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LARGE MARGIN UNIFIED MACHINES WITH
NON-I.I.D. PROCESS∗
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Abstract In this paper, we investigate the convergence theory of large mar-
gin unified machines (LUMs) in a non-i.i.d. sampling. We decompose the total
error into sample error, regularization error and drift error. The appearance
of drift error is caused by the non-identical sampling. Independent blocks
sequences are constructed to transform the analysis of the dependent sample
sequences into the analysis of independent blocks sequences under some mix-
ing conditions. We also require the assumption of polynomial convergence of
the marginal distributions to deal with the non-identical sampling. A novel
projection operator is introduced to overcome the technical difficulty caused
by the unbounded target function. The learning rates are explicitly derived
under some mild conditions on approximation and capacity of the reproducing
kernel Hilbert space.

Keywords Large margin unified machines, β-mixing sequence, projection
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1. Introduction
Many machine learning models suppose that the data are independent and identi-
cally distributed (i.i.d.). However, this ideal hypothesis is not always satisfied in the
real cases. For example, financial predictions, signal processing, system observation
and diagnosis, and speech or text recognition.

There is an extensive literature on investigating learning problems with the case
of non-independent process or non-identical distributed process, or both cases. For
example, Yu in [32] extended the classical empirical process theory for Vapnik-
Cervonenkis classes which deals mainly with sequence of independent random vari-
ables to dependent cases, which inspired subsequent research works such as [15,18,
20, 23, 25, 31]. Smale and Zhou in [19] studied learning performance of online algo-
rithm with independent but non-identically distributed data. Guo and Shi in [13]
investigated learning algorithms for binary classification problems in a non-i.i.d pro-
cess. Guo and Ye [10] studied the lq-regularized regression learning algorithm with
the non-identical and dependent samples.
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In this paper, we aim at studying the binary classification algorithms associated
with large margin unified machines (LUMs) loss function with the non-independent
and non-identically distributed sampling. Denote by X the input space which is
a compact subset of Rd and the output space Y = {−1, 1} represents two classes.
Let P be an unknown probability measure defined on Z := X × Y . The goal of
binary classification is to learn a classifier C : X → Y by minimizing the following
misclassification error:

R(C) = Prob{C(x) ̸= y} =

∫
X

P (y ̸= C(x)|x)dPX .

Here P (y|x) is the conditional distribution at a given x ∈ X and PX is the marginal
distribution of P on X. It is usual to consider the classifiers Cf = sgn(f) induced by
real-valued functions f : X → R, where sgn(f)(x) = 1 if f(x) ≥ 0 and sgn(f)(x) =
−1 otherwise.

The Bayes rule fc defined below is the ideal classifier which minimizes the mis-
classification error:

fc(x) =


1, if 1

2
≤ η(x) ≤ 1,

− 1, if 0 ≤ η(x) <
1

2
,

where η(x) = P (y = 1|x). Obviously, we can not use fc directly in real applications
since the population distribution P is unknown. There exist a huge amount of
classification algorithms based on a finite samples z = {zi}mi=1 = {(xi, yi)}mi=1 ∈ Zm

to estimate fc, including the classical distribution-based likelihood approaches such
as logistic regression and Fisher linear discrimination analysis (LDA) [14], and the
margin-based methods such as support vector machine (SVM) [3, 5]. As stated
in [17], SVM suffers from data piling problems in the high-dimension low-sample
size settings. Therefore, some new loss functions are invented to overcome the
difficulty such as distance weighted discrimination (DWD) loss function [17] and
LUMs loss function [16]. In this paper, LUMs loss function is adopted to measure
the local error committed by the classifier Cf = sgn(f).

Definition 1.1. Let 0 ≤ p ≤ ∞ and 0 < q ≤ ∞, the LUMs loss function V : R →
R+ is defined by

V (t) =


1

1 + p

( q

(1 + p)t− p+ q

)q
, if t ≥ p

1 + p
,

1− t, if t < p

1 + p
.

(1.1)

LUMs loss function includes many popular loss functions such as DWD loss
function when p = 1 and q = 1, the hinge loss function for SVM when p = ∞ and
q > 0, and the Hybrid of SVM and AdaBoost function when p = 0 and q = ∞.

Denote by HK the reproducing kernel Hilbert spaces (RKHS) generated by the
Mercer kernel K : X×X → R, which is a continuous, symmetric and positive semi-
definite function. HK is defined to be the completion of the linear span of functions
{Kx = K(x, ·) : x ∈ X} with the inner product ⟨·, ·⟩K given by ⟨Kx,Ky⟩K =
K(x, y). The reproducing property of HK is given by f(x) = ⟨Kx, f⟩K which implies

∥f∥C(X) ⩽ κ ∥f∥HK
, ∀f ∈ HK , (1.2)
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where κ = supx∈X

√
K(x, x) and C(X) denotes the Banach space of continuous

functions on X with norm ∥f∥C(X) = supx∈X |f(x)|.
The estimator fz,λ is the minimizer of the following regularized LUMs scheme

associated with LUMs loss function over HK :

fz,λ := arg min
f∈HK

{
1

m

m∑
i=1

V (yif(xi)) + λ ∥f∥2HK

}
, (1.3)

where λ = λ(m) > 0 is a regularization parameter balancing data fidelity and model
complexity.

