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Abstract This paper is devoted to a review on the dynamics of two species
competition systems including the classical ODE, reaction-diffusion as well
as reaction-diffusion-advection models. The primary purpose is to illustrate
the effect of competition intensity, movement (diffusion and/or advection) and
spatial variation on the population dynamics. Specific topics include Lotka-
Volterra competition models in heterogeneous environments and in advective
environments, linear second order eigenvalue problems, and the evolution of
movement strategy. Several fundamental tools such as the monotone theory,
the principal eigenvalue theory (for single equations or systems) and some
technical approaches are introduced. Some recent developments are discussed
and also several problems that deserve future investigation are proposed.
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1. Introduction
In the past half-century, there is a great deal of research, by both mathematicians
and ecologists, devoted to the investigation of competition between two popula-
tions. The mathematical models are studied in various different types such as
ordinary differential equations, difference equations, partial differential equations,
or differential equations with time delays. See, e.g., the monographs by Cantrell
and Cosner [13], Hirsch and Smith [57], Ni [113], Smith [121] and references therein.

Ecologically, a fundamental concept in this research area is the so-called “com-
petitive exclusion principle” [47] (sometimes also referred to as Gause’ law [117]),
which has been predicted by theoretical models such as the Lotka-Volterra com-
petition systems. However, for poorly understood reasons, competitive exclusion
is rarely observed in natural ecosystems, and many biological communities appear
to violate Gause’ law. A possible solution to this paradox lies in raising the di-
mensionality of the system, as spatial variations, resource competition and lag may
prevent exclusion, but systems incorporating these factors tend to be analytically
intractable.

In this paper, focusing on the situation of two competing species, we aim to give
a review on the dynamics of several types of competitive systems, including the
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classical ODE, reaction-diffusion (R-D), and reaction-diffusion-advection (R-D-A)
models. For these models, we shall discuss them in various different environmental
situations (e.g., spatially homogeneous or heterogeneous environments, or advective
environments), introduce relevant study and recent development, and try to illus-
trate some interesting and perhaps surprising phenomena incurred by the (joint)
action of movement, spatial variation, and competition intensity. Several funda-
mental approaches which are useful to analyze these models are also introduced.

We mention here that there are also some other types of competitive models,
e.g., competitive patch models (a system of ODEs), competitive non-local models
(non-local dispersal or non-local reaction terms). For the purpose of saving space,
we do not discuss these models in details in the main body but include some related
works in the last discussion section.

The remainder of this paper is organized as follows.
In section 2, we primarily recall some well known results on the classical two

species competitive ODE system (autonomous).
In section 3, focusing on the competitive R-D systems, we introduce several

classical results and some recent development in, respectively, spatially homoge-
neous, spatially heterogeneous, and both spatially and temporally heterogeneous
environments.

In section 4, we mainly discuss the development on competitive R-D-A systems.
See subsection 4.1 for models with resource gradient, subsection 4.2 for models
arising from river ecology and subsection 4.3 for general R-D-A models.

Section 5 is devoted to the introduction of several mathematical approaches,
including the monotone theory in subsection 5.1, the principal eigenvalue theory
for single equation and system in subsections 5.2 and 5.3, and some analytical
approaches in subsection 5.4.

In the discussion section 6, we make some comments on the strategies and ar-
guments used in the study of competitive R-D and R-D-A systems, propose several
problems that deserve future investigation, and also mention some works on other
types of competitive models.

2. ODE systems
We start with the following classical Lotka-Volterra competitive ODE system

ut = u[r1 − u− bv], t > 0,

vt = v[r2 − cu− v], t > 0,

u(0) = u0 > 0, v(0) = v0 > 0,

(2.1)

where u(t) and v(t), respectively, denote the population numbers of two competing
species at time t > 0. The positive constants r1 and r2 stand for the intrinsic growth
rates of two populations. The positive numbers b and c are used to measure the
inter-specific competition intensities while the intra-specific competition coefficients
have been normalized by 1.

It is well known that system (2.1) can be classified into the following several
cases by specifying values of b and c:

(i) weak competition case: 0 < b < r1
r2

and 0 < c < r2
r1

;
(ii) strong-weak competition case:
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(ii.1) 0 < b < r1
r2

and c > r2
r1

(u-strong and v-weak);
(ii.2) b > r1

r2
and 0 < c < r2

r1
(u-weak and v-strong);

(iii) strong competition case: b > r1
r2

and c > r2
r1

.

For each of the above cases, the global dynamics of system (2.1) can be com-
pletely determined. Precisely, let us denote all possible equilibria of problem (2.1)
by

(0, 0), (r1, 0), (0, r2), (u+, v+) = (
r1
r2

− b

1− bc
· r2,

r2
r1

− c

1− bc
· r1).

Then the following results are standard (see, e.g., [62]):

(•) For the weak competition case (i), (u+, v+) is globally asymptotically stable—
coexistence;

(•) For the strong-weak competition case (ii.1), (r1, 0) is globally asymptotically
stable—competitive exclusion; and symmetrically, for case (ii.2), (0, r2) is
globally asymptotically stable—competitive exclusion;

(•) For the strong competition case (iii): both (r1, 0) and (0, r2) are locally
stable—bistability, and (u+, v+) is unstable (a saddle). Moreover, there is
a function v = h(u) such that

lim
t−→∞

(u(t), v(t)) = (r1, 0) provided v(0) < h(u(0)),

lim
t−→∞

(u(t), v(t)) = (0, r2) provided v(0) > h(u(0)),

lim
t−→∞

(u(t), v(t)) = (u+, v+) provided v(0) = h(u(0)).

The curve v = h(u) is called the separatrix.

3. R-D systems
Taking migration into consideration, one can generalize the kinetic system (2.1) to
the following spatially homogeneous reaction-diffusion system

ut = d1△u+ u[r1 − u− cv], x ∈ Ω, t > 0,

vt = d2△v + v[r2 − bu− v], x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, ̸≡ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥, ̸≡ 0, x ∈ Ω,

(3.1)

where, Ω, the habitat, is a bounded smooth domain in RN , 1 ⩽ N ∈ Z; u(x, t) and
v(x, t) represent the population densities of two competing species at location x ∈ Ω

and time t > 0, respectively; △ =
∑N

i=1
∂2

∂x2
i
, the usual Laplace operator, is used

to describe the random movements with dispersal rates of two species denoted by
d1, d2 > 0; and ν signifies the outward unit normal vector on the boundary ∂Ω. The
homogeneous Neumann (no-flux) boundary conditions mean that no individuals can
move in or out through the boundary of the habitat.

It turns out that for the above weak and strong-weak competition cases (i)
and (ii), the globally stable equilibrium of system (2.1) is also globally stable as a
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solution of system (3.1) (see, e.g., [1, 31, 87, 97]). In sharp contrast, the dynamics
of the strong competition case (iii) is more delicate. One of the remarkable results
is due to Kishimoto and Weinberger [69], which says that there are no stable non-
constant steady states if the domain Ω is convex. But, if Ω is non-convex, there may
appear a stable spatially heterogeneous steady state corresponding to the habitat
segregation phenomenon (see, e.g., Matano and Mimura [107] and Mimura et al.
[110]). We also refer to Iida et al. [62] for the diffusion-induced extinction of a
superior species and Jiang et al. [67] for the existence of a one-codimensional C1-
separatrix which separates the basins of attraction of the two semi-trivial steady
states.

We note here that for the strong competition case (iii), generally it is very hard
to give a clear picture on the global dynamics even for the very simple situation as
shown in system (3.1). For the Dirichlet problem, a remarkable work by Gui and
Lou [42] used the bifurcation approach to show that for a special case of system
(3.1), there may appear many positive steady states in the strong competition case.

A more general and reasonable situation than system (3.1) is to consider the
spatially heterogeneous environments, e.g., the spatial distribution of resource may
vary from point to point. This leads us to consider the following system

ut = d1△u+ u[r1(x)− u− bv], x ∈ Ω, t > 0,

vt = d2△v + v[r2(x)− cu− v], x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, ̸≡ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥, ̸≡ 0, x ∈ Ω,

(3.2)

where r1(x) and r2(x) are positive non-constant functions.
Problem (3.2) has been extensively studied in the past several decades. For

example, one widely accepted result on the evolution of dispersal is due to Hastings
[48] and Dockery et al. [34], where by considering

b = c = 1 and r1(x) = r2(x) := r(x),

that is, 

ut = d1△u+ u[r(x)− u− v], x ∈ Ω, t > 0,

vt = d2△v + v[r(x)− u− v], x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, ̸≡ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥, ̸≡ 0, x ∈ Ω,

(3.3)

the authors proved that species with slower dispersal rate will wipe out completely
the faster one, i.e., “slower diffuser prevails”. To further understand this phe-
nomenon, Lou [92] (see also [60, 82]) adopted the strategy of weak competition
approach, i.e.,

0 < b < 1 and 0 < c < 1,

and observed that two weakly competing species may not coexist eventually; indeed,
one species could drive its competitor to extinction by taking suitable diffusion
rates, which is in sharp contrast to the coexistence phenomenon observed in the
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ODE system (2.1) or the homogeneous R-D system (3.1). In other words, diffusion
and spatial variations could effectively change the nature of weak competition.

