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Abstract In this article, our task is to study the existence and Noethericity of
solution for two classes of singular convolution integral equations with Cauchy
kernels in the non-normal type case. To obtain the conditions of solvability for
such equations, we establish regularity theory of solvability. By means of the
theory of Fourier analysis, we will transform the equations into boundary value
problems for holomorphic functions. The holomorphic solutions and conditions
of solvability are obtained by using the method of complex analysis in class
{0}. Moreover, we also discuss the asymptotic property of solution near nodes.
Therefore, our work generalizes and improves the theories of integral equations
and the classical boundary value problems for holomorphic functions.
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1. Introduction
As it is well known, boundary value problems of holomorphic functions and singu-
lar integral equations are developing rapidly and have a wide range of applications.
They have been widely used in elastic theory, quantum mechanics, fluid dynamics,
thin shell theory, fracture mechanics, electromagnetic wave diffraction, atmospheric
radiative transport, neutron migration, cybernetics, prediction of stochastic pro-
cesses, and population theory, etc. The range of applications continues to expand.
Singular integral equations and boundary value problems of holomorphic functions
have been studied extensively in the literature (see, for instance, [2,5,7,8,15–18,34]
and there references) and formed a relatively systematic theoretical system. [33]con-
sidered the Noether theory of singular integral equations in the class of Hölder
functions, and obtained the general solutions and conditions of solvability. [9] first
began to study integral equations with discontinuous coefficients and convolution
kernel. [32] studied the solution method for some basic classes of singular integral
equations in the class {0} and put forward the concepts of function classes of (0),
< 0 >. He set up systematically the conditions of solvability and analytical solutions
of the above basic equations. More recently, [19–23] investigated some classes of
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singular integral equations with convolution kernel, and gave the theory of Noether
solvability and holomorphic solutions on the whole real axis X (or, the unit circle)
in the case of the normal-type.

It is often found that some functions have the exponential order decreasing
(or increasing) as the independent variable tends to ∞, therefore it is especially
significant to the solution of exponent decreasing (or increasing) in the equations
with convolution kernel. But in general case, the functions all contain the terms
of different exponential estimation, thus different boundary value problems may be
produced according to different exponential addends. So it is impossible to turn
it into boundary value problems by applying Fourier transform directly. For such
kind of problems, [24, 25] discussed the solutions for some basic kinds of singular
convolution integral equations in the function class with exponent decreasing (or
increasing). By introducing auxiliary functions and some generalized convolution
operators, the equations are turned into some special kinds of Riemann bound-
ary value problems with discontinuous coefficients on two parallel lines, and such
boundary value problems produced are more important in the course of application.
Motivated by the above researches, this paper is devoted to the study of the follow-
ing two classes of singular integral equations with Cauchy kernel and convolution
kernel in the cases of the non-normal type, which is simply called C-K equation:

(1) Dual singular integral equations

a1f(t) +
b1
πi

∫
R

f(τ)

τ − t
dτ +

c1√
2π

∫
R
k1(t− τ)f(τ)dτ

+
d1√
2π

∫
R
h1(t− τ)ϵf(τ)dτ = g(t), t ∈ R+;

a2f(t) +
b2
πi

∫
R

f(τ)

τ − t
dτ +

c2√
2π

∫
R
k2(t− τ)f(τ)dτ

+
d2√
2π

∫
R
h2(t− τ)ϵf(τ)dτ = g(t), t ∈ R−,

(1.1)

where aj , bj , cj , dj (j = 1, 2) are constants, kj(t), hj(t), g(t) ∈< 0 >, R = (−∞,+∞),
R+ = (0,+∞), R− = R−R+. Here, we also require that |b1|+|b2| ̸= 0. For equation
(1.1), we want to find its solution f(t) such that f ∈ {0}.

(2) Wiener-Hopf singular integral equation

af(t) +
b

πi

∫
R+

f(τ)

τ − t
dτ +

c√
2π

∫
R+

k(t− τ)f(τ)dτ +
d√
2π

∫
R+

h(t− τ)ϵf(τ)dτ

=g(t), t ∈ R+,
(1.2)

where a, b, c, d are constants with b ̸= 0, k, g ∈ (0), and an unknown function
f ∈ {0}.

The notations mentioned above can be found in Section 2.
In the course of solving equations (1.1) and (1.2), we find that the classical Bekya

regularization method used in [9, 15, 19–21, 33] is no longer suitable for the case of
the non-normal type. It is difficult to use only the Fourier transform technique
to study equations (1.1) and (1.2) in the case of non-normal type, thus we shall
introduce a new method to complete our research. On the solutions of (1.1) and
(1.2), we apply the theory of Fourier analysis, the classical boundary value problems
for holomorphic functions, and the principle of analytic continuation to investigate
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their solvability. We give a novel and effective approach, which is different from the
ones in the classical regularization method. By transforming the singular convo-
lution integral equations with Cauchy kernel and constant coefficients to Riemann
boundary value problem with discontinuity, we prove the uniqueness and existence
of solution and obtain the holomorphic solutions. Moreover, we also discuss the the-
ory of Noether solvability and the asymptotic property of solutions, and generalize
the index formula of the classical boundary value problems for holomorphic func-
tions. This article is very significant for the research of developing complex analysis,
integral equations, and boundary value problems for holomorphic functions.