The purpose of this paper is to investigate the performance of the classifier
Cfz,λ induced by fz,λ with non i.i.d sampling, which can be measured by the excess
misclassification error R(sgn(fz,λ)) − R(fc). Assume that the sample is generated
from a sequence of probability measures {P (t)}∞t=1 where the conditional distribution
according to {P (t)}∞t=1 at each t is P (y|x) while the marginal distributions {P (t)

X }∞t=1

change with t. Since the conditional distribution P (y|x) keeps the same for each t,
then the Bayes rule fc is still well defined.

2. Notations and main results
Suppose that the sequence {P (t)

X }∞t=1 converges exponentially fast in the dual (Cs(X))∗

of the Hölder space Cs(X) (0 < s ≤ 1), which is defined as the space of all contin-
uous functions on X with the following norm:

∥f∥Cs(X) = ∥f∥C(X) + |f |Cs(X) < ∞, where |f |Cs(X) = sup
x ̸=y

|f(x)− f(y)|
|x− y|s

.

Definition 2.1. Let 0 < s ≤ 1. The sequence {P (t)
X }t=1,2,... is said to converge

exponentially fast to a probability measure PX in (Cs(X))∗ if there exist C > 0
and 0 < ω < 1 such that

∥P (t)
X − PX∥(Cs(X))∗ ≤ Cωt, ∀t ∈ N. (2.1)

From the properties of the dual space, (2.1) is equivalent to∣∣∣∣∫
X

f(x)dP
(t)
X −

∫
X

f(x)dPX

∣∣∣∣ ≤ Cωt∥f∥Cs(X), ∀f ∈ Cs(X), t ∈ N. (2.2)

For the dependent sampling, we assume that the sequence of random variables
satisfies the β-mixing condition.

Definition 2.2. Suppose Z = {zt}∞t=1 is a sequence of random variables. For any
i, j ∈ N ∪ {+∞}, σj

i = σ(zi, . . . , zj) represents the σ-algebra generated by random
variable {zt : i ≤ t ≤ j}. Then for any k ∈ N, the β-mixing coefficient of the
random variable sequence Z is defined as

β(k) := sup
j≥1

E sup
A∈σ∞

j+k

∣∣∣Prob(A | σj
1)− Prob(A)

∣∣∣ .
The random sequence Z is called β-mixing, if lim

k→∞
β(k) = 0. Z is called an al-

gebraically β-mixing sequence, if for some β0 > 0, ϑ > 0, β-mixing coefficient
satisfies

β(k) ≤ β0k
−ϑ, for k ≥ 1. (2.3)
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Z is called an exponentially β-mixing sequence, if for some β0 > 0, β1 > 0, ϑ >
0, β-mixing coefficient satisfies

β(k) ≤ β0 exp(−β1k
ϑ), for k ≥ 1. (2.4)

Apart from the β-mixing condition used in this paper, there exist some other
mixing conditions such as α-mixing and ϕ-mixing. In fact, the β-mixing condition is
between the α-mixing and ϕ-mixing, which is not too weak like α-mixing condition
nor too strong like ϕ-mixing condition (see [32] and the references within).

Denote the generalization error EV (f) associated with the LUMs loss functions
by

EV (f) =

∫
Z
V (yf(x)) dP (x, y) =

∫
X

∫
Y

V (yf(x))dP (y|x) dPX(x). (2.5)

It was shown in [16] that the minimizer fV
P of EV (f) over all measurable functions

for 0 < q < ∞ and 0 ≤ p < ∞ is defined by

fV
P (x) =


− 1

1 + p
(R(x)−1q − q + p), if 0 ≤ η(x) <

1

2
,

1

1 + p
(R(x)q − q + p), if 1

2
≤ η(x) ≤ 1,

(2.6)

where R(x) =
(

η(x)
1−η(x)

) 1
q+1

. For p → ∞, the LUMs loss reduces to the hinge loss
for the SVM with the minimizer fc.

The sample free version of (1.3) is

fλ := arg min
f∈HK

{EV (f) + λ∥f∥2HK
}. (2.7)

Define
D(λ) := EV (fλ)− EV (fV

P ) + λ∥fλ∥2HK
(2.8)

as regularization error which is independent of sample and measures the approx-
imation ability of HK .

Assumption 2.1. For some constants Cr > 0, suppose the regularization error
(2.8) satisfies

D(λ) ≤ Crλ
r, 0 < r ≤ 1. (2.9)

Definition 2.3. Mercer kernel K satisfies a kernel condition of order s, if for some
κs > 0, such that∣∣K(x, x)− 2K(x, x′) +K(x′, x′)

∣∣ ≤ κ2
s

∣∣x− x′∣∣2s, ∀x, x′ ∈ X. (2.10)

(2.10) holds true if K ∈ C2s(X ×X).

Definition 2.4. For a subset S of the metric space (E, d) and u > 0, the covering
number N (S, u) is the minimal integer l ∈ N such that there exist l disks with
radius u covering S.

The covering number is mainly used to describe the complexity of function space.
In the literature of statistical learning theory, the covering numbers of unit balls of
classical function spaces have been well investigated (see e.g. [1,7,24,33,34] In this
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paper, we use the covering number of the ball BR = {f : ∥f∥HK
≤ R} of the RKHS

HK . Estimating uniform convergence in terms of covering numbers has been well
developed in [4, 6, 9, 11,12,27].