To further understand the joint action of movements and spatial variations,
based on system (3.2), He and Ni published a series of works [49–53]. In particular,
they made an important breakthrough in [51], where, by assuming

(b, c) ∈
{
(b, c) ∈ R+ × R+ : 0 < b · c ⩽ 1

}
,

a complete classification in terms of d1 and d2 on the possible long time behaviors
of system (3.2) is established (in some cases the upper bound 1 could be relaxed).
The key point is to make the a priori estimate on the linear stability of all positive
steady states, which, together with the theory of monotone dynamical systems (see
Proposition 9.1 and Theorem 9.2 in [55]), implies that either system (3.2) has a
unique positive steady state that is globally asymptotically stable, or there are
no positive steady states and one of the two semi-trivial steady states is globally
asymptotically stable while the other one is unstable. These ideas are also developed
in [43,44] to treat more general intrinsic growth rate and carrying capacity.

The more complex situation involving both temporal and spatial variations is
much more challenging to treat mathematically. A natural as well as a simple way
is to consider the periodic-in-time case first. Motivated by the phenomenon “slower
diffuser prevails” observed in the spatially heterogeneous but temporally constant
environments [34, 48], Hutson et al. [61] considered a heterogeneous time-periodic
environment as described below

ut = d1△u+ u[r(x, t)− u− v], x ∈ Ω, t > 0,

vt = d2△v + v[r(x, t)− u− v], x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, ̸≡ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥, ̸≡ 0, x ∈ Ω,

(3.4)

where r(x, t) is supposed to be a positive periodic function in time t. By employing
a wide range of techniques and numerous computation efforts, the authors found
very rich dynamics: (i) the slower diffusion rate may be favored; (ii) the higher
diffusion rate may be favored; and (iii) there may be co-existence of phenotypes.
Some latest advances on system (3.4) can be found in Bai, He and Ni [5].

For more discussions on the classical Lotka-Volterra competition models, we refer
the interested readers to the monographs by Cantrell and Cosner [13], Ni [113], and
Lam and Lou [78, Chapter 8]. See also Lou [93] for some challenging issues in this
direction.

4. R-D-A systems
Recently, there is a growing interest in the population dynamics of competitive
systems governed by reaction-diffusion-advection equations. In what follows, we
mainly talk about three types of models. See subsection (4.1) for models with
resource gradient, subsection (4.2) for models from river ecology and subsection
(4.3) for general reaction-diffusion-advection models.
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4.1. Models with resource gradient
One of the active research areas of studying reaction-diffusion-advection equations
concerns the population dynamics where the individuals are supposed to be very
smart so that they can sense and follow gradients in resource distribution. This was
firstly raised by Belgacem and Cosner in [10] for a single species model and then by
Cantrell, Cosner and Lou [14] for a two-species competition model.

We write below a general version of such a kind of models

ut = d1△u− α1∇ · [u∇r(x)] + u[r(x)− u− v], x ∈ Ω, t > 0,

vt = d2△v − α2∇ · [v∇r(x)] + v[r(x)− u− v], x ∈ Ω, t > 0,

d1
∂u

∂ν
− α1u

∂r(x)

∂ν
= 0, x ∈ ∂Ω, t > 0,

d2
∂v

∂ν
− α2v

∂r(x)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, ̸≡ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥, ̸≡ 0, x ∈ Ω,

(4.1)

where, compared with the diffusive models in section 3, two populations are sup-
posed to have directed movements along the resource gradient as described by the
term ∇r(x) with advection rates denoted by α1, α2 > 0. The no-flux boundary
conditions imposed here mean that no individuals would cross over the boundary
of the habitat.

For the single species case (i.e., v ≡ 0), it has been shown in [10] that sufficiently
rapid movement along the resource gradient (i.e., large α1) is always beneficial for
the single species to survive. But the story is different if hostile boundary condition
or non-convex domain is considered [10,25].

For the case α1 > 0 = α2 (one species taking a combination of diffusive and
directed movements while the other one adopting pure random diffusion), Cantrell,
Cosner and Lou [14] found that species u may have some competitive advantages
even if it diffuses relatively faster (different from previous “slower diffuser pre-
vails” [34, 48]). For the special case with d1 = d2, Cantrell, Cosner and Lou [15]
proved that a small amount of directed movements (small α1) is more favorable
but interestingly, a large amount of such movements does not continue to maintain
the advantages of species u and surprisingly two species would coexist instead. A
possible explanation to this phenomenon is that the smarter species u occupies only
the extremely favorable environments (local maxima of r(x)), leaving the remain-
ing reasonably good locations for its competitor. Indeed, this was mathematically
further pursued by investigating the limiting behaviors of positive steady states in
the sense of α1 → ∞, and some interesting concentration phenomena are revealed
at the local maxima of r(x), see, e.g., Chen et al. [20–22], Lam [72,73] and Lam and
Ni [81,83]. Also, we mention here a work by Averill, Lam and Lou [2], where, via a
bifurcation approach, the authors carefully examined the effect of advection (espe-
cially intermediate advection) on the population dynamics and obtained different
types of bifurcation diagrams of positive steady states.

For the case with α1, α2 > 0 (both populations adopting a combination of dif-
fusive and advective movements), much attention has been payed to the study of
the existence of the so-called Evolutionarily Stable Strategy (ESS), which was ini-
tially introduced by Maynard Smith and Price [108]. Recall that a strategy is said
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to be an ESS if a population using it cannot be invaded by any small population
taking a different strategy. On this topic, a fundamental tool to study it is the
“selection gradient” defined in [33], which is closely related to the principal eigen-
value obtained by linearization. The discussion in this direction can be consulted in,
e.g., [45,76,77], where one finds that the answer of evolution of conditional dispersal
turns out to depend closely on the shape of environmental function r(x).

System (4.1) with ∇r(x) replaced by ∇ ln r(x) is related to another biological
topic Ideal Free Distribution (IFD) that was initially introduced by Fretwell and
Lucas [36]. Some previous study on this issue can be seen in [3,16,40] and a further
discussion about the connection between ESS and IFD can be found in [16].

We end this subsection by mentioning two review papers, by Cosner [24] and
Lam, Liu and Lou [74] respectively, for more discussions on both biological and
mathematical aspects concerning these models with resource gradient.

4.2. Models from river ecology
Advective environments like river/stream are usually featured by a constantly unidi-
rectional water flow. Individuals living in such environments not only take random
movements due to water turbulence or self-propelling, but also experience the pas-
sive movements caused by the downstream water flow. A fascinating question in
river ecosystems is how aquatic species resist washout and persist over many gen-
erations. This biological phenomenon is also termed the “drift paradox” in the
literature, see, e.g., [54, 111].

Speirs and Gurney [122] proposed one of the first mathematical models to un-
derstand the influence of environmental variables on population persistence. Specif-
ically, they formulated the following single species growth model

ut = duxx − qux + u(r − u), x ∈ (0, L), t > 0,

dux(0, t)− qu(0, t) = u(L, t) = 0, t > 0,

u(x, 0) = u0(x) ≥, ̸≡ 0, x ∈ [0, L],

(4.2)

where the river/stream is abstracted by a one-dimensional interval (0, L); w(x, t)
represents the population density of an aquatic species at location x ∈ (0, L) and
time t > 0; d > 0 denotes the rate of random movement and q > 0 measures the
effective advection speed incurred by the downstream flow; and r > 0 stands for the
intrinsic growth rate. At the upstream end x = 0, no-flux condition is imposed so
that no individuals would cross over this boundary, while at the downstream end
x = L, the hostile condition is considered to model the situation “stream to ocean”.

By some standard arguments, it is proved in [122] that the trivial solution w = 0
of (4.2) is linearly unstable if and only if q < 2

√
dr and L > L∗(d, q, r) with

L∗(d, q, r) := 2d
π − arctan(

√
4rd−q2

q )√
4rd− q2

, (4.3)

which, biologically, suggests that weak advection (relative to diffusion) and a suit-
ably long river are more beneficial for a single species to survive. Similar conclusions
are obtained by Vasilyeva and Lutscher for problem (4.2) with “free-flow” condition
at x = L [127], but for more general boundary condition at x = L involving a loss
rate b ⩾ 0 (similar to bd in (4.4) below), a transition phenomenon was observed
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at b = 1
2 by Lou and Zhou [101], and later a critical value of b = 3

2 , governing
the monotonicity of L∗ (see (4.3)) with respect to d, was found by Hao, Lam and
Lou [46].

Maybe of more interest is to understand how populations disperse in such ad-
vective environments could convey some competitive advantages. With this goal,
one has to consider a two species competition system. We present below a very
general version (see, e.g, [94, 102–104])

ut = d1uxx − q1ux + u(r1 − u− v), x ∈ (0, L), t > 0,

vt = d2vxx − q2vx + v(r2 − u− v), x ∈ (0, L), t > 0,

d1ux(0, t)− q1u(0, t) = buq1u(0, t), t > 0,

d1ux(L, t)− q1u(L, t) = −bdq1u(L, t), t > 0,

d2vx(0, t)− q2v(0, t) = buq2u(L, t), t > 0,

d2vx(L, t)− q2v(L, t) = −bdq2v(L, t), t > 0,

u(x, 0) = u0(x) ≥, ̸≡ 0, v(x, 0) = v0(x) ≥, ̸≡ 0, x ∈ [0, L],

(4.4)

where all parameters can be understood in a similar way to that in problem (4.2)
except the parameters bu, bd ∈ [0,∞], which are used to measure the loss rate of
individuals at the boundary relative to the flow rate (see [94,102] for more detailed
derivation and explanation). Note that bu could also take some negative values,
which biologically means that there is a flow of populations into the river at the
upstream x = 0 (in other words, the upstream end is acting as a downstream end of
another advective environment, e.g., a lake). Moreover, by bu = ∞ or bd = ∞, we
mean that the hostile (Dirichlet) boundary condition holds. Different values of bu
and bd could reflect different environmental situations. For example, bd = 0, no-flux
condition, models a closed environment [79, 99, 136]; bd = 1, “free flow” condition,
models an open environment “stream to lake” [94, 98, 127]; bd = ∞, the Dirichlet
condition, models a hostile environment “stream to ocean” [122,132,141].