Our paper is constructed as follows. In Section 2 we introduce the function
classes {0} (< 0 >, (0)), {{0}} (<< 0 >>, ((0))), and study their properties.
In Sections 3 and 4, we adopt the Fourier analysis approach to convert (1.1) and
(1.2) into boundary value problems for holomorphic functions with discontinuous
coefficients, and we use the generalized Liouville theorem and the theory of complex
analysis to solving the obtained boundary value problems of holomorphic functions.
We show that the equations are solvable under certain conditions. Finally, in Section
5, we give the conclusion of the paper.

2. Preliminaries
For convenience, we now give some definitions and lemmas. We firstly present the
following Fourier transform operator F and the inverse transform operator F−1:

(Ff)(s) =
1√
2π

∫
R
exp[ist]f(t)dt;

(F−1F )(t) =
1√
2π

∫
R
exp[−ist]F (s)ds, ∀ f ∈ L2.

(2.1)

The integrals that appear in (2.1) are the Cauchy principal values integrals. For
simplification, we denote (2.1) as

(Ff)(s) = F (s), (F−1F )(t) = f(t). (2.2)

We denote by H̃ the set of all functions which satisfy the Hölder condition on
R̄ = R ∪ {∞}. If F (s) ∈ H̃, then F (s) is a continuous function on R.

In the following, we mainly introduce the concepts of classes {{0}} ( ((0)),
≪ 0 ≫) and {0} ( (0), < 0 >), and point out some of their properties.
Definition 2.1. If F (s) ∈ H̃ ∩ L2, we say that F (s) ∈ {{0}}.

Obviously, {{0}} ⊂ L2∩H, where H is the space of Hölder continuous functions.
Definition 2.2. A function f(t) ∈ {0} if F (s) ∈ {{0}}, that is,

{0} = {f(t)|F (s) = Ff(t) ∈ {{0}}}. (2.3)

Definition 2.3. If (1) F (s) = O(|s|−ι) (ι > 1
2 ) for a sufficiently large number |s|;

(2) F (s) ∈ H̃, then we call F (s) ∈ ((0))ι or ((0)). If F (s) ∈ ((0))ι or ((0)), we say
that f(t) ∈ (0)ι or (0).
Definition 2.4. If (1) F (s) ∈ Hι(N∞) (ι > 1

2 ), and F (∞) = 0; (2) F (s) ∈ H̃, then
we call F (s) ∈≪ 0 ≫ι or ≪ 0 ≫, where N∞ denotes the neighbourhood of ∞. If
F (s) ∈≪ 0 ≫ι or ≪ 0 ≫, then we denote f(t) ∈< 0 >ι or < 0 >.
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It is clear that << 0 >>⊂ ((0)) ⊂ {{0}}, and < 0 >⊂ (0) ⊂ {0}. Note that,
in Definitions 2.3 and 2.4, we should require that ι > 1

2 , and we give the following
explanation.

Because F (s) ∈ H̃ and F (∞) = 0, then there is a M ∈ R+ and a sufficiently
large |s| such that

|f(s)| ≤M |s|−ι,

so we have
|f(s)|2 ≤M2|s|−2ι.

Since f(s) ∈ L2(R), that is, ∫
R
|f(s)|2ds < +∞,

thus ∫
R
M2|s|−2ιds < +∞.

From the previous discussion, we must have ι > 1
2 .

Definition 2.5. Let f(t) ∈ L2(R), then the Hilbert transform operator ϵ of f(t) is
defined by

ϵf(t) = P.V. 1
πi

∫
R
f(τ)

dτ

τ − t
, t ∈ R, (2.4)

where P.V. stands for the Cauchy principle value. For convenience, (2.4) can also
be simplified as

ϵf(t) =
1

πi

∫
R
f(τ)

dτ

τ − t
, t ∈ R. (2.5)

Sometimes we also call ϵ as the Cauchy integral operator. By [9, 32, 33] we can
verify that

ϵ2 = I.

where I is a unit operator.

Definition 2.6. For any function f(t), the operators S and T are introduced as
follows

Sf(t) = f(−t), T f(t) = sgn(t)f(t), t ∈ R. (2.6)

It is clear that
TS + ST = 0, S2 = I, T 2 = I. (2.7)

Definition 2.7. The convolution of two functions f(t) and g(t) is defined by the
formula

f ∗ g =
1√
2π

∫
R
f(t− τ)g(τ)dτ, t ∈ R. (2.8)

Obviously
f ∗ g = g ∗ f.
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Let
F = Ff, G = Fg,

by the convolution theorem [9,33] we known that

F(f ∗ g) = FG.