In our analysis we make the following assumption on the covering number.

Assumption 2.2. Denote B1 = {f ∈ HK : ∥f∥HK
≤ 1}. We assume the covering

number satisfies the following capacity condition with some power ι > 0 and Cι > 0,

logN (B1, u) ≤ Cι

(
1

u

)ι

, ∀u > 0. (2.11)

By the fact that the LUMs loss V has no zero on R when 0 ≤ p < ∞ , we get
an unbounded target function fV

P . This leads to some difficulties in our analysis.
In order to overcome these difficulties, we introduce a projection operator πM .

Definition 2.5. For any M > 0, for any measurable function f : X → R, the
projection operator πM is defined as

πM (f)(x) =


M, if f(x) > M,

f(x), if −M ≤ f(x) ≤ M,

−M, if f(x) < −M.

(2.12)

The same projection operator was proposed to analyze the binary classification
with logistic loss function in [28]. Since the LUMs loss without zero leads to an
unbounded target function fV

P , we assume that the projection operator has the
form with varying levels, i.e., M = M(m). The projection operator πM involved
in this work differs from the original one introduced for classifying loss with zero
in [4, 21, 29, 30]. Since sgn(πM (fz,λ)) = sgn(fz,λ), then R(sgn(fz,λ)) − R(fc) =
R(sgn(πM (fz,λ)))−R(fc).

Before we demonstrate our main results by stating learning rates for the spe-
cial case of K ∈ C∞(X × X), we introduce the following noise condition on the
distribution P.

Definition 2.6. Let 0 ≤ τ ≤ ∞, we say that the probability measure P satisfies a
Tsybakov noise condition with exponent τ if there exists a constant Cτ such that

PX

(
{x ∈ X : |2η(x)− 1| ≤ Cτ t}

)
≤ tτ . ∀ t > 0. (2.13)

Note that (2.13) always holds for τ = 0 with Cτ = 1. If |2η(x) − 1| is almost
everywhere bounded, then τ = ∞.

Theorem 2.1. Let V be the LUMs loss with 0 ≤ p < ∞ and 1/2 < q < ∞. Let
Assumption 1 and Assumption 2 be satisfied with r = 1 and ι > 0. Assume that
K ∈ C∞(X ×X), the marginal distribution sequence {P (t)

X }t=1,2,··· satisfies (2.2),
the sample sequence {zi}mi=1 satisfies the exponentially β-mixing condition (2.4) with
ϑ > 0, β0 > 0, β1 > 0. For any ζ > 0 and 0 < δ < 1, let

0 < η <
(2q − 1)ζ

2(1 + 2q)
,

m ≥ max


 1

β1
log

mζ
(
2 log 2

η + 1
)
β0

δ


1

(1−ζ)ϑ

, 8
1
ζ

 .
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By taking λ = m−α with α = (2q−1)ζ
2(1+2q) and M = mβ with β = ζ

1+2q , with confidence
1− δ,

(i) for 0 < p < ∞, we have

R(sgn (πM (fz,λ)))−R(fc)

≤C ′
(
log

2

η

)2

log

8
(
2 log 2

η + 1
)

δ

m−( (2q−1)ζ
2(1+2q)

−η); (2.14)

(ii) for p = 0, if additionally the probability measure satisfies (2.13) with 0 ≤ τ ≤
∞, we have

R(sgn (πM (fz,λ)))−R(fc)

≤C ′′
(
log

2

η

)2

log

8
(
2 log 2

η + 1
)

δ

m−( (2q−1)ζ
2(1+2q)

−η) τ+1
τ+2 , (2.15)

where the constants C ′ and C ′′ are independent of δ, m, η.

In fact (2.9) holds with r = 1 when fV
P ∈ HK . The learning rate in (2.14) can be

O(mϵ− 1
2 ) for arbitrarily small ϵ > 0 by choosing ζ = 1− 2ϵ when q is large enough

and η is small enough. So the learning rate can be very close to 1
2 . If we take τ = ∞

leading to τ+1
τ+2 = 1, we can achieve the same learning rates for p = 0.

In [8], the LUMs with i.i.d. was investigated. Suppose that Assumption 1 and
Assumption 2 are satisfied with r = 1 and ι > 0 and K ∈ C∞(X×X), the learning
rates for 0 < p < ∞ are m−( q

2(1+q)
−η) which is sharper than the one in (2.14). It is

reasonable because non-i.i.d. setting is much weaker than i.i.d. setting.

Theorem 2.2. Let V be the LUMs loss with 0 ≤ p < ∞ and 1/2 < q < ∞. Let
Assumption 1 and Assumption 2 be satisfied with 0 < r ≤ 1 and ι > 0. Assume that
the marginal distribution sequence {P (t)

X }t=1,2,··· satisfies (2.2), the sample sequence
{zi}mi=1 satisfies the algebraically β-mixing condition (2.3) with ϑ > 0, β0 > 0, and
the kernel K satisfies (2.10) with s > 0. For 0 < δ < 1 and 0 < ζ < ϑ

1+ϑ , take
λ = m−α with 0 < α < 4(2q−1)ζ

3(2+ι)(1+2q) and M = mβ with β = ζ
1+2q . Let

0 < η <
2(2q − 1)ζ − (1 + 2q)(2 + ι)α

(2 + ι)(1 + 2q)
(2.16)

and m ≥ max

{(
(2 log 2

η+1)β0

δ

) 1
ϑ−ζ(ϑ+1)

, 8
1
ζ

}
.