System (4.4) has been extensively studied in many different settings. We include
below a summarization on recent developments.

(•) Evolution of diffusion: d1 ̸= d2, q1 = q2, r1 = r2. For bu = 0 and bd =
−1, Lou and Lutscher [94] found that higher diffusion rate is selected for, in
sharp contrast to the widely accepted result “slower diffuser prevails” in non-
advective environments [34, 48]; this is later extended by Lou and Zhou [101]
to a bit more wide class of boundary conditions bd ∈ [0, 1) by developing
completely different argument; furthermore, Hao, Lam and Lou [46] performed
a careful analysis for bd ∈ [0,∞] and in particular, they found that bd = 3

2
is critical value for d = ∞ to be a global ESS and that there may appear
multiple global ESS even when b ∈ (1, 32 ). The story of r1 = r2 := r0(x) being
non-constant is quite complicated and we refer to Lam, Lou and Lutscher [79]
for discussions on the existence of ESS based on various types of r0(x). We
mention here another interesting case with bu = −1, for which Tang and
Chen [124] observed that large diffusion is selected for if bd < 1 and selected
against if bd > 1. See also [125] for an extension to r0(x) being a decreasing
function.

(•) Evolution of advection: d1 = d2, q1 ̸= q2, r1 = r2. For bu = bd = 0, Lou, Xiao
and Zhou [99] confirmed that weaker advection is more favorable for species
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to win the competition and particularly the strategy q = 0 (no advection)
is a global ESS. This is later generalized by Zhou and Zhao [141] to a more
general setting with bd ∈ [0,∞] and r1 = r2 := r0(x) being a non-increasing
function. Furthermore, Xu and Gan [129] illustrated that such a result, when
bd ∈ [ 12 ,∞], does not depend on the shape of r0(x) by a more direct approach
(monotonicity of principal eigenvalue).

(•) Evolution of diffusion and advection: d1 ̸= d2, q1 ̸= q2, r1 = r2. For bu = bd =
0, among other things, Zhou [136] proved that (i) the strategy with larger
diffusion but smaller advection is always more advantageous, which can be
viewed as a mixture of the results in [99,101]; and (ii) the strategy with both
larger diffusion and advection may or may not be favorable depending on the
ratio of diffusion and advection. This is extended by Zhou and Zhao [140] to
bd ∈ (0, 1] and some different dynamics is shown for some bd > 1. A special
situation with bu = −1 and bd = ∞ is investigated by Ma and Tang [105],
where some interesting argument is developed to exclude the positive steady
states. The inhomogeneous case with r1 = r2 := r0(x) being non-constant is
more difficult to deal with, and currently only some special cases (monotonic
functions) are discussed in [100, 135], where some different phenomena from
the homogeneous case are revealed.

(•) Joint action of movement and spatial variations: d1 ̸= d2, q1 ̸= q2, r1 ̸= r2. To
understand the combined effect of movement and spatial variations, Tang and
Zhou [126] studied a special case with bu = bd = 0, q1

d1
= q2

d2
, r1 being a pos-

itive constant, and r2 being a positive function with the same average as r1,
and found that the outcome of competition could be very different depending
closely on the movement rates and resource shape. Different boundary condi-
tions are further discussed in several works, see, e.g., Lou, Nie and Wang [98]
for bu = 0 and bd = 1 and Yan, Nie and Zhou [132] for bu = 0 and bd = ∞,
where the bistable phenomenon is observed numerically.

4.3. General models
As a further development of the diffusive competition models in section 3, one may
formulate the following more general system by involving the advection terms

ut = Lu+ u[r1(x)− u− bv], x ∈ Ω, t > 0,

vt = Mv + v[r2(x)− cu− v], x ∈ Ω, t > 0,

B1u = B2v = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, ̸≡ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥, ̸≡ 0, x ∈ Ω,

(4.5)

where the operators L and M are defined in the following divergence form

Lw := div
(
d1∇w − α1w∇A1(x)

)
, (4.6)

and
Mw := div

(
d2∇w − α2w∇A2(x)

)
. (4.7)

In comparison with system (3.2), the additional function Ai(x) ∈ C1(Ω) is used
to specify the direction of advection with advection speed measured by αi ⩾ 0,
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i = 1, 2. The boundary operator Bi is defined by

Biw = di
∂w

∂ν
− αiw

∂Ai

∂ν
= 0, i = 1, 2, (4.8)

which, again, shows that there are no populations passing through the habitat
boundary.

System (4.5)-(4.8) was firstly studied by Zhou and Xiao [139] in the following
special setting

(C1) d2

d1
= α2

α1
:= k > 0 (or equivalently, α1

d1
= α2

d2
:= k′ > 0);

(C2) A1(x) = A2(x) := P (x);
(C3) (b, c) ∈ Π1;

where for any ξ > 0,

Πξ :=
{
(b, c) ∈ R+ × R+ : bc ⩽ ξ

}
.

Under the conditions of (C1)-(C3), the authors obtained a complete classification
of all possible long time behaviors, which can be seen as an extension of that of [51]
without advection. Moreover, for the case with identical growth rate r1(x) = r2(x),
a further determination on the global dynamics is presented for all (b, c) ∈ (0, 1]×
(0, 1].

The above conditions (C1) and (C2) seem too strict on given parameters. In a
later work by Zhou, Tang and Xiao [138], these conditions are removed but at the
expense of restricting (C3) in certain sense. Specifically, they make the following
basic hypotheses

(H1) α2

d2
A2(x) ⩽ α1

d1
A1(x) in Ω and α2

d2
A2(x)− α1

d1
A1(x) = 0 somewhere in Ω;

(H2) (b, c) ∈ Πκ0
;

where
κ0 := min

x∈Ω
e

(
α2
d2

A2(x)−α1
d1

A1(x)
)
∈ (0, 1]. (4.9)

Note that (H1) is imposed without losing generality since one can always replace
A1(x) by A1(x)+M for some appropriate constant M . In the special case (C1) and
(C2), κ0 defined in (4.9) becomes one, coinciding with (C3). Also, when the effect
of advection is ignored (i.e., α1 = α2 = 0), again, one has Πκ0

= Πκ1
, matching the

condition in He and Ni [51]. But in general, κ0 defined in (4.9) is strictly smaller
than 1.

Under the hypotheses (H1) and (H2), the long time behaviors is completely
classified for the R-D-A system (4.5)–(4.8) (including the R-D system (3.2)) in
[138]. Moreover, by choosing the competition coefficients b and c as bifurcation
parameters, two critical values b∗ and c∗, sharply governing the local stability of
the two semi-trivial steady states, are obtained, and the global dynamics is further
determined in b-c plane (see [138, Theorems 4 and 5]). Interestingly, via b∗ and
c∗, the authors proposed a parallel way to that of the classical ODE system (2.1)
to define the weak, strong-weak, and strong competition for infinite dimensional
systems including both R-D-A system (4.5)–(4.8) and R-D system (3.2). Precisely,
they defined

(i) weak competition case: 0 < b < b∗ and 0 < c < c∗;
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(ii) strong-weak competition case:
(ii.1) 0 < b < b∗ and c > c∗ (u-strong and v-weak);
(ii.2) b > b∗ and 0 < c < c∗ (u-weak and v-strong);

(iii) strong competition case: b > b∗ and c > c∗.

Roughly speaking, (b∗, c∗) in the infinite dimensional case plays the same role as
( r1r2 ,

r2
r1
) in the finite dimensional system (2.1). We will discuss this definition further

in the last section.
It deserves mentioning here that in a recent work by Guo, He and Ni [44],

through a different argument, the authors found a critical value

κ1 :=
min
x∈Ω

e

(
α2
d2

A2(x)−α1
d1

A1(x)
)

max
x∈Ω

e

(
α2
d2

A2(x)−α1
d1

A1(x)
)

so that for (b, c) ∈ Πκ1
, a similar classification result [44, Corollary 5.1] to [138,

Theorem 2] is obtained. We point out that κ1, in view of the assumption (H1), is
indeed the same as κ0. So concerning system (4.5)-(4.8), two different arguments
developed, respectively, in [44] and [138], give the same value to classify the long
time dynamics. Such ideas, as shown in [44], are also feasible to treat more general
nonlinear terms (symmetric) like

u[r1(x)− b1(x)u− c1(x)v] and v[r2(x)− b2(x)u− c2(x)v].

Moreover, we refer to [137] for the treatment of asymmetric nonlinear terms.
We emphasize here that the basic strategy in [138, 139] to understand system

(4.5)-(4.8) is to regard competition coefficients b and c as bifurcation parameters
(see also [38, 130] for the generalization to the one spatial dimensional river popu-
lation models but with general boundary conditions). Nevertheless, in the above
mentioned works [43, 44] and those mentioned in previous subsections 4.1 and 4.2,
diffusion and/or advection rates are viewed as bifurcation parameters. These dif-
ferent strategies, mathematically, require us to understand the dependence of the
principal eigenvalue on different parameters. See the next section.