Lemmas 2.1 and 2.2 are obvious facts.

Lemma 2.1. If f, g ∈ {0}, then f ∗g ∈ {0}; if f ∈ {0} and g ∈ (0), then f ∗g ∈ (0).

Similarly, if f, g ∈< 0 >, then f ∗ g ∈< 0 >; if f ∈ {0} and g ∈< 0 >, then
f ∗ g ∈< 0 >.

Lemma 2.2 (see [26, 36, 38]). The operators F,F−1, ϵ, S, T are as the above, then
we have

ϵ = FTF−1, SF = FS = F−1. (2.9)

Lemma 2.3. For any s, τ ∈ R, we have

P.V.
∫
R

exp[ist]

τ − t
dt =


−πi exp[isτ ], s > 0,

0, s = 0,

πi exp[isτ ], s < 0.

(2.10)

Proof. We let
τ − t = y,

then in (2.10) we have

P.V.
∫
R

exp[ist]

τ − t
dt = P.V.

∫
R

exp[is(τ − y)]

y
dy

=exp[isτ ]P.V.
∫
R

cossy − isinsy

y
dy = −2i exp[isτ ]P.V.

∫
R+

sinsy

y
dy.

(2.11)

Since ∫
R+

sinsy

y
dy =


π
2 , s > 0,

0, s = 0,

−π
2 , s < 0,

(2.12)

thus from (2.11), we know that (2.10) holds.
Moreover, by the generalized Liouville theorem [32,33], we can also prove (2.10).

For convenience, from now on we shall omit the symbol P.V..
The following Lemma 2.4 is very important, and we use it to prove some of the

results in this paper.

Lemma 2.4. Let f ∈ {0}, F (s) = Ff(t), then we have

Fϵf = −TF. (2.13)
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Proof. Note that

F[ϵf(t)] =
1√
2π

∫
R
[
1

πi

∫
R

f(τ)

τ − t
dτ ] exp[ist]dt =

1√
2π

∫
R
[
1

πi

∫
R

exp(ist)

τ − t
dt]f(τ)dτ.

(2.14)
According to Lemma 2.3, we get

1

πi

∫
R

exp[ist]

τ − t
dt = −sgn(s) exp[isτ ], s, τ ∈ R. (2.15)

From (2.14) and (2.15), we have

F[ϵf(t)] =
1√
2π

∫
R
(−sgn(s))f(τ) exp[isτ ]dτ

=(−sgn(s)) 1√
2π

∫
R
f(τ) exp[isτ ]dτ = −sgn(s)F (s).

This completes the proof.
From f ∈ {0}, (0) or < 0 >, generally we could not assure that ϵf belongs to

the same class. However, we have the following lemma 2.5.
Lemma 2.5. If f ∈ {0}, (0) or < 0 >, and Ff(0) = 0, then ϵf ∈ {0}, (0) or < 0 >.
Proof. Since f ∈ {0}, we know that F = Ff ∈ {{0}}. By using definition of {{0}}
and

Ff(∞) = 0, Ff(0) = 0, (2.16)
we can prove ∫

R
|F (s)sgn(s)|2ds < +∞,

and
F (s)sgn(s) ∈ H̃,

thus F (s)sgn(s) ∈ {{0}}.
It follows from Lemma 2.4 that we get Fϵf ∈ {{0}}, therefore ϵf ∈ {0}. Simi-

larly, we can also prove ϵf ∈ (0), < 0 >.
The proof is complete.

Remark 2.1. In Lemma 2.5, it is easy to see that Ff(0) = 0 is necessary, otherwise
Lemma 2.5 is invalid. It follows from [27, 40] and Lemma 2.5 that ϵ maps {0} and
< 0 > into themselves respectively.

In the following Sections 3 and 4, we shall study theory of Noether solvability
and methods of solution for two classes of singular integral equations of convolution
type (that is, dual equations and Wiener-Hopf equation) in the case of the non-
normal type.

3. Solvability of dual equations (1.1)
In this section, we focus on dual singular integral equations (1.1). To do this, we
reduce equation (1.1) to the following system{

a1f(t) + b1ϵf(t) + c1k1 ∗ f(t) + d1h1 ∗ ϵf(t) = g(t), t ∈ R+;

a2f(t) + b2ϵf(t) + c2k2 ∗ f(t) + d2h2 ∗ ϵf(t) = g(t), t ∈ R−.
(3.1)
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Without loss of generality, we assume a1b2 ̸= a2b1. Extending t in the first
equation of (3.1) to t ∈ R−, and in the second one of (3.1) to t ∈ R+, that is, we
add ψ−(t) and ψ+(t) to (3.1), then equation (3.1) can be rewritten as{

a1f(t) + b1ϵf(t) + c1k1 ∗ f(t) + d1h1 ∗ ϵf(t) = g(t) + ψ−(t);

a2f(t) + b2ϵf(t) + c2k2 ∗ f(t) + d2h2 ∗ ϵf(t) = g(t) + ψ+(t),
t ∈ R. (3.2)

where ψ(t) ∈ {0} is an undetermined function and

ψ±(t) =
1

2
ψ(t)(sgn(t)± 1),

obviously,
ψ(t) = ψ+(t)− ψ−(t).