(i) For 0 < p < ∞, with confidence 1− δ, we have

R(sgn (πM (fz,λ)))−R(fc) ≤ C ′
(
log

2

η

)2

log

8
(
2 log 2

η + 1
)

δ

m−ξ.

(2.17)
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(ii) For p = 0, if additionally the probability measure satisfies (2.13) with 0 ≤ τ ≤
∞, with confidence 1− δ, we have

R(sgn (πM (fz,λ)))−R(fc) ≤ C ′′
(
log

2

η

)2

log

8
(
2 log 2

η + 1
)

δ

(m−ξ
) τ+1

τ+2 ,

(2.18)

where

ξ =min

{
αr,

qζ

1 + 2q
,
α(r − 1) + ζ

2
,

(2q − 1)ζ

(2 + ι)(1 + 2q)
− α(1− r)

2
,
(2q − 1)(6 + ι)ζ

4(2 + ι)(1 + 2q)

− α

2
,

(2q − 1)ζ

(2 + ι)(1 + 2q)
− α(3− r)− ζ

4
,

2(2q − 1)ζ

(2 + ι)(1 + 2q)
− α− η

}
. (2.19)

Here the constant C ′ and C ′′ are independent of δ, m, η.

Theorem 2.3. Under the assumptions of Theorem 2.2, if the sample sequence
{zi}mi=1 satisfies the exponentially β-mixing condition (2.4) with ϑ > 0, β0 > 0, β1 >
0, for some 0 < δ < 1, 0 < ζ < 1 and

m ≥ max


 1

β1
log

mζ
(
2 log 2

η + 1
)
β0

δ


1

(1−ζ)ϑ

, 8
1
ζ

 ,

with confidence 1− δ, the bounds (2.17) and (2.18) are still valid.

3. Error analysis
This section is devoted to the error analysis. Recall the comparison theorem asso-
ciated with LUMs loss funtion investigated in [2] as follows, which plays a key role
in our analysis.

Lemma 3.1. (i) Let V be the LUMs loss with 0 < p < ∞ and 0 < q ≤ ∞. For
any probability measure P, any measurable function f : X → R, and some constant
Cp > 0, it holds

R(sgn(f))−R(fc) ≤ Cp

(
EV (f)− EV (fV

P )
)
. (3.1)

(ii) Let V be the LUMs loss with p = 0. Under the assumption (2.13) with 0 ≤ τ ≤
∞, the following comparison theorem holds true with some constant Cq,τ > 0,

R(sgn(f))−R(fc) ≤ Cq,τ

(
EV (f)− EV (fV

P )
) τ+1

τ+2

. (3.2)

The above lemma implies that estimating the excess misclassification error R(sgn(f))−
R(fc) for the classifier sgn(f) can be done by bounding the excess generalization
error EV (f)− EV (fV

P ).
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3.1. Error decomposition
Denote the error caused by the non-identically distributed sampling as

EV
m(f) =

1

m

m∑
i=1

∫
Z

V (yf(x))dP (i). (3.3)

Let
EV
z (f) =

1

m

m∑
i=1

V (yif(xi))

be the empirical error of f.
The following error decomposition is helpful to bound the excess generalization

error EV (πM (fz,λ))− EV (fV
P ) caused by the estimator fz,λ.

Lemma 3.2. Let fz,λ ∈ HK be defined by (1.3), fλ ∈ HK defined by (2.7) and
M > 0. Then

EV (πM (fz,λ))− EV (fV
P ) + λ∥fz,λ∥2HK

≤ P(m,λ) + S(z, λ) +D(λ) + V (M), (3.4)

where the drift error denoted by P(m,λ) can be expressed as

P(m,λ) =
{
EV (πM (fz,λ))− EV

m(πM (fz,λ))
}
+
{
EV
m(fλ)− EV (fλ)

}
,

the sample error denoted by S(z, λ) can be expressed as

S(z, λ) =
{[
EV
z (fλ)− EV

z (πM (fV
P ))
]
−
[
EV
m(fλ)− EV

m(πM (fV
P ))
]}

+
{[
EV
m(πM (fz,λ))− EV

m(πM (fV
P ))
]
−
[
EV
z (πM (fz,λ))− EV

z (πM (fV
P ))
]}

:= S1 + S2,

the regularization error D(λ) is defined by (2.8).

Proof. Since the sample is non-identically distributed and the marginal distribu-
tion

{
P

(t)
X

}
t=1,2,...

for each sample point is different, then the excess generalization
error can be written as

EV (πM (fz,λ))− EV (fV
P ) + λ

∥∥fz,λ∥∥2HK

≤
{
EV (πM (fz,λ))− EV

m(πM (fz,λ))
}
+
{
EV
m(πM (fz,λ))− EV

z (πM (fz,λ))
}

+
{
EV
z (πM (fz,λ)) + λ∥fz,λ∥2HK

−
(
EV
z (fλ) + λ∥fλ∥2HK

)}
+
{
EV
z (fλ)− EV

m(fλ)
}
+
{
EV
m(fλ)− EV (fλ)

}
+
{
EV (fλ)− EV (fV

P ) + λ∥fλ∥2HK

}
.

