:
(i) There exist ρ, α > 0 such that Iλ,T (u) ≥ α > 0 for all ∥u∥ = ρ.
(ii) There exists ū ∈ H1

0 (Ω) with ∥ū∥ > ρ such that Iλ,T (ū) < 0.

Proof. (i) By the Sobolev inequality,

Iλ,T (u) ≥
aλ1 − λ

2λ1
∥u∥2 − b

4
∥u∥4 − 1

2∗
S−2∗/2∥u∥2

∗
.

From which it follows that there exist ρ, α > 0 such that Iλ,T (u) ≥ α > 0 for all
∥u∥ = ρ.
(ii) For any v ∈ H1

0 (Ω) \ {0}, t > 0, we have

Iλ,T (tv) ≤
at2

2
∥v∥2 − λt2

2
|v|22 −

t2
∗

2∗
|v|2

∗

2∗ → −∞, as t→ +∞.
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Hence, there is t0 > 0 large such that Iλ,T (ū) < 0 and ∥ū∥ > ρ, where ū = t0v.

Lemma 2.3. Let e1(x) be a positive eigenfunction associated with λ1. For λ ∈
(0, aλ1), we have

sup
t≥0

Iλ,T (te1) ≤
1

N
|Ω|(aλ1 − λ)N/2.

Proof. By the Hölder’s inequality and the fact ∥e1∥2 = λ1|e1|22,

sup
t≥0

Iλ,T (te1) ≤ sup
t≥0

{
a

2
t2∥e1∥2 −

λ

2
t2|e1|22 −

1

2∗
t2

∗
|e1|2

∗

2∗

}
=sup

t≥0

{
aλ1 − λ

2
t2|e1|22 −

1

2∗
t2

∗
|e1|2

∗

2∗

}
≤ sup

t≥0

{
aλ1 − λ

2
t2|Ω|

2∗−2
2∗ |e1|22∗ − 1

2∗
t2

∗
|e1|2

∗

2∗

}
.

For t ≥ 0, set
h(t) =

aλ1 − λ

2
|Ω|

2∗−2
2∗ |e1|22∗t2 −

1

2∗
|e1|2

∗

2∗t
2∗ .

By easy calculation, we obtain that h(t) attains its maximum at

tmax =

(
(aλ1 − λ)|Ω| 2

∗−2
2∗ |e1|22∗

|e1|2
∗

2∗

)1/(2∗−2)

and
sup
t≥0

Iλ,T (te1) ≤ h(tmax) =
1

N
|Ω|(aλ1 − λ)N/2.

This ends the proof of Lemma 2.3.

3. Proofs of main results
Proof of Theorem 1.1. If u ∈ H1

0 (Ω) is a positive solution of (1.1), it follows
that

−λ
∫
Ω

ue1dx =

(
a− b

∫
Ω

|∇u|2dx
) ∫

Ω

∆ue1dx+

∫
Ω

u2
∗−1e1dx

>

(
a− b

∫
Ω

|∇u|2dx
) ∫

Ω

∆ue1dx

=− λ1

(
a− b

∫
Ω

|∇u|2dx
) ∫

Ω

ue1dx

>− aλ1

∫
Ω

ue1dx,

where e1 is defined as in Lemma 2.3. Therefore, we obtain that, for all λ ≥ aλ1,
problem (1.1) has no positive solution.

Proof of Theorem 1.2. By Lemma 2.2, using the mountain-pass theorem, there
is a sequence {un} ⊂ H1

0 (Ω) such that Iλ,T (un) → cλ and I ′λ,T (un) → 0 for

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ,T (γ(t)) ≥ α > 0,
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where
Γ := {γ ∈ C

(
[0, 1],H1

0 (Ω)
)
: γ(0) = 0 and Iλ,T (γ(1)) < 0}.

By Lemma 2.3, it is easy to see that cλ < 1
N |Ω|(aλ1 − λ)N/2. Let δ2 = aS

2|Ω|2/N and
note that when λ ∈ (aλ1 − δ2, aλ1), it holds

1

N
|Ω|(aλ1 − λ)N/2 <

1

N

(
aS

2

)N/2

.

Set δ̄ = min{δ1, δ2}, then by Lemma 2.1, if λ ∈ (aλ1 − δ̄, aλ1), we know that {un}
possesses a convergent subsequence. Thus, we may assume that un → uλ in H1

0 (Ω).
As a consequence, for λ ∈ (aλ1 − δ̄, aλ1), one has

1

N
|Ω|(aλ1 − λ)N/2 ≥ Iλ,T (uλ) = lim

n→∞
Iλ,T (un) = cλ ≥ α > 0, (3.1)

and I ′λ,T (uλ) = 0, namely, uλ is a nontrivial critical point of Iλ,T . We next show
that ∥uλ∥ ≤ T . To proceed, let δ∗ = min{δ̄, 1

(16bλ2
1|Ω|(N−2))

2/(N−4) }. Since for

λ ∈ (aλ1 − δ∗, aλ1) we have

(aλ1 − λ)T 2

Nλ1
− 8bT 4

2∗
=

(aλ1 − λ)2

16bλ21N(N − 2)
≥ 1

N
(aλ1−λ)N/2|Ω|, (necessarily N ≥ 5)

then it follows from (3.1) that

(aλ1 − λ)T 2

Nλ1
− 8bT 4

2∗
≥Iλ,T (uλ)−

1

2∗
⟨I ′λ,T (uλ), uλ⟩

=
a

N
∥uλ∥2 +

(
1

2∗
− 1

4

)
bΦT (uλ)∥uλ∥4

+
b

2 · 2∗T 2
φ′
(
∥uλ∥2

T 2

)
∥uλ∥6 −

λ

N
|uλ|22

≥ a

N
∥uλ∥2 −

8

2∗
bT 4 − λ

N
|uλ|22

≥aλ1 − λ

Nλ1
∥uλ∥2 −

8

2∗
bT 4,

which provides that ∥uλ∥ ≤ T and hence, uλ is a nontrivial solution to (1.1).
Similar to the proof of [16, Theorem 1.2], we can further derive that uλ is a positive
solution.

Proof of Theorem 1.3. For any sequence {λ̄n} with λ̄n ↗ aλ1 as n → ∞, let
uλ̄n

be the positive solution of problem (1.1) with λ = λ̄n obtained in Theorem 1.2.
Then, there holds

cλ̄n
= Iλ̄n

(uλ̄n
)− 1

2∗
⟨I ′λ̄n

(uλ̄n
), uλ̄n

⟩

≥ aλ1 − λ̄n
Nλ1

∥uλ̄n
∥2 +

(
1

2∗
− 1

4

)
b∥uλ̄n

∥4

≥
(

1

2∗
− 1

4

)
b∥uλ̄n

∥4.

Combing this with the fact that 0 ≤ cλ̄n
≤ 1

N |Ω|(aλ1 − λ̄n)
N/2 , we conclude that

limn→∞ ∥uλ̄n
∥ = 0.
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