Due to Lemmas 2.4 and 2.5, we use the Fourier transforms to equation (3.2) and
get {

Y1(s)F (s) = G(s) + Ψ−(s);

Y2(s)F (s) = G(s) + Ψ+(s),
s ∈ R, (3.3)

where
Yj(s) = aj − bjsgn(s) + cjKj(s)− djsgn(s)Hj(s), j = 1, 2,

and
F (s) = Ff(t), G(s) = Fg(t), Ψ±(s) = Fψ±(t), Kj(s) = Fkj(t),
Hj(s) = Fhj(t), j = 1, 2.

By eliminating F (s) in (3.3), it gives rise to

1

Y2(s)
[G(s) + Ψ+(s)] =

1

Y1(s)
[G(s) + Ψ−(s)]. (3.4)

We denote
E(s) =

Y2(s)

Y1(s)
, Ω(s) = [

Y2(s)

Y1(s)
− 1]G(s),

so we can reduce equation (3.4) to the following boundary value problem for holo-
morphic function:

Ψ+(s) = E(s)Ψ−(s) + Ω(s), (3.5)
where Ψ±(s) are the boundary values of the following Cauchy singular integral

Ψ(z) =
1

2πi

∫
R

Ψ(s)

s− z
ds, z ∈ C+ ∪ C−. (3.6)

Note that, using the residue theorem [33], we know that (3.6) is true. And we
can verify that Ψ±(s) are also the one-sided Fourier transforms of ψ(t):

Ψ+(s) =
1√
2π

∫
R+

ψ(t) exp[ist]dt;

Ψ−(s) = − 1√
2π

∫
R−

ψ(t) exp[ist]dt.

It is clear that
Ψ+(s)−Ψ−(s) = Ψ(s).
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Thus, we should only solve problem (3.5) in place of equation (1.1). Without
loss of generality, we assume that

b1 ̸= 0, a1 ± b1 ̸= 0. (3.7)

Let Y1(s) have some zero-points e1, e2, · · · , en with the orders ξ1, ξ2, · · · , ξn respec-
tively, and Y2(s) have some zero-points d1, d2, · · · , dq with the orders η1, η2, · · · , ηq
respectively, where ξj , ηj are the non-negative integers. In this case, we say that
(3.5) is the boundary value problems of non-normal type.

We put
Π1(s) = Πn

j=1(s− ej)
ξj , Π2(s) = Πq

j=1(s− dj)
ηj .

Hence, we can rewrite the problem (3.5) in the form

Ψ+(s) =
Π2(s)

Π1(s)
D(s)Ψ−(s) + Ω(s), s ∈ R, (3.8)

where
E(s) =

Π2(s)

Π1(s)
D(s), and D(s) ̸= 0, ∀s ∈ R.

Note that, if Yj(s) (j = 1, 2) are non-vanishing functions on R, then (3.5) is called
a boundary value problem of normal type, and this is the special case mentioned
above, that is, Π1(s) = 1,Π2(s) = 1. For this case, the detailed discussion will be
omitted also (see, for instance, [16,18,20,21] and there references).

From (3.7), in view of the values of a2 ± b2, we have the following two cases.
Case (1): if |a2 + b2|+ |a2 − b2| ̸= 0, then (3.5) is a boundary value problem for

holomorphic function with nodes s = 0,∞.
Case (2): if |a2 + b2| + |a2 − b2| = 0 (that is, a2 = b2 = 0), then (3.5) is a

boundary value problem for holomorphic function with node s = 0.
Here, we only consider case (1), and case (2) can be discussed similarly. Since

f(t) ∈ {0}, so F (s) = Ff(t) ∈ {{0}}. We know that F (s) is continuous at s = 0,
hence it is necessary Ψ±(s) are continuous at s = 0 and

G(0) + Ψ±(0) = 0.

Returning to (3.3), we must have F (0) = 0 and

Ψ+(+0) = Ψ+(−0).

From the previous discussions, we take the limits as s→ 0 in (3.3), thus we get

(Fg)(0) = 0, i.e., G(0) = 0. (3.9)

Moreover, we require that the solutions of (3.5) should be at least continuous
along the whole real axis X and Ψ(∞) = 0. Denote by

1

2πi
{log|D(+0)

D(−0)
|+ i arg

D(+0)

D(−0)
} = γ0 = α0 + iβ0.