Since V is a decreasing function on R, the projection operator induces that for
t ≤ M, V (πM (t)) ≤ V (t), while for t > M, V (πM (t)) > V (t). Hence for any t ∈ R,
V (πM (t))− V (t) ≤ V (M). This fact together with the definition of fz,λ yields that{

EV
z (πM (fz,λ)) + λ∥fz,λ∥2HK

−
(
EV
z (fλ) + λ∥fλ∥2HK

)}
≤
{
EV
z (fz,λ) + λ∥fz,λ∥2HK

+ V (M)−
(
EV
z (fλ) + λ∥fλ∥2HK

)}
≤ V (M).
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Finally, the lemma is proved by adding and subtracting EV
z (πM (fV

P )) and EV
m(πM (fV

P ))

to the first and third term of the inequality.
The appearance of V (M) comes from the fact that the LUMs loss function is

strictly decreasing and positive. The drift error P(m,λ) is caused by the non-
identically distributed sampling. The above error decomposition is different from
the standard one in [4, 21, 29, 30] for i.i.d. sample and convex loss functions with
zero.

3.2. Bounds on drift error
In order to estimate the drift error we present the following lemma.

Lemma 3.3. It follows from (2.8) with 0 < r ≤ 1 that

∥fλ∥HK
≤
√

D(λ)

λ
≤
√

Crλ
r−1
2 . (3.5)

This lemma comes immediately from the fact

λ ∥fλ∥2HK
≤ EV (fλ)− EV (fV

P ) + λ∥fλ∥2HK
= D(λ).

Lemma 3.4. Let Assumptions 1 be satisfied. Assume that the kernel K satisfy
(2.10) with s > 0. Then we have

∥V (f)∥C(X) ≤ 1 + ∥f∥C(X), (3.6)
∥V (πM (fz,λ))∥Cs(X) ≤ κs∥fz,λ∥HK

+ 1 +M,

∥V (fλ)∥Cs(X) ≤ 1 + (κ+ κs)
√

Crλ
r−1
2 .

Proof. The first inequality (3.6) can be obtained directly from the definition of
LUM loss function.

Since V (t) is a Lipschitz continuous function and |V ′(t)| ≤ 1, we find that

|V (f(x))− V (f(x′))| ≤ |f(x)− f(x′)|.

Then

|V (f)|Cs(X) = sup
x ̸=x′

|V (f(x))− V (f(x′))|
|x− x′|s

≤ sup
x ̸=x′

|f(x)− f(x′)|
|x− x′|s

= |f |Cs(X). (3.7)

For any x ∈ X, f ∈ HK , recalling the reproducing property of HK , we know that

|f(x)− f(x′)| = |⟨f,Kx −Kx′⟩K | ≤ ∥f∥HK

√
|K(x, x)− 2K(x, x′) +K(x′, x′)|.

Under the kernel condition (2.10), we obtain

|f |Cs(X) = sup
x̸=x′∈X

| f(x)− f(x′) |
| x− x′ |s

≤ κs∥f∥HK
. (3.8)

Firstly, we bound ∥V (πM (fz,λ))∥C(X). Since |π(f)(x) − π(f)(x′)| ≤ |f(x) −
f(x′)|, then

|π(f)|Cs(X) ≤ |f |Cs(X) ≤ κs∥f∥HK
.
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Based on (3.7) and (3.8), we can derive

|V (πM (fz,λ))|Cs(X) ≤ |πM (fz,λ)|Cs(X) ≤ |fz,λ|Cs(X) ≤ κs ∥fz,λ∥HK
.

In addition,
∥V (πM (fz,λ))∥C(X) ≤ V (−M) = 1 +M.

Consequently, we have

∥V (πM (fz,λ))∥Cs(X) ≤ κs ∥fz,λ∥HK
+ 1 +M.

In the rest of the proof, we focus on estimating ∥V (fλ)∥Cs(X). Combining (1.2),
(2.9) and (3.5), we have

∥fλ∥C(X) ⩽ κ ∥fλ∥HK
≤ κ

√
Crλ

r−1
2 .

The above inequality in connection with (3.6) yields

∥V (fλ)∥C(X) ≤ 1 + ∥fλ∥C(X) ≤ 1 + κ
√
Crλ

r−1
2 .

Applying (3.7) and (3.8) again, we get that

|V (fλ)|Cs(X) ≤ |fλ|Cs(X) ≤ κs ∥fλ∥HK
≤ κs

√
Crλ

r−1
2 .

Therefore, we obtain that

∥V (fλ)∥Cs(X) ≤ 1 + κ
√
Crλ

r−1
2 + κs

√
Crλ

r−1
2 .

Lemma 3.4 will be used in the following proposition to estimate the drift error.
Recalling the definition of the regression function fP (x) = 2η(x)− 1, η(x) = P (y =
1|x).