5. Mathematical approaches
In this section, we aim to introduce several fundamental mathematical approaches
in the study of two species competitive R-D and R-D-A systems.

We note here that the stability and asymptotic stability of steady states are
defined in the standard dynamical system sense with the C(Ω) × C(Ω) topology
[121], and that a non-negative steady state (u(x), v(x)) is called trivial if both
components are zero, semi-trivial if only one component is zero, and nontrivial
if both components are not identically zero. Moreover, if one component is not
identically zero, then by the strong maximum principle [118], it must be positive in
Ω, and so the nontrivial (u(x), v(x)) is also called a positive (coexistence) steady
state. Hereafter, we denote the two semi-trivial steady states by (ũ, 0) and (0, ṽ),
respectively.
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5.1. Monotone theory
Let X = C(Ω) be the set of all real-valued continuous functions defined on Ω,
and let X+ be the subset of X consisting of all non-negative functions. The usual
cone in the study of competitive systems is denoted by K := X+ × (−X+) with
nonempty interior given by IntK = IntX+ × (−IntX+). The usual partial order
relations generated by K, K \ {(0, 0)} and IntK are, respectively, denoted by ≤K ,
<K , ≪K . Precisely, for ui, vi ∈ X+ (i = 1, 2),

(u1, v1) ≤K (u2, v2) ⇐⇒ u1 ⩽ u2 and v2 ⩽ v1 in Ω,

(u1, v1) <K (u2, v2) ⇐⇒ (u1, v1) ≤K (u2, v2) and (u1, v1) ̸= (u2, v2) in Ω,

(u1, v1) ≪K (u2, v2) ⇐⇒ u1 < u2 and v2 < v1 in Ω.

As we know, the two species competitive R-D and R-D-A systems, according
to the above cone, generate a strongly monotone dynamical system (see, e.g., [20,
Lemma 5.4] and [16, Theorem 3]). Take system (4.5)-(4.8) as an example. It
is strongly monotone in the sense that if

(
u10(x), v

1
0(x)

)
<K

(
u20(x), v

2
0(x)

)
and

ui0(x) ̸≡ 0, vi0(x) ̸≡ 0, then(
u1(x, t), v1(x, t)

)
≪K

(
u2(x, t), v2(x, t)

)
for any t > 0,

where
(
ui0(x), v

i
0(x)

)
∈ X+ ×X+ and

(
ui(x, t), vi(x, t)

)
is the unique positive solu-

tion of system (4.5)–(4.8) with initial condition
(
ui0(x), v

i
0(x)

)
, i = 1, 2.

The basic theory of abstract competitive systems for two competing species has
been made by Hess and Lazer [56] for discrete semi-dynamical systems, and later
by Hess [55], Hsu et al. [58,59] and Lam et al. [80] for continuous-time versions. See
also the monograph by Zhao [134].

In what follows, taking system (4.5)–(4.8) as an example, we apply the above
abstract monotone theory to this model and present a more specific statement on
the underlying long time dynamics (see Theorem 5.1 below). Note that Theorem
5.1 holds also for many other competitive models (e.g., those mentioned in previous
sections).

Theorem 5.1. The following statements on system (4.5)–(4.8) are true:

(1) Let (u, v) ∈ X+ ×X+ be any steady state of system (4.5)–(4.8). Then

(0, ṽ) ≤K (u, v) ≤K (ũ, 0).

(2) If system (4.5)–(4.8) has no positive steady states and one of the two semi-
trivial steady states is linearly unstable, then the other one is globally asymp-
totically stable [56], see also [58,80];

(3) If both semi-trivial steady states are unstable, then system (4.5)–(4.8) has at
least one stable positive steady state [26,106]; moreover, if every positive steady
state is linearly stable, then there is a unique positive steady state which is
globally asymptotically stable [55].

Although great effort via a topological approach has been made for monotone
dynamical systems, to achieve a clear understanding on the global dynamics of
a specific competition model, as indicated in Theorem 5.1, one has to face the
following several problems:
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(P1) How to get a clear understanding on the local dynamics around the two semi-
trivial steady states? Basically, this issue is closely related to some eigenvalue
problems obtained by linearization, and it may not be so easy as we imagine
since the dependence of the principal eigenvalue on certain parameters may be
very complicated. Indeed, in many situations, it is very hard to determine the
local stability of the two semi-trivial steady states simultaneously, that is, to
draw a clear picture on the local dynamics in the plane of bifurcation/varying
parameters (see [132] for some detailed discussion on both R-D and R-D-A
systems).

(P2) How to realize the assumption that there are no positive steady states? For
competitive parabolic systems, this is equivalent to verifying the non-existence
of any positive solutions of the corresponding elliptic (stationary) system,
which generally is highly nontrivial.

(P3) How to discuss the stability and multiplicity of positive steady states if these
solutions do exist? A feasible way, as mentioned in Theorem 5.1 (2), is to es-
tablish the a priori estimate on the linear stability of all positive steady states,
which, again, is related to a linear eigenvalue problem (but a system governed
by two equations). For this issue, some recent developments have been made
in [44, 51, 137–139], but there is still room to make further improvement. We
will return to this point in the last discussion section.

As indicated above, when investigating a particular competitive system, beside
the obvious requirement on the basic theory of monotone dynamical systems [55,
58,80], one also has to develop new ideas and techniques to overcome the difficulties
as mentioned in (P1)–(P3). See later subsections.

5.2. Principal eigenvalue theory: single equation
The principal eigenvalue theory for a single equation is usually helpful in the study
of local stability of the two semi-trivial steady states, that is, problem P1 (sometimes
it is also useful in the investigation of P2, see subsection 5.4).

We first talk about the following diffusion type operator (self-adjoint) with zero
Neumann boundary condition

d△φ+m(x)φ+ λφ = 0, x ∈ Ω,

∂φ

∂ν
= 0, x ∈ ∂Ω,

(5.1)

where d > 0, m(x) ∈ L∞(Ω) and ν is the outward unit normal vector on ∂Ω. It
follows from the Krein-Rutman theorem [70] that problem (5.1) has a principal
eigen-pair denoted by (λ1, φ1) with λ1 being a real number and φ1 > 0 in Ω.
Moreover, by the variational approach,

λ1 = inf
ζ∈Γ

∫
d|∇ζ|2dx−

∫
m(x)ζ2dx∫

ζ2dx , Γ := H1(Ω) \ {0}.

The following properties of λ1 are well known.

Proposition 5.1. Assume that m(x) is non-constant. Then

(a) λ1 depends continuously and differentially on the parameter d;
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(b) λ1 is strictly increasing and concave in d ∈ (0,∞), and

lim
d→0

λ1 = −max
x∈Ω

m(x), lim
d→∞

λ1 = − 1

|Ω|

∫
Ω

m(x)dx;

(c) λ1 is strictly decreasing in the weight function m(x) in the L∞ sense, that is,
if m1(x) ⩽, ̸≡ m2(x) in Ω, then λ1(m1) > λ1(m2).

The proof of Proposition 5.1 is standard, see, e.g., [13, 49,96,113].

Remark 5.1. The increasing property and limiting behaviors of λ1 stated in Propo-
sition 5.1 (b) play an extremely important role in the analysis of local stability of
(ũ, 0) and (0, ṽ). Indeed, for the general R-D system (3.2), the linearly stable region
Σu (resp. Σv) of (ũ, 0) (resp. (0, ṽ)) can be described in certain “abstract” manner
in terms of the diffusion rates d1 and d2 (see [51, Theorem 3.3]), but a clear picture
on Σu and Σv in d1-d2 plane is far from being completely understood (since the de-
scription of Σu and Σv involves many parameters that are implicitly determined).
For system (3.3) (a very special case of system (3.2)), Σu and Σv are exactly sepa-
rated by the diagonal line d2 = d1 in d1-d2 plane, a complete understanding. For
some other special cases of system (3.2), a relatively clear understanding on Σu

and Σv was obtained by He and Ni [49, 50, 52, 53], but not completely. The issue
to further examine the geometric behaviors of Σu and Σv in d1-d2 plane may de-
serve further consideration. In comparison, for both the competitive R-D system
(3.2) and R-D-A system (4.5)-(4.8), by using the monotonicity in weight function
as stated in Proposition 5.1 (c) (see also Proposition 5.2 (d) below), Zhou, Tang
and Xiao [138] obtained a complete understanding on Σu and Σv in terms of the
competition coefficients b and c (a different strategy), that is, a clear picture on Σu

and Σv in b-c plane. This enables them to further determine the global dynamics
in b-c plane.

We now discuss the diffusion-advection type operator with no-flux boundary
condition 

d△φ− αdiv(φ∇A(x)) +m(x)φ+ λφ = 0, x ∈ Ω,

d
∂φ

∂ν
− αφ

∂A

∂ν
= 0, x ∈ ∂Ω,

(5.2)

where α > 0, A(x) ∈ C1(Ω) is a non-constant function, and the other parameters
can be understood in a similar way to that in problem (5.1). Again, by using
the Krein-Rutman theorem [70], problem (5.2) has a real principal eigenvalue λ̄1
with a positive eigenfunction φ̄1 in Ω. Moreover, λ̄1 has the following variational
characterization

λ̄1 = inf
ζ∈Γ

∫
de

α
d A(x)|∇

(
e−

α
d A(x)ζ

)
|2dx−

∫
m(x)e−

α
d A(x)ζ2dx∫

e−
α
d A(x)ζ2dx

.