If we take the integer µ = [α0], then we call µ the index of (3.8). Denote
α = α0 − µ, then we know that 0 ≤ α < 1. Again let

γ0 − µ = α+ iβ0 = γ. (3.10)



Singular convolution integral equations of non-normal type 2065

Next we investigate the solvability of (3.8). First, we define the following (sec-
tionally) holomorphic function:

X(z) =


(z + i)−µ exp{ 1

2πi

∫
R

logD0(s)

s− z
ds}, z ∈ C+;

(z − i)−µ exp{ 1

2πi

∫
R

logD0(s)

s− z
ds}, z ∈ C−,

(3.11)

where in (3.11) we have set

D0(s) = (
s+ i

s− i
)µD(s),

that is,
logD0(s) = µlogs+ i

s− i
+ logD(s), (3.12)

here we have taken the definite branch of (3.12) such that

logD0(±0) = ±µπi+ logD(±0).

In addition, the branches of (3.12) can also be obtained by the following way

lim
s→∞

logs+ i

s− i
= 0.

It is easy to verify that X(z) is a canonical function of (3.8). By using Sokhotski–
Plemelj formula [10,13] to X(z) in (3.11), we have

(s+ i)µX+(s) = (s− i)
µ
D0(s)X

−(s). (3.13)

To solve (3.8), we need to construct the following function:

Φ(z) =

{
(z + i)n1Ψ(z), z ∈ C+;

(z − i)n2Ψ(z), z ∈ C−,
(3.14)

where

n1 =

n∑
j=1

ξj , n2 =

q∑
j=1

ηj .

Thus, (3.8) can be transformed into the following boundary value problems for
holomorphic functions in the case of non-normal type:

Φ+(s) =
Π2(s)(s+ i)n1X+(s)

Π1(s)(s− i)n2X−(s)
Φ−(s) + (s+ i)n1Ω(s). (3.15)

For the sake of simplicity, we only solve (3.15) in the problem R0. And by
assumptions, Φ(z) should take the finite value at z = ∞. We again put

1

2πi
{log|D(+∞)

D(−∞)
|+ i arg

D(+∞)

D(−∞)
} = γ∞ = α∞ + iβ∞.

Here we have taken the definite branch of logD(s) such that it is continuous at
s = ∞, and we require that 0 ≤ α∞ < 1. It follows from a1b2 ̸= a2b1 that γ∞ ̸= 0.
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We first consider the following homogeneous problem of (3.15) given by

Π1(s)(s− i)n2X−(s)Φ+(s) = Π2(s)(s+ i)n1X+(s)Φ−(s). (3.16)

To do this, we consider the following function

Ξ(z) =


Φ(z)

X(z)Π2(z)(z + i)n1
, z ∈ C+;

Φ(z)

X(z)Π1(z)(z − i)n2
, z ∈ C−,

(3.17)

thus Ξ(z) are holomorphic in C+ and C− respectively. From (3.16) we know that
Ξ(z) is holomorphic on C, and it is a polynomial of the degree µ−n1−n2. By using
the generalized Liouville theorem and the principle of analytic continuation [18,22],
we obtain the holomorphic solutions of (3.16) as follows:

Φ∗(z) =

{
X(z)Π2(z)(z + i)n1Pµ−n1−n2

(z), z ∈ C+;

X(z)Π1(z)(z − i)n2Pµ−n1−n2
(z), z ∈ C−,

(3.18)

in (3.18), when µ−n1−n2 ≥ 0, Pµ−n1−n2(z) is a polynomial of the degree µ−n1−n2
with arbitrary complex coefficients; when µ−n1−n2 < 0, we have Pµ−n1−n2

(z) ≡ 0.
Now we solve the non-homogeneous problem (3.15). We define the following

function
ϖ(z) =

1

2πi

∫
R

Π1(s)Ω(s)

X+(s)

ds

s− z
, ∀z ∈ C+ ∪ C−.

According to Sokhotski–Plemelj formula and the generalized Liouville theorem,
we can get the holomorphic solutions for the problem (3.15), which may have the
singularity at ej and dk. Thus, to solve (3.15), we construct a Hermite interpolation
polynomial Wϱ(z) (ϱ = n1 + n2 − 1) with the degree ϱ, i.e.,

Wϱ(z) = B0z
ϱ +B1z

ϱ−1 + . . .+Bϱ−1z +Bϱ,

which has some zero-points of the orders ξj , ηk (1 ≤ j ≤ n, 1 ≤ k ≤ q) at ej , dk
respectively, where Bt ∈ C (0 ≤ t ≤ ϱ). Since Φ(z) is bounded on R, thus Wϱ(z) is
required to fulfill the following conditions:

dr[ϖ(z)(z + i)µ]

dzr
|z=dj

=
dr[Wϱ(z)]

dzr
|z=dj

;

dp[ϖ(z)(z + i)µ]

dzp
|z=ej =

dp[Wϱ(z)]

dzp
|z=ej ,

(3.19)

for any r = 1, 2, . . . , ηk − 1, k = 1, 2, . . . q; p = 1, 2, . . . , ξj − 1, j = 1, 2, . . . , n.
Similar to the discussion in [16–18], we need to define the following function:

Y (z) =


X(z)(z + i)n1 [ϖ(z)(z + i)µ −Wϱ(z)]

Π1(z)
, z ∈ C+;

X(z)(z − i)n2 [ϖ(z)(z + i)µ −Wϱ(z)]

Π2(z)
, z ∈ C−.