Proposition 3.1. Let (2.2) and the assumptions in Lemma 3.4 be satisfied. Then
we have ∣∣∣EV

m(fλ)− EV (fλ)
∣∣∣ ≤ C1ω

1− ω

(
λ

r−1
2 + 1

)
m−1,∣∣∣EV (πM (fz,λ))− EV

m(πM (fz,λ))
∣∣∣ ≤ C2ω

1− ω

(
∥fz,λ∥HK

+M
)
m−1,

(3.9)

where the constants C1, C2 are given by

C1 = Cmax
{(

4κ+ 2κs + κ|fP |Cs(X)

)√
Cr, 4 + |fP |Cs(X)

}
,

C2 = Cmax
{
2κs, 8 + 2|fP |Cs(X)

}
.

Proof. Let

Γi =

∫
Z

V (yfλ(x))d(P
(i) − P ) =

∫
X

∫
Y

V (yfλ(x))dP (y|x)d(P (i)
X − PX).

Notice that η(x) = (1 + fP (x)) /2 and 1− η(x) = (1− fP (x)) /2. It follows by (2.2)
that

|Γi| =

∣∣∣∣∣
∫
X

{
1 + fP (x)

2
V (fλ) +

1− fP (x)

2
V (−fλ)

}
d(P

(i)
X − PX)

∣∣∣∣∣
≤ 1

2
Cωi

{
∥(1 + fP )V (fλ)∥Cs(X) + ∥(1− fP )V (−fλ)∥Cs(X)

}
.



2120 A. Benabid, S. Dan & D. Xiang

For any f, g ∈ Cs(X), it holds

∥fg∥Cs(X) ≤ ∥f∥C(X)∥g∥Cs(X) + ∥f∥Cs(X)∥g∥C(X).

Since ∥1 + fP ∥C(X) ≤ 2 and ∥1 + fP ∥Cs(X) ≤ 2 + |fP |Cs(X), we have

∥(1 + fP )V (fλ)∥Cs(X) ≤ 2∥V (fλ)∥Cs(X) + (2 + |fP |Cs(X))∥V (fλ)∥C(X)

and

∥(1− fP )V (−fλ)∥Cs(X) ≤ 2∥V (−fλ)∥Cs(X) + (2 + |fP |Cs(X))∥V (−fλ)∥C(X).

By Lemma 3.4, we obtain

|Γi| ≤
1

2
Cωi

{
4 ∥V (fλ)∥Cs(X) +

(
4 + 2|fP |Cs(X)

)
∥V (fλ)∥C(X)

}
≤ Cωi

{
2
(
1 + (κ+ κs)

√
Crλ

r−1
2

)
+
(
2 + |fP |Cs(X)

) (
1 + ∥fλ∥C(X)

)}
≤ Cωi

{
2
(
1 + (κ+ κs)

√
Crλ

r−1
2

)
+
(
2 + |fP |Cs(X)

) (
1 + κ

√
Crλ

r−1
2

)}
≤ Cωi

{(
4κ+ 2κs + κ|fP |Cs(X)

)√
Crλ

r−1
2 +

(
4 + |fP |Cs(X)

)}
.

Therefore, it follows that

∣∣∣EV
m(fλ)− EV (fλ)

∣∣∣ = ∣∣∣∣∣ 1m
m∑
i=1

Γi

∣∣∣∣∣
≤ Cω

1− ω

1

m

{(
4κ+ 2κs + κ|fP |Cs(X)

)√
Crλ

r−1
2 +

(
4 + |fP |Cs(X)

)}
≤ C1ω

1− ω

(
λ

r−1
2 + 1

)
m−1,

where C1 = Cmax
{(

4κ+ 2κs + κ|fP |Cs(X)

)√
Cr, 4 + |fP |Cs(X)

}
.

Similarly, we have∣∣∣EV (πM (fz,λ))− EV
m(πM (fz,λ))

∣∣∣
≤ Cω

1− ω

1

m

{
2κs ∥fz,λ∥HK

+ 2(1 +M) +
(
2 + |fP |Cs(X)

)
(1 +M)

}
≤ Cω

1− ω

1

m

{
2κs ∥fz,λ∥HK

+
(
8 + 2|fP |Cs(X)

)
M
}

≤ C2ω

1− ω

(
∥fz,λ∥HK

+M
)
m−1,

where C2 = Cmax
{
2κs, 8 + 2|fP |Cs(X)

}
.

Applying Proposition 3.1, it is easy to esimate the drift error P(m,λ) as follows

P(m,λ) =
{
EV (πM (fz,λ))− EV

m(πM (fz,λ))
}
+
{
EV
m(fλ)− EV (fλ)

}
≤ C1ω

1− ω

(
λ

r−1
2 + 1

)
m−1 +

C2ω

1− ω

(
∥fz,λ∥HK

+M
)
m−1.
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3.3. Bounds on sample error
We are now in a position to estimate the sample error S1 and S2. [32] introduced
the blocking technique to deal with the original weakly dependent sequence. The
basic idea is to construct an independent block (IB) sequence, which transforms the
analysis of the dependent sample sequences into the analysis of independent block
sequences.