We include below several properties of λ̄1.

Proposition 5.2. Assume that m(x) is non-constant. Then we have
(a) λ̄1 depends continuously and differentiably on the parameters d > 0 and α > 0;
(b) Assume that all critical points of A(x) are non-degenerate and let A be the set

of all local maximum points of A(x). Then

lim
α→∞

λ1 = min
x∈A

(
−m(x)

)
;
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(c) Assume that |∇A(x)| ̸= 0 on ∂Ω. For any given α > 0, one has

lim
d→0

λ1 = min
x∈Γ1∪Γ2

{
−m(x) + αΣN

i=1(κi(x) + |κi(x)|)
}
,

where

Γ1 := {x ∈ Ω : |∇A(x)| = 0},
Γ2 := {x ∈ ∂Ω : |∇A(x)| = ∇A(x) · ν > 0},

and κi(x), (i = 1, ..., N), are eigenvalues of D2A(x);

(d) λ̄1 is strictly decreasing in the weight function m(x) in the L∞ sense, that is,
if m1(x) ⩽, ̸≡ m2(x) in Ω, then λ̄1(m1) > λ̄1(m2).

The proof of the above statements (a) and (d) are standard, see, e.g., [13].
Statement (b) is proved in [22, Theorem 1.1] and statement (c) is proved in [23,
Theorem 1.2].

Remark 5.2. We make some comments on λ̄1 and Proposition 5.2.

(1) For the diffusion-advection type operator as given in problem (5.2), its prin-
cipal eigenvalue has quite different properties from that of the diffusion type
(i.e., α = 0) in (5.1). For instance, λ̄1, in general, is no longer a monotonic
function in the parameter d; see [23, inquality (1.12)] for some detailed expla-
nation. Moreover, λ̄1, as a function of two variables d and α, is not continuous
at the point (0, 0), and it has very rich and complex behaviors when both d
and α are small. We refer the interested readers to [23] for more details.

(2) Concerning the question whether λ̄1 is monotonic in the parameter α, Beresty-
cki et al. [11], Godoy et al. [41], and Liu and Lou [88] considered a more general
situation where ∇A(x) above is replaced by a general vector field V, and found
that a positive answer to this question requires

divV = 0 in Ω (divergence free) and V · ν = 0 on ∂Ω, (5.3)

which, in the context of gradient flow V = ∇A(x), implies A(x) ≡ const.
Hence, these results do not work for the gradient flow as given in problem
(5.2). We will return to this point by discussing a one space dimension case;
see Proposition 5.3 (d) and Proposition 5.4 below.

(3) A fundamental issue in the study of operator theory is to understand the lim-
iting behaviors of principal eigenvalues as various parameters approach zero
or infinity, see the pioneering works by Devinatz et al. [32] and Friedman [37]
for small diffusion with divergence free vector field and Dirichlet boundary
condition, and Berestycki et al. [11] for large advection with divergence free
vector field and Dirichlet, Robin and Neumann boundary conditions. In the
context of gradient flow (see (5.2)), Chen and Lou [22, 23] made important
contributions by establishing Proposition 5.2 (b) and (c), which, as an ap-
plication, can be applied to analyze the local stability of semi-trivial steady
states of certain competitive models in the sense of large advection or small
diffusion, see, e.g., [12, 15,20,22,23].
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Next, we consider a one-dimensional case of problem (5.2) but with differing
boundary conditions (which is useful to study the river population models in sub-
section 4.2) 

dφxx − αφx +m(x)φ+ λφ = 0, x ∈ (0, L),

dφx(0)− αφ(0) = b1αφ(0),

dφx(L)− αφ(L) = −b2αφ(L),
(5.4)

where d, α, L > 0, and the parameters bi (i = 1, 2) may vary in [0,∞] (note that
bi = ∞ means the Dirichlet boundary condition). Problem (5.4), in view of the
Krein-Rutman theorem [70], also has a principal eigen-pair denoted by (λ̃1, φ̃1),
where λ̃1 is real and φ̃1 > 0 in (0, L). Moreover, λ̃1 can be characterized by

λ̃1 = inf
ζ∈Γ̃

b2αe
−α

d Lζ2(L) + b1αζ
2(0) +

∫
de−

α
d xζ2xdx−

∫
m(x)e−

α
d xζ2dx∫

e−
α
d xζ2dx

, (5.5)

where Γ̃ = H1(0, L) \ {0} if b1, b2 ̸= ∞. For b1 and/or b2 equals infinity, the
numerator in (5.5) can be further simplified (e.g., ζ(L) = 0 if b2 = ∞), and H1(0, L)
needs to be replaced by H1

0 (0, L).
We present below a series of properties of λ̃1 and φ̃1.

Proposition 5.3. Assume that m(x) is non-constant if b1 = b2 = 0. Then
(a) λ̃1 depends continuously and differentiably on the parameters d > 0 and α > 0;
(b) If b1 = b2 = ∞, then lim

d→0
λ̃1 = ∞;

If b1 = 0 or ∞, and b2 = 0, then lim
d→0

λ̃1 = −m(L);

If b1 = 0 or ∞, and b2 = ∞, then lim
α→∞

λ̃1 = ∞;
If b1 = 0 or ∞, and b2 = 0, then lim

α→∞
λ̃1 = −m(L);

(c) λ̃1 is strictly decreasing in the weight function m(x) in the L∞ sense, that is,
if m1(x) ⩽, ̸≡ m2(x) in Ω, then λ̃1(m1) > λ̃1(m2);

(d) If b1 = 0, b2 = −1 and m(x) ≡ const, then λ̃′1(d) < 0;
(e) If b1 ∈ [0,∞] and b2 ∈ [ 12 ,∞], then λ̃′1(α) > 0;

(f) If b1 = 0 and m′(x) ≤ 0 in (0, L), then (φ̃1)x
φ̃1

< α
d in (0, L);

(g) Let b1 = 0. For any di > 0, αi > 0 and bi2 ∈ [0,∞], denote

(λ̃i1, φ̃
i
1) =

(
λ̃1(di, αi, b

i
2), φ̃1(di, αi, b

i
2)
)
, i = 1, 2.

Then the following difference formula holds[
λ̃21 − λ̃11

] ∫ L

0

e−
α2
d2

x · φ̃1
1 · φ̃2

1dx

=

∫ L

0

[
(d2 − d1)(φ̃

1
1)x − (α2 − α1)φ̃

1
1

]
·
[
e−

α2
d2

xφ̃2
1

]
x
dx

+ (b22α2 − b12α1)e
−α2

d2
Lφ̃1

1(L)φ̃
2
1(L).

(5.6)

(h) Let b1 = 0 and b2 = −1. Suppose that m(x) > 0 in [0, L]. If λ̃1(d∗) = 0
for some d∗ > 0, then λ̃′1(d

∗) < 0, which implies that λ̃1, as a function of d,
has “at most one positive root” (called “AMOPR” property for brevity and for
later use).
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(i) Let b1 = −1 and b2 = ∞. If m′(x) ⩽ 0 in (0, L), then λ̃′1(d) > 0 and
λ̃′1(α) < 0; if m(0) > 0 and m′(x) ⩾ 0 in (0, L), then λ̃1 has the “AMOPR”
property in d, and also in α.

(j) Let b1 = −1 and b2 > 1. Suppose that m(x) > 0 in [0, L] and m′(x) > 0 in
(0, L). If λ̃1(d∗) = 0 for some d∗ > 0, then λ̃′1(d∗) > 0, and so the “AMOPR”
property in d holds.
Let b1 = −1 and b2 ∈ [0, 1). Suppose that m(x) < 0 in [0, L] and m′(x) < 0 in
(0, L). If λ̃1(d∗) = 0 for some d∗ > 0, then λ̃′1(d∗) < 0, and so the “AMOPR”
property in d holds.

Statements (a) and (c) are direct consequences of the counterpart of Proposition
5.2. Statement (b) follows from the systematic works [115, 116]. Statement (d) is
proved in [9, Proposition 2.1] and statement (e) holds due to [94, Remark 4.10].
Statements (f) and (g) are proved in [140, Lemmas 3.1 and 3.2]. See [94, Lemma
6.2] for statement (h), [105, Lemma 2.1] for statement (i), and [124, Lemma 2.3] for
statement (j).

Remark 5.3. We make some comments on λ̃1 and Proposition 5.3.

(1) Problem (5.4) with standard Dirichlet and Robin boundary conditions has
been studied by Peng et al. [115,116], where various limiting behaviors of the
principal eigenvalue in the sense of small/large diffusion or large advection
have been carefully examined. But these results, in general, cannot be directly
applied to problem (5.4), since the boundary conditions in (5.4) also involve
d and α. See also Liu et al. [90, 91] for some latest advances in the non-
autonomous situation (time periodic).

(2) The limiting behaviors stated in Propositions 5.2 and 5.3, as mentioned before,
are useful in the analysis of local stability of semi-trivial steady states, but
mostly working only for the particular situation such as large advection or
small diffusion. For general situation especially intermediate advection or
diffusion, statements (f), (g), (h), (i) and (j) are shown to be quite helpful in
the study of local dynamics of various cases of system (4.4), see [99, 101, 105,
124,136,140].