(3.20)

By means of the boundary value problems for holomorphic functions and of
a system of linear algebraic equations, we can prove that Y (z) is the particular
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solution of (3.15). In view of linearity, we obtain the holomorphic solution of (3.15)
as follows

Φ(z) = Y (z) + Φ∗(z), (3.21)
and we can also write Φ(z) as the explicit solution:

Φ(z)=


X(z)(z + i)n1

Π1(z)
[ϖ(z)(z + i)µ −Wϱ(z) + Π1(z)Π2(z)Pµ−n1−n2

(z)], z ∈ C+;

X(z)(z − i)n2

Π2(z)
[ϖ(z)(z + i)µ −Wϱ(z) + Π1(z)Π2(z)Pµ−n1−n2

(z)], z ∈ C−.

(3.22)
Now we investigate the asymptotic property of solutions for the problem (3.15).

First, we discuss the behaviors of solution near s = 0. Since Φ(s) is continuous at
s = 0, by [13,28,29] we can obtain

X±(s) = exp{ 1

2πi

∫
R

logD0(t)

t− z
dt}(E0(s))

± 1
2 . (3.23)

If s = 0 is an ordinary node, that is, 0 < α < 1, then we know that γ given by
(3.10) is a non-integer, so

γ ̸= 0, exp[γπi] ̸= 1. (3.24)
It is easy to verify that, in the neighbourhood of s = 0,

Φ+(+0) =
in1−1 exp[−γπi]

2 sin γπ
[Ω(+0)− exp(−3γπi)Ω(−0)];

Φ+(−0) =
in1−1 exp[−2γπi]

2 sin γπ
[Ω(+0)− exp(−3γπi)Ω(−0)].

(3.25)

From
Φ+(+0) = Φ+(−0)

it follows that
Ω(+0) = exp[−3γπi]Ω(−0). (3.26)

If s = 0 is a special node, that is, α = 0, then we require that (3.9) as well as
the following condition of solvability are satisfied:

iµ−1

2πΠ1(0)Π2(0)

∫
R

Π1(s)Ω(s)

X+(s)

ds

s
=

c0
Π1(0)Π2(0)

− b0, (3.27)

where b0, c0 are the constant terms of Pµ−n1−n2
(z), Wϱ(z), respectively.

Next, we investigate the asymptotic property and conditions of solvability at
s = ∞. It is easy to prove that, near s = ∞,

X(s) = s−α∞χ(s) (s→ ∞), (3.28)

where χ(s) ∈ H(N∞), i.e., χ(s) satisfies the Hölder condition in the neighbourhood
N∞ of ∞.

If s = ∞ is an ordinary node, then 0 < α∞ < 1, γ∞ ̸= 0. From (3.9) and
Ω(s) ∈ H̃, we have ϖ(s) ∈ H̃, so, when 1

2 < α∞ < ι < 1, we obtain the asymptotic
property of solution at s = ∞,

X+(s)ϖ(s) = o(s−α∞) (s→ ∞); (3.29)
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when 1
2 < ι ≤ α∞ < 1, by [11,18,25] we get

X+(s)ϖ(s) = O(s−α∞+ε) (s→ ∞), (3.30)

where ε > 0 is arbitrarily small such that α∞ − ε > 1
2 . Again denote

A(s) = [Π2(s)Pµ−n1−n2
(s)− Wϱ(s)

Π1(s)
]X+(s)(s+ i)−µ+n1 . (3.31)

Therefore, when µ− n1 − n2 ≥ 0, we have

A(s) = O(s−α∞) (s→ ∞); (3.32)

and when µ − n1 − n2 < 0, in order guarantee that Φ(z) is bounded at z = ∞,
(3.19) should be changed to

B0 = B1 = . . . = Bn1+n2−µ−1 = 0. (3.33)

Thus, when α∞ > 1
2 , we have

Φ+(s) = o(s−v) (s→ ∞), (3.34)

where v > min{ι, α∞ − ε}; when α∞ ≤ 1
2 , the discussions may be made fully

analogous to those in [12,26,37].
If s = ∞ is a special node, then α∞ = 0 but γ∞ ̸= 0, one can translate it into

the case that α∞ < 1
2 . Similar arguments can be used ( see, e.g., [10, 17, 26, 29]).