Let (z1, z2, . . . , zm) be an absolutely regular sequence. Given any integer pair
(am, µm) with µm = [m/2am], the sequence is divided into 2µm blocks of length
am and a remainder block of length m− 2amµm. For 1 ≤ k ≤ 2µm, let Qam

k be the
marginal distribution of block (z(k−1)am+1, z(k−1)am+2, . . . , zkam) and (z′1, . . . , z

′
2µmam

)

a random sequence with the product distribution
∏2µm

k=1 Q
am

k . Using the independent
block technique, we define the following sequence

Z1 = (z1, . . . , zam
, z2am+1, . . . , z3am

, . . . , z2(µm−1)am+1, . . . , z(2µm−1)am
),

Z2 = (zam+1, . . . , z2am
, z3am+1, . . . , z4am

, . . . , z(2µm−1)am+1, . . . , z2µmam
).

Correspondingly, we can define

Z ′
1 = (z ′1, . . . , z

′
am

, z ′2am+1, . . . , z
′
3am

, . . . , z ′2(µm−1)am+1, . . . , z
′
(2µm−1)am

),

Z ′
2 = (z ′am+1, . . . , z

′
2am

, z ′3am+1, . . . , z
′
4am

, . . . , z ′(2µm−1)am+1, . . . , z
′
2µmam

).

The following lemma from [32] plays a key role to connect the original mixing
sequences to the independent block sequences.

Lemma 3.5. Assume that Zµmam be a β-mixing sequence. For any bounded mea-
surable function h on Zµmam , we have

|Eh(Zi)− Eh(Z ′
i)| ≤ ∥h∥∞(µm − 1)β(am), ∀ i = 1, 2. (3.10)

According to Lemma 3.5, we can transfer the problem of analyzing the weakly
dependent sequences to analyzing the independent block sequences.

The following lemma is a corollary of Lemma 3.5, which plays an important role
in our sample error estimation. Although the proof of Lemma 3.6 is similar to the
one in [13], we still provide the proof here to make the paper self-contained.

Lemma 3.6. Let G be a class of measurable functions on Z such that for each
g ∈ G , ∥g −

∫
Z
gdP (i)∥∞ ≤ G, then

Prob

(
sup
g∈G

∣∣∣∣∣ 1m
m∑
i=1

(
g(zi)−

∫
Z

g(z)dP (i)
)∣∣∣∣∣ > ϵ+

G

µm

)
≤
∏
1

+
∏
2

+2µmβ(am),

(3.11)
where

∏
1

= Prob

sup
g∈G

∣∣∣∣ 1

µm

µm∑
j=1

2µm

m

(2j−1)am∑
i=2(j−1)am+1

(
g(z′i)−

∫
Z

g(z)dP (i)

) ∣∣∣∣ ≥ ϵ

 ,

∏
2

= Prob

sup
g∈G

∣∣∣∣∣∣ 1

µm

µm∑
j=1

2µm

m

2jam∑
i=(2j−1)am+1

(
g(z′i)−

∫
Z

g(z)dP (i)

)∣∣∣∣∣∣ ≥ ϵ

 .
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Proof. Since

I := sup
g∈G

∣∣∣∣ 1m
m∑
i=1

(
g(zi)−

∫
Z

g(z)dP (i)
)∣∣∣∣ ≤ I1 + I2 + I3,

where

I1 = sup
g∈G

∣∣∣∣∣ 1

µm

µm∑
j=1

µm

m

(2j−1)am∑
i=2(j−1)am+1

(
g(zi)−

∫
Z

g(z)dP (i)

)∣∣∣∣∣,
I2 = sup

g∈G

∣∣∣∣∣ 1

µm

µm∑
j=1

µm

m

2jam∑
i=(2j−1)am+1

(
g(zi)−

∫
Z

g(z)dP (i)

)∣∣∣∣∣,
I3 = sup

g∈G

∣∣∣∣∣ 1m
m∑

i=2amµm+1

(
g(zi)−

∫
Z

g(z)dP (i)

) ∣∣∣∣∣,
and

∥I3∥∞ ≤ 1

m

m∑
i=2amµm+1

∥∥∥∥g − ∫
Z

g(z)dP (i)

∥∥∥∥
∞

<
G

µm
.

Applying Lemma 3.5 with h = χ{2Ii>ϵ}, i = 1, 2, it yields that for all ϵ > 0,

Prob
(
Ii >

ϵ

2

)
= Eχ{Ii(zi)> ϵ

2}

≤ Eχ{2Ii(z′
i)>ϵ} +

∥∥χ{2Ii>ϵ}
∥∥
∞ (µm − 1)β(am)

≤ Eχ{2Ii(z′
i)>ϵ} + µmβ(am).

Since I1 + I2 + I3 ≥ I > ϵ+ G
µm

, then I1 + I2 + I3 − G
µm

≥ I − G
µm

> ϵ, which leads
to I1 + I2 > ϵ. Therefore, we have

Prob
(
I > ϵ+

G

µm

)
≤ Prob (I1 + I2 > ϵ) ≤ Prob (2I1 > ϵ) + Prob (2I2 > ϵ)

≤ Eχ{2I1(z′
i)>ϵ} + Eχ{2I2(z′

i)>ϵ} + 2(µm − 1)β(am)

≤
∏
1

+
∏
2

+2µmβ(am).

Obviously, to bound supg∈G

∣∣∣ 1m ∑m
i=1

(
g(zi) −

∫
Z
g(z)dP (i)

)∣∣∣, we just need to
estimate

∏
1 and

∏
2 respectively. Notice that (z′1, . . . , z

′
2bmam

) is an independent
block sequence, so we can use the standard techniques for the independent case.