(3) The monotonicity result in Proposition 5.3 (e) can be seen as a further develop-
ment of those works [11,41,88] mentioned in Remark 5.2 (2), since the setting
A(x) ≡ x in (5.4) does not satisfy the condition (5.3) required in [11, 41, 88].
In fact, such a monotonicity can be generalized to a much more wide setting.
See Proposition 5.4 below. We also mention here a recent work by Liu and
Lou [89] treating the periodic-in-space situation.

(4) Some new property of λ̃1 was observed by Jiang, Lam and Lou [63, Proposi-
tion 2.1 (c) and (d)], which is useful to analyze the global dynamics of some
phytoplankton competition models.

We end this subsection by including a recent monotonicity result obtained by
Shao, Wang and Zhou [119]. See the following Proposition 5.4.

Consider
d(α) [D(x)φx]x − α [B(x)φ]x + c(x)φ+ λφ = 0, x ∈ (0, L),

d(α)D(x)φx − αB(x)φ = b1αB(x)φ, x = 0,

d(α)D(x)φx − αB(x)φ = −b2αB(x)φ, x = L,

(5.7)
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where D(x) > 0 in [0, L], B(x) ∈ C1([0, L]), α,L > 0, d(α) is a positive function of
α > 0, and b1, b2 ∈ [0,∞].

Proposition 5.4. Assume that

(A1) d′(α) ⩾ 0 and
[
d(α)
α2

]′
(α) ⩽ 0 for α > 0;

(A2) B(x) ̸≡ 0, B(0) ⩾ 0 and B′(x) ⩾ 0 in [0, L];
(A3) b1 ∈ [0,∞] and b2 ∈ [ 12 ,∞].

Then the principal eigenvalue of problem (5.7), still denoted by λ̃1, satisfies λ̃′1(α) >
0.

Remark 5.4. We make some notes on the above conditions (A1) and (A2).

(1) Clearly, the condition (A1) includes the standard case d(α) ≡ d (a positive
constant). More importantly, such a condition, when applied to study the
structure of positive steady states of competitive systems, would make some
improvements; see Example 1.3 in subsection 5.4 later.

(2) The general vector field V in [11, 41, 88], in the setting of problem (5.7),
becomes “−B(x)”. By an easy inspection, one finds from (A2) that the original
condition (5.3) especially the divergence free condition is relaxed a lot.

5.3. Principal eigenvalue theory: system
The principal eigenvalue theory of systems is less understood than that of the single
equation. In the sequel, we first discuss how to analyze the (linear) stability of
positive steady states of competitive R-D and R-D-A systems, that is, problem P3.
This is equivalent to studying a linear eigenvalue problem governed by a system
of two equations (see (5.8) below). Then we introduce a convergence result of the
principal eigenvalue of general linear cooperative elliptic systems given by Lam and
Lou [75]. See Proposition 5.6 below.

Let us consider the R-D-A system (4.5)–(4.8) with α1, α2 ⩾ 0, which not only
includes the R-D system (3.2) but also the situation where one equation has advec-
tion while the other one has no advection. Some notes are included in Remark 5.6
for other models.

Let (u(x), v(x)) be any positive steady state of system (4.5)–(4.8), i.e.,

0 = Lu+ u
[
r1(x)− u− bv

]
, x ∈ Ω,

0 = Mv + v
[
r2(x)− cu− v

]
, x ∈ Ω,

B1u = B2v = 0, x ∈ ∂Ω,

u(x) > 0, v(x) > 0, x ∈ Ω.

By linearization at (u(x), v(x)), one sees
Lφ+

[
r1(x)− u− bv

]
φ− u

[
φ+ bψ

]
+ τφ = 0, x ∈ Ω,

Mψ +
[
r2(x)− cu− v

]
ψ − v

[
cφ+ ψ

]
+ τψ = 0, x ∈ Ω,

B1φ = B2ψ = 0, x ∈ ∂Ω.

(5.8)
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By the Krein-Rutman theorem [70], problem (5.8) admits a principal eigenvalue
denoted τ1, with the corresponding eigenfunction (φ,ψ) satisfying φ > 0 > ψ in Ω;
see [139, Page 366–367] or [121] for detailed explanation.

Remark 5.5. If (u(x), v(x)) above is replaced by the semi-trivial steady state (ũ, 0)
or (0, ṽ), then the two equations of φ and ψ in (5.8) will be decoupled, and so the
linear stability of (ũ, 0) or (0, ṽ) is, in fact, determined by an eigenvalue problem of
a single equation. See [82, Corollary 2.10] for more explanations.

Recall the conditions (H1) and (H2) defined in subsection 4.3. The following
result is due to Zhou, Tang and Xiao [138].

Proposition 5.5. Assume that (H1) and (H2) hold. Then for any positive steady
state of system (4.5)–(4.8) with α1, α2 ⩾ 0, one has τ1 ⩾ 0, with equality holding
only if both semi-trivial steady states are neutrally stable (the principal eigenvalue
of the operator linearized at semi-trivial steady states is zero).

Basically speaking, Proposition 5.5 says that under certain conditions, all posi-
tive steady states of system (4.5)–(4.8) are linearly stable (non-degenerate). This,
together with Theorem 5.1, implies that if there is a locally stable positive steady
state, then it must be unique and globally asymptotically stable.

Remark 5.6. We make some further comments on Proposition 5.5. The condition
(H2) suggests that the linear stability of all positive steady states holds for com-
petitive R-D systems provided bc ⩽ 1 (consistent with [51]), and for competitive
R-D-A systems provided bc ⩽ κ0, where κ0 is defined in (4.9) and is usually less
than 1. Similar results (but by different argument) are obtained by Guo, He and
Ni [44] for more general nonlinear terms (symmetric)

u[r1(x)− b1(x)u− c1(x)v] and v[r2(x)− b2(x)u− c2(x)v].

Recently, Zhou and Huang [137] further developed the argument to handle non-
symmetric reaction terms like

u[r −mu− nv] and h(x)− puv − qv, r, h,m, n, p, q > 0.

Based on these works [44, 51, 137, 138], we point out that one can develop such
arguments to deal with very general nonlinear terms like

f(x, u, v) and g(x, u, v),

which behave essentially in a competition way (i.e., fv, gu < 0), but the upper
bound of bc should be different depending on situations.

We next recall a convergence result of general linear cooperative elliptic systems
due to Lam and Lou [75]. Consider{

DLϕ+Mϕ+ µϕ = 0, x ∈ Ω,

Bϕ = 0, x ∈ ∂Ω,
(5.9)

where D = diag(d1, . . . , dn) and L = diag(L1, . . . , Ln) with di being a positive
constant and Li being a general second order elliptic operator, i = 1, 2, . . . , n;
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M =
(
mij

)
∈

(
C(Ω)

)n×n is a matrix satisfying mi,j ⩾ 0 in Ω for i ̸= j. The
boundary operators B = (B1, B2, . . . , Bn) satisfy for each i, either

Biϕi =
∂ϕ

∂ν
+ hi(x)ϕ on ∂Ω (Robin type),

or
Biϕi = ϕ on ∂Ω (Dirichlet type),

where hi(x) ⩾ 0 and ν is the outward unit normal vector on ∂Ω.
The existence of the principal eigenvalue (denoted by µ1) of problem (5.9) can

be found in [123]. See also [30] by using the maximum principle and [112] by
using the semi-group theory. Moreover, by the Krein-Rutman theorem [70], the
corresponding eigenfunction ϕ = (ϕ1, . . . , ϕn) can be chosen to satisfy ϕi ⩾ 0 for all
i. If, in addition, we assume mij > 0 in Ω for all i ̸= j, then µ1 is simple and is the
unique eigenvalue having a strictly positive eigenfunction, namely, ϕi > 0 in Ω for
all i.

The following result is proved by Lam and Lou [75, Theorem 1.4].

Proposition 5.6. Let d0 := max
1⩽i⩽n

di. Then

lim
d0→0

µ1 = −max
x∈Ω

µ̄(M),

where µ̄(M) denotes the eigenvalue of the matrix M with the greatest real part
(guaranteed by Perron-Frobenius theorem [39]).

Proposition 5.6 improves a previous result given by Dancer [27], where all di
(i = 1, . . . , n) tend to zero at the same rate.

Remark 5.7. From the side of application, Proposition 5.6 indicates that some-
times the dynamics of a two species competitive parabolic system with small dif-
fusion can be determined by the corresponding kinetic system. For example, if an
ODE system has a unique equilibrium which is globally asymptotically stable, then
the same result holds for the corresponding parabolic system with small diffusion,
see, e.g., [60,75]. Relevant study on the non-autonomous version (time-periodic) of
problem (5.9) can be found, e.g., in [4, 133].

5.4. Analytical approaches
In this subsection, we primarily introduce several arguments (see M1-M3 below)
to prove the non-existence of any positive steady states for competitive R-D or R-
D-A systems, that is, problem P2. Note that once having this in hand, in view of
Theorem 5.1, very possibly the principle of competitive exclusion holds (but note
that usually one also needs to confirm the linear instability of a semi-trivial steady
state due to the counterexample given in [58]).

M1: monotonicity of the principal eigenvalue. We include below three ex-
amples to show this method.