Thus, when µ > 0, we obtain

A(s) = o(s−α∞) (s→ ∞), (3.35)

in this case, (3.15) has a solution; when µ < 0, since z = −i is a singular point of
Φ(z), in order to eliminate the singularity, we must have∫

R

Π1(s)Ω(s)

X+(s)(s+ i)t
ds = 0, ∀ t = 1, 2, . . . , |µ|; (3.36)

and when µ = 0, the following conditions (3.37) are fulfilled:

(dk + i)ϖ(dk) = b0;

(ej + i)ϖ(ej) = c0,
(3.37)

for any k = 1, 2, . . . , q; j = 1, 2, . . . , n.
Moreover, since Φ(z) ∈ {{0}}, thus Φ(z) is continuous at dk, ej (k = 1, 2, . . . q; j =

1, 2, . . . , n), then we also have the following conditions of solvability∫
R

Π1(s)Ω(s)[X
+(s)]−1

(s− dk)r
ds = 0;∫

R

Π1(s)Ω(s)[X
+(s)]−1

(s− ej)p
ds = 0,

(3.38)

for any r = 1, 2, . . . , ηk, k = 1, 2, . . . q; p = 1, 2, . . . , ξj , j = 1, 2, . . . , n.
In conclusion, we have the following results.
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Theorem 3.1. Under suppositions b1 ̸= 0 and a1 ± b1 ̸= 0, in the case of non-
normal type, the necessary condition of solvability to equation (3.1) is (3.9) in class
{0}.

(1) When µ−n1 −n2 > 0, (3.1) has µ−n1 −n2 linearly independent solutions;
when µ− n1 − n2 ≤ 0, (3.1) has the unique solution.

(2) Let s = 0 be an ordinary node, one requires that (3.26) holds; let s = 0 be a
special node, when (3.9) and (3.27) hold, (3.1) has a solution.

(3) Let s = ∞ be an ordinary node, if α∞ > 1
2 , then (3.29), (3.30), and (3.34)

hold. When µ − n1 − n2 ≥ 0, (3.32) holds, then (3.1) has µ − n1 − n2 linearly
independent solutions; when µ − n1 − n2 < 0, (3.33) holds. If α∞ ≤ 1

2 , the only
difference lies in that, we write Pµ−n1−n2−1(s) instead of Pµ−n1−n2(s) in (3.22),
then (3.1) has µ− n1 − n2 − 1 linearly independent solutions.

Let s = ∞ be a special node, when µ > 0, (3.35) holds; when µ < 0, (3.36)
holds; when µ = 0, (3.37) holds. Moreover, the solvable condition (3.38) should
also be supplemented, then (3.1) has a unique solution.

Assume that (2) and (3) are fulfilled, then (3.1) has a general solution

f(t) = F−1F (s), (3.39)

where F (s) is given by (3.3). It is also obvious that the solution f ∈ {0}, actually
f ∈< 0 >.

Remark 3.1. In (3.1), if a1b2 = a2b1, we know that γ∞ and γ may be zero, then in
which cases the analysis is even simpler. Further discussions will be omitted also.

4. Solvability of Wiener-Hopf equation (1.2)
The method used in Section 3 is applicable to solving Wiener-Hopf type singular
integral equation. After simplification, equation (1.2) may be written as

af+(t) + bϵf+(t) + ck ∗ f+(t) + dh ∗ ϵf+(t) = g(t), t ∈ R+. (4.1)

In order to give a solution of equation (4.1), we need to extend (4.1) to t ∈ R−, that
is, the right-hand side of (4.1) is augmented with f−(t), so (4.1) can be written as
the following form

af+(t) + bϵf+(t) + ck ∗ f+(t) + dh ∗ ϵf+(t) = g(t) + f−(t), t ∈ R. (4.2)

Applying the Fourier transforms to (4.2), and by Lemmas 2.4 and 2.5, we may
get

F+(s) =
1

a− bsgn(s) + cK(s)− dsgn(s)H(s)
[F−(s) +G(s)], s ∈ R, (4.3)

where
F±(s) = Ff±(t), G(s) = Fg(t), K(s) = Fk(t), H(s) = Fh(t).

So we easily find that (4.3) is equivalent to (4.2). Denote

E(s) =
1

a− bsgn(s) + cK(s)− dsgn(s)H(s)
.
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Now we again give the definitions of γ∞, γ0, µ as follows

γ∞ = α∞ + iβ∞ =
1

2πi
logE(−∞)

E(+∞)
=

1

2πi
loga− b

a+ b
. (4.4)

Note that logE(s) is taken to be continuous branch such that it is continuous at
s = ∞ and 0 ≤ α∞ < 1. It is not difficult to prove that γ∞ ̸= 0 since b ̸= 0. We
also have

γ0 = α0 + iβ0 =
1

2πi
logE(−0)

E(+0)
=

1

2πi
loga− b+ cK(0)− dH(0)

a+ b+ cK(0) + dH(0)
. (4.5)

Then choose the integer µ = [α0], we say that µ is the index of (4.3). We denote
γ, α as in (3.10). It follows from F+(∞) = 0 that F−(∞) = F (∞) = 0. Assume
that (E(s))−1 has some zero-points w1, w2, · · · , wt with the orders ϕ1, ϕ2, · · · , ϕt
respectively, then (4.3) can also be written as

F+(s) =
(s+ i)n

V (s)
E1(s)F

−(s) + E(s)G(s), (4.6)

where
t∑

j=1

ϕj = n, V (s) = Πt
j=1(s− wj)

ϕj ,

and
E(s) =

(s+ i)n

V (s)
E1(s), E1(s) ̸= 0, ∀s ∈ R.