Example 1.1. By using the increasing property of the principal eigenvalue in
diffusion rate (see Proposition 5.1 (b)), Dockery et al. [34] proved that the following
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elliptic problem (with r(x) non-constant)
0 = d1△u+ u[r(x)− u− v], x ∈ Ω,

0 = d2△v + v[r(x)− u− v], x ∈ Ω,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω,

(5.10)

has no positive solutions, and obtained the conclusion “slower diffuser prevails” for
the corresponding parabolic system.
Example 1.2. Using the monotonicity of the principal eigenvalue in advection
rate (see Proposition 5.3 (e)), Xu and Gan [129] showed that for any d, q1, q2 > 0,
b ∈ [ 12 ,∞] and bounded function r(x), the following boundary value problem

0 = duxx − q1ux + u[r(x)− u− v], x ∈ (0, L),

0 = dvxx − q2vx + v[r(x)− u− v], x ∈ (0, L),

dux(t)− q1u(0) = dvx(0)− q2v(0) = 0,

dux(L)− q1u(L) = −bq1u(L),
dvx(L)− q2v(L) = −bq2v(L),

(5.11)

has no positive solutions, and concluded “weak advection prevails” for the corre-
sponding parabolic system.
Example 1.3. In fact, the argument in Example 1.2 can be extended to deal with
a bit more general situation: For any d2 > d1 > 0 and q1, q2 > 0 with q2 ⩾ d2

d1
q1,

b ∈ [ 12 ,∞] and bounded function r(x), the following problem

0 = d1uxx − q1ux + u[r(x)− u− v], x ∈ (0, L),

0 = d2vxx − q2vx + v[r(x)− u− v], x ∈ (0, L),

d1ux(t)− q1u(0) = d2vx(0)− q2v(0) = 0,

d1ux(L)− q1u(L) = −bq1u(L),
d2vx(L)− q2v(L) = −bq2v(L),

(5.12)

has no positive solutions (note that here one needs to consider, first, the special
case with (d1, q1) and (d2,

d2

d1
q1) by using the concavity of the principal eigenvalue

in the ratio d2

d1
). As a further development, we exhibit below a more general result

by applying the monotonicity result in Proposition 5.4. Consider

0 = d1 [D(x)ux]x − α1 [B(x)u]x + u
[
r(x)− u− v

]
, x ∈ (0, L),

0 = d2 [D(x)vx]x − α2 [B(x)v]x + v
[
r(x)− u− v

]
, x ∈ (0, L),

d1D(x)ux(x)− α1B(x)u(x) = b1α1B(x)u(x), x = 0,

d1D(x)ux(x)− α1B(x)u(x) = −b2α1B(x)u(x), x = L,

d2D(x)vx(x)− α2B(x)v(x) = b1α2B(x)v(x), x = 0,

d2D(x)vx(x)− α2B(x)v(x) = −b2α2B(x)v(x), x = L.

(5.13)

Assume that (A2) and (A3) in Proposition 5.4 hold. Then for

d2 > d1 > 0, α2 ⩾
√
d2
d1
α1, (d2 − d1)

2 + (α2 −
√
d2
d1
α1)

2 ̸= 0,
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Shao, Wang and Zhou [119] recently apply Proposition 5.4 to establish the non-
existence of positive solutions of system (5.13). This result improves previous ones
due to

√
d2

d1
< d2

d1
.

M2: “AMOPR” property of the principal eigenvalue. We present below
two examples to show this method.

Example 2.1. By using the “AMOPR” property described in Proposition 5.3 (h),
Lou and Lutscher [94] verified that for d1, d2 > 0 with d1 ̸= d2 and r0 > 0 (a
constant), the following boundary value problem

0 = d1uxx − qux + u[r0 − u− v], x ∈ (0, L),

0 = d2vxx − qvx + v[r0 − u− v], x ∈ (0, L),

d1ux(t)− qu(0) = d2vx(0)− qv(0) = 0,

ux(L) = vx(L) = 0,

(5.14)

has no positive solutions, and found the phenomenon “faster diffuser prevails” for
the corresponding parabolic system. Note that in this process, one also needs to
make the a priori estimate r0 − u − v > 0 for any possible positive solution (u, v)
so that Proposition 5.3 (h) is available.

Example 2.2. The “AMOPR” properties described in Proposition 5.3 (i) and (j)
have also been used to exclude the positive solutions of certain special cases of
the stationary problem of system (4.4). We omit the details here and refer the
interested readers to [85, 105, 124]. Again, in these proofs, one has to make some a
priori estimates on the positive solution (u, v).

M3: Technical argument. We mainly take the following elliptic problem as an
example 

d1uxx − α1ux + u[r − u− v] = 0, 0 < x < L,

d2vxx − α2vx + v[r − u− v] = 0, 0 < x < L,

d1ux(0)− α1u(0) = d1ux(L)− α1u(L) = 0,

d2vx(0)− α2v(0) = d2vx(L)− α2v(L) = 0.

(5.15)

If r ≡ r0, a positive constant, system (5.15) has been systematically studied in
[99,101,136], where the non-existence of positive solutions is established in different
settings of di, αi (i = 1, 2). If r = r(x) with r′(x) ⩽, ̸≡ 0 in [0, L], the same issue
is addressed in [100, 135]. In these works, among other things, two fundamental
observations turn to be extremely important and are frequently utilized in the
proofs. See below.

The first one refers to two identities.

Lemma 5.1. Assume that d1, d2 > 0, α1, α2 ∈ R, and that (u, v) is a positive
solution of system (5.15). Then for any two points 0 ≤ y1 ≤ y2 ≤ L, one has

1

d1

∫ y2

y1

[d1 − d2] · [vx − α1 − α2

d1 − d2
v] · [d1ux − α1u] · e−

α1
d1

xdx

=
{
[d1ux − α1u] · e−

α1
d1

x · v
}
|y2
y1

−
{
[d2vx − α2v] · e−

α1
d1

x · u
}
|y2
y1
;
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and

1

d2

∫ y2

y1

[d2 − d1] · [ux − α2 − α1

d2 − d1
u] · [d2vx − α2v] · e−

α2
d2

xdx

=
{
[d2vx − α2v] · e−

α2
d2

x · u
}
|y2
y1

−
{
[d1ux − α1u] · e−

α2
d2

x · v
}
|y2
y1
.

The second one is a maximum principle type result. Define

T :=
ux
u

and S :=
vx
v
.

Then one finds

− d1Txx + [α1 − 2d1T ]Tx + uT + vS = r′(x), 0 < x < L,

− d2Sxx + [α2 − 2d2S]Sx + uT + vS = r′(x), 0 < x < L,

T (0) = T (L) =
α1

d1
> 0,

S(0) = S(L) =
α2

d2
> 0.

Lemma 5.2. The following situations about T and S cannot occur

(1) T (resp. S) achieves a positive local maximum in (y1, y2) and S ≥ 0 (resp.
T ≥ 0) in [y1, y2];

(2) T (resp. S) achieves a negative local minimum in (y1, y2) and S ≤ 0 (resp.
T ≤ 0) in [y1, y2].

where [y1, y2] is any interval in [0, L].

We remark here that the proof of each non-existence result in the above men-
tioned works [99–101,135,136] is technical, as it involves a lot of analysis. It should
be pointed out that between the constant and non-constant case of r, there is big
difference, e.g., for the non-constant case, the Cauchy-Kowalevski theory [68] can-
not be used to guarantee the analyticity of solutions. We also mention here a series
of works by Tang et al. [105, 124, 125] considering system (5.15) but with different
boundary conditions, where, beside the use of Lemmas 5.1 and 5.2, the authors also
introduced new ingredients in the argument, e.g., the “AMOPR” property of the
principal eigenvalue mentioned in M2.

Remark 5.8. We make some comments on the above three different approaches.

(1) The monotonicity, in M1, is very rare. For diffusion-advection type operator,
generally there is no such monotonicity result in the diffusion rate (see Remark
5.2). But once having such a monotonicity result (e.g., in the advection rate)
in hand, it, when applied to certain competitive models, seems very powerful
as, it not only determines the local stability of semi-trivial steady states, but
also implies the non-existence of positive steady states.

(2) The “AMOPR” property in M2, to some extent, can be viewed as a weaker
version of monotonicity in M1. It was firstly found by Lou and Lutscher [94]
to be quite useful in the qualitative analysis of both semi-trivial and positive
steady states.
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(3) The argument in M3 is technical. The basic idea of Lemmas 5.1 and 5.2
originates from Lou and Zhou [101], and is later further developed by Zhou
[136], where the proof of the non-existence results takes about 12 pages.

(4) We finally point out an interesting fact: the boundary loss rate b at x = L, in
all examples in M1 and M2 (see problems (5.11), (5.12), (5.13) and (5.14)),
satisfies b ⩾ 1

2 , and, as a complement, method M3 handles the homogeneous
case with b = 0 in [99, 101, 136] and b ∈ (0, 1] in [140], and the heterogeneous
case with b ∈ [0,∞) in [100,135].

6. Discussion
In this paper, we mainly give a review on the dynamics of competitive ODE, R-D
and R-D-A systems, and for the latter two kinds of systems, we discuss in detail
the main strategies and approaches to deal with such systems.

In the sequel, focusing on competitive R-D and R-D-A systems, we make some
comments and propose several problems that may deserve future investigation.

(•) Generally speaking, for competitive R-D and R-D-A systems, there are two
basic strategies to understand the population dynamics, namely, S1: the effect
of movements (diffusion and/or advection); and S2: the effect of competition
intensities (weak, strong-weak, and strong). Mathematically, S1 requires one
to understand the dependence of the principal eigenvalue on diffusion and/or
advection rates, while for S2, one needs to get a well understanding on the
dependence of the principal eigenvalue on competition coefficients (usually
included in the weight function).

(•) The strategy S1 has been successfully used in competitive R-D systems, which,
to a large extent, is due to the monotonic property and limiting behaviors of
the principal eigenvalue described in Proposition 5.1 (b). A good example to
this point is that the general R-D system (3.2) has been understood in a deep
way by He and Ni [51], where not only the local dynamics around (ũ, 0) and
(0, ṽ) is described in certain abstract way in terms of d1 and d2, but also the
global dynamics is completely classified according to the local dynamics. An
interesting problem, as stated in Remark 5.1 (1), is to make further efforts
to reveal the geometric property of the stable regions Σu and Σv so that one
can see more clearly the global dynamics in d1-d2 plane. For this problem,
following the ideas in [52, 53], one may consider some special cases of system
(3.2) first.

In contrast, the strategy S1, if applied to competitive R-D-A systems, is not
that successful, at least for the general R-D-A system (4.5)–(4.8). The main
reason, from the viewpoint of operator theory, is that the diffusion-advection
type operator is no longer self-adjoint and the dependence of the principal
eigenvalue on diffusion or advection rate is not as clear as that of the self-
adjoint case; see Remark 5.2 (1). For the general situation in (5.2), as seen
from Proposition 5.2 (b) and (c), the limiting behaviors of the principal eigen-
value in the sense of small diffusion or large advection are clear, and hence, in
application, the dynamics in the limiting sense (i.e., small diffusion or large
advection) is possible to figure out; a typical example is the R-D-A model
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(4.1), for which, in subsection 4.1, we have introduced many works focusing
on the situation with strong advection as well as some others discussing “ESS”
(which is also based on sort of limiting arguments, see, e.g., [76,77]). For the
special one dimensional situation in (5.4) (see also (5.7)), much richer qual-
itative behaviors of the principal eigenvalue are observed (see Propositions
5.3 and 5.4), and so, in application, it is more likely to reveal the population
dynamics in a much bigger region of parameters including intermediate diffu-
sion or advection; a good example is the river population model (4.4) given in
subsection 4.2, where a lot of existing results are introduced. In a word, the
strategy S1 has achieved more success in the one dimensional R-D-A models
than those in the higher space dimension.

(•) Different from S1, the strategy S2 is efficient for both competitive R-D and R-
D-A systems, since the monotonicity of the principal eigenvalue in the weight
function always holds no matter whether there is advection term (see Proposi-
tion 5.1 (c) and Proposition 5.2 (d)). Indeed, as we saw in subsection 4.3, this
monotonicity has been utilized by Zhou, Tang and Xiao [138] to treat both
the general R-D system (3.2) and R-D-A system (4.5)–(4.8), and a completely
clear understanding on the local dynamics of (ũ, 0) and (0, ṽ) in terms of com-
petition coefficients b and c is obtained. Furthermore, the global dynamics is
also determined in a big parameter region in b-c plane (see [138, Theorems 4
and 5]). In summary, the strategy S2, if compared with S1, can treat more
general competitive systems, and also, the dynamics obtained by the strategy
S2 is more clear in the plane of bifurcation parameters (note that Σu and
Σv are completely clear in b-c plane, different from the counterpart in d1-d2
plane).

(•) We make some discussion on the definition of strong, weak, and strong-weak
competition proposed in [138] (see also subsection 4.3). Denote by (p1, p2) the
critical point distinguishing the weak, strong-weak, and strong competition.
For the classical ODE system (2.1),

(p1, p2) = (
r1
r2
,
r2
r1

).

Following this manner, for the following parameterized ODE system
ut = u[r(x)− u− bv], t > 0,

vt = v[r(x)− cu− v], t > 0,

u(0) = u0 > 0, v(0) = v0 > 0,

(6.1)

one has

(p1, p2) = (1, 1) = (
r(x)

r(x)
,
r(x)

r(x)
) (note r1 = r2 = r(x)).

Consider further the following R-D system

ut = d1△u+ u[r(x)− u− bv], x ∈ Ω, t > 0,

vt = d2△v + v[r(x)− cu− v], x ∈ Ω, t > 0,

∂u

∂ν
=
∂v

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥, ̸≡ 0, x ∈ Ω,

v(x, 0) = v0(x) ≥, ̸≡ 0, x ∈ Ω.

(6.2)
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What is (p1, p2) for system (6.2)? Is it still (1, 1) through a simply formal
extension from system (6.1) to (6.2)? We think that one needs to think deeply
how the numbers r1

r2
and r2

r1
are obtained or what roles these two numbers are

playing for the ODE system (2.1). Indeed, one can check that r1
r2

and r2
r1

are the critical numbers which sharply govern the local stability of the two
boundary equilibria (0, r2) and (r1, 0), respectively. So a reasonable way is to
explore such numbers for system (6.2). Without the loss of generality, one may
assume d1 > d2 > 0. Then by some simple analysis (see, e.g., [138, Proposition
1]), one can obtain two critical numbers denoted by b∗1 and c∗1 for system (6.2)
(playing the same role as r1

r2
and r2

r1
for the ODE system (2.1)) but with

c∗1 > 1 > b∗1 > 0 and b∗1c
∗
1 > 1. (6.3)

Hence, for system (6.2),

(p1, p2) = (b∗1, c
∗
1), not simply (1, 1).

In a similar way, one can consider the following R-D-A system

0 = d1

(
△u− αdiv

(
u∇P (x)

))
+ u[r(x)− u− bv], x ∈ Ω,

0 = d2

(
△v − αdiv

(
v∇P (x)

))
+ v[r(x)− cu− v], x ∈ Ω,

∂u

∂ν
− αu

∂P (x)

∂ν
= 0, x ∈ ∂Ω,

∂v

∂ν
− αv

∂P (x)

∂ν
= 0, x ∈ ∂Ω,

and establish a pair (b∗2, c
∗
2) playing the same role as ( r1r2 ,

r2
r1
) and satisfying

the property (6.3).
(•) If the above definition makes sense, there are several interesting problems that

deserve further consideration: (i) In the weak competition case, there is always
a unique positive equilibrium that is globally asymptotically stable for the
ODE system (2.1), but in the same competition case, this is partially confirmed
for both the R-D system (3.2) and R-D-A system (4.5)–(4.8), and there is still
a parameter region (see R8 in [138, Figure 2]) for which the uniqueness of
positive steady states is unsolved; and (ii) In the strong-weak competition
case, the competitive exclusion always holds for the ODE system (2.1), but
for the PDE systems (3.2) and (4.5)–(4.8), this is true for most parameters
in the same competition case, with a bounded parameter region (see R2

5 and
R2

7 in [138, Figure 2]) left as open. We suspect that there may appear quite
different dynamics in R2

5 ∪ R2
7, e.g., multiple positive steady states or even

the bistable phenomenon. If this were proved, it is a good example to show
the striking differences between finite and infinite dimensional competition
systems.

(•) For the general competitive R-D system (3.2), the estimate on the linear sta-
bility of positive steady states is established by He and Ni [51] under the
condition bc ⩽ 1, while for the competitive R-D-A system (4.5)–(4.8), a suffi-
cient condition bc ⩽ κ0 with κ0 ∈ (0, 1] is given by Zhou, Tang and Xiao [138]
(see a similar condition given by Guo, He and Ni [44]). In particular, κ0 = 1
if advection is ignored. A natural question, as proposed in [44,138], is how to
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get an optimal criteria for such an estimate. This issue generally is challeng-
ing. We note here that for competitive R-D-A systems, the optimal number
(if it exits) would not be greater than one (see an example given in [138]).
Moreover, for competitive R-D-A systems, numerically it has been observed
the bistable phenomenon for b = c = 1 [98,132] (see also [128,131] for general
competition coefficients), and an interesting problem concerns whether one
can construct a specific example to show the bistable structure.

We end this section by mentioning some works (but a few) on other types of
competitive models: (i) competitive patch models (a system of ODEs) recently
received considerable attention, see, e.g., Slavik [120] for symmetric connection
matrix, Chen et al. [18] for general connection matrix (including the asymmetric
case), and Jiang et al. [65, 66] for the study in river networks (a discrete version of
those models mentioned in subsection 4.2); (ii) competitive models with nonlocal
dispersal (an integral operator) have been systematically studied in [6–8,84], and in
particular, Bai and Li [7] considered a complex situation including both local and
non-local operators and gave a sufficient condition for the classification of dynamics
of such systems; (iii) diffusive competition systems involving time delay have been
studied by Chen and Shi [19] where the effect of time delay on the global dynamics is
examined; (iv) competitive phytoplankton models with integral reaction terms have
been extensively studied in, e.g., [35, 63, 64, 109], and in particular, an interesting
cone is found in [64] to guarantee the monotonic property of such systems; (v)
N -species competition models (N ⩾ 3) have not been studied extensively and the
global dynamics of such systems is a highly challenging issue, see, e.g., [28,29,71,95]
and some latest advances in [17]; (vi) we finally mention the recent works [86, 114]
in which the Lyapunov functional method is developed to treat the competition-
diffusion models.
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