Without loss of generality, we only discuss the case

a± b ̸= 0.

Other cases can be discussed similarly. In this case, (4.6) is also a boundary value
problem for holomorphic function with nodes s = 0,∞. It is easy to see that
(4.1) and (4.6) have the same solutions. By means of the classical Riemann-Hilbert
boundary value approach and the generalized Liouville theorem, we can obtain the
general solution of (4.6).

Firstly, we consider the homogeneous problem of (4.6) (that is, G(s) ≡ 0):

F+(s) =
(s+ i)n

V (s)
E1(s)F

−(s). (4.7)

So we again use the results obtained in [15, 32, 33] and Section 3, we can get a
general solution of (4.7) as follows:

F1(z) =

{
X(z)(z + i)nPµ−n−1(z), z ∈ C+,

X(z)V (z)Pµ−n−1(z), z ∈ C−.
(4.8)

Similarly, according to the extended residue theorem [33], we can verify that
F2(z) given by (4.9) is the particular solution of (4.6):

F2(z) =


X(z)(z + i)n−µ

V (z)
[Υ(z)(z + i)µ −Wϱ(z)], z ∈ C+,

X(z)

(z + i)µ
[Υ(z)(z + i)µ −Wϱ(z)], z ∈ C−,

(4.9)
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in which we have put

Υ(z) =
z + i

2πi

∫
R

V (s)G(s)E(s)ds

X+(s)(s+ i)n+1(s− z)
, ∀z ∈ C+ ∪ C−, (4.10)

here Pµ−n−1(z) is a polynomial of the degree µ−n−1(≥ 0), which contains arbitrary
complex coefficients, and Wϱ(z) is a Hermite interpolation polynomial with the
degree n− 1. Note that X(z) given by (3.11) is the canonical function of (4.6) and
satisfies

X+(s) = E1(s)X
−(s).

Thus, by means of the solvability theory of linear equations, we obtain the
general solution of (4.6) as follows

F (z) = F1(z) + F2(z). (4.11)

Therefore, using the results in [5,15,33], we get the following conclusions (1)-(3).
(1) If s=0 is an ordinary node, then (3.9) must be fulfilled.
(2) If s = 0 is a special node, under (3.9) and the following condition of solvability

b0 =
d0 −Υ(0)iµ

V (0)
, (4.12)

(4.6) has a solution.
(3) At the node s = ∞, if the following conditions (4.13) and (4.14) are also

fulfilled:∫
R

V (s)G(s)

X+(s)(s+ i)n(s− wk)r
ds = 0, r = 1, 2, . . . , αk; k = 1, 2, . . . , t, (4.13)

and ∫
R

V (s)G(s)E(s)

X+(s)(s+ i)n+j
ds = 0, j = 1, 2, . . . , |µ|, (4.14)

then all the results as stated in Section 3 remain true.
From the above analysis, we now formulate the main results about the solvability

of equation (4.1) in the case of the non-normal type.

Theorem 4.1. Under suppositions a ± b ̸= 0, (3.9) is the necessary condition of
solvability to equation (4.1) in class {0}. Assume that (4.12)-(4.14) are satisfied,
then (4.1) has the general solution given by

f(t) = F−1F (s),

where F (s) is given by (4.11), and f(t) ∈ {0} (or (0)).

Remark 4.1. In equations (1.1) and (1.2), if k1, k2, g ∈< 0 > (or k ∈ (0)), then
f ∈< 0 > (or f ∈ (0)). Similarly, if k1, k2, g ∈< 0 >ι (or k ∈ (0)ι), then f ∈< 0 >ι

(or f ∈ (0)ι ), where 0 < ι < 1.
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5. Conclusions
In this article, we dealt with two classes of singular convolution integral equations
with Cauchy kernel in the case of non-normal type. By using the boundary-value
problems of holomorphic functions and method of complex analysis, we obtain the
expression of solution and conditions of solvability for two kinds of equations in some
classes of functions. On the other hand, we can study the stability of solutions for
equations (1.1) and (1.2), and we can also consider the solvability of equations (1.1)
and (1.2) in Clifford analysis (see [1, 3, 4, 6, 11,12,14,30,31,35,37,39]).

Moreover, in recent years, there appear the singular integral equations with the
order of a singular point higher than the special dimension in the fields of aerome-
chanics, electron optics, fracture mechanics and others. Some mathematicians have
made a series of useful research and have obtained many important achievements.
Therefore, we need further discuss and study these problems.
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