In order to bound the sample error, we need the following one-side Hoeffding
inequality.

Lemma 3.7. Let ξ be a random variable on a probability space Z with E(ξ) = µ,
and satisfying |ξ − µ| ≤ B for almost all z ∈ Z. Then for all ϵ > 0,

Prob
z∈Zm

{
1

m

m∑
i=1

ξ(zi)− µ ≥ ϵ

}
≤ exp

(
−mϵ2

2B2

)
.



Large margin unified machines with non-i.i.d. process 2123

If G is a singular function set, we use the above one-side Hoeffding inequality
to get the following result.

Lemma 3.8. Let g be a measurable function on Z satisfying ∥g(z)−
∫
Z
g(z)dP (i)∥∞ ≤

G. For any δ > 0, the following inequality is established with confidence 1− δ

1

m

m∑
i=1

(
g(zi)−

∫
Z

g(z)dP (i)
)
≤ 2

√
2G

√
µm

√
log

(
2

δ − 2µmβ(am)

)
+

G

µm
. (3.12)

Proof. For k ∈ N, define ξk = 2µm

m

∑kam

i=(k−1)am+1

(
g(z′i)−

∫
Z
g(z)dP (i)

)
. Then

E(ξk) = 0 and

|ξk| ≤
2µm

m

kam∑
i=(k−1)am+1

∣∣∣∣g(z′i)− ∫
Z

g(z)dP (i)

∣∣∣∣
≤ 2µm

m

kam∑
i=(k−1)am+1

∥∥∥∥g(z)− ∫
Z

gdP (i)

∥∥∥∥
∞

≤ 2µm

m
Gam ≤ G.

Applying the one-side Hoeffding inequality, for any ϵ > 0, we have

∏
1

= Prob

 1

µm

µm∑
j=1

ξ2j−1 >
ϵ

2

 ≤ exp

(
−µmϵ2

8G2

)
, (3.13)

∏
2

= Prob

 1

µm

µm∑
j=1

ξ2j >
ϵ

2

 ≤ exp

(
−µmϵ2

8G2

)
.

According to (3.11), we get

Prob
(

1

m

m∑
i=1

(
g(zi)−

∫
Z

g(z)dP (i)

)
> ϵ+

G

µm

)
≤ 2 exp

(
−µmϵ2

8G2

)
+ 2µmβ(am).

For ϵ > 0, solving the following equation

exp

(
−µmϵ2

8G2

)
=

δ

2
− µmβ(am),

it follows

ϵ =
2
√
2G

√
µm

√
log

(
2

δ − 2µmβ(am)

)
.

Therefore, the desired result is proved.
Now we apply Lemma 3.8 to estimate the sample error

S1 =
{
EV
z (fλ)− EV

z

(
πM (fV

P )
)}

−
{
EV
m(fλ)− EV

m

(
πM (fV

P )
)}

.

Proposition 3.2. Let M > 0 and Assumption 1 be satisfied with 0 < r ≤ 1. If
the sample sequence {zi}mi=1 is a β-mixing sequence, then for any λ > 0 and any
0 < δ < 1, with confidence 1− δ/2, we have{

EV
z (fλ)− EV

z

(
πM (fV

P )
)}

−
{
EV
m(fλ)− EV

m

(
πM (fV

P )
)}

≤(2
√
2 + 1)κ

√
Cr

λ
r−1
2

√
µm

t+ 3(2
√
2 + 1)

M
√
µm

t,
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where t = log
(

4
δ−4µmβ(am)

)
.

Proof. Let g(z) = V (yfλ(x)) − V
(
yπM (fV

P )(x)
)

for z = (x, y) ∈ Z. Then the
quantity S1 can be expressed as 1

m

∑m
i=1

(
g(zi)−

∫
Z
g(z)dP (i)

)
. Since −V (−M) ≤

g(z) ≤ V (−∥fλ∥∞), then it yields∥∥∥∥g − ∫
Z

g(z)dP (i)

∥∥∥∥
∞

≤ V (−∥fλ∥∞) + V (−M).

The definition of V and (3.5) imply that V (−M) = 1 +M and V (−∥fλ∥C(X)) ≤
1 + κ

√
Crλ

r−1
2 .

Replacing δ and G in Lemma 3.8 by δ/2 and 2 +M + κ
√
Crλ

r−1
2 respectively,

the conclusion of this proposition is proved.
The sample error S2=EV

m(πM (fz,λ))−EV
m(πM (fV

P ))−
(
EV
z (πM (fz,λ))−EV

z (πM (fV
P ))

)
involves the function fz,λ, which is not a singe function because it changes with the
sample z. Hence the analysis to bound S2 is more difficult. Here we overcome the
difficulty by a covering number argument over the ball BR = {f ∈ HK :

∥∥f∥∥HK
≤

R} where fz,λ belongs.

Proposition 3.3. Let M > 0 and Assumption 2 be satisfied with ι > 0. If the sample
sequence {zi}mi=1 is a β-mixing sequence, then for any λ > 0 and any 0 < δ < 1,
with confidence 1− δ/2, we have{

EV
m(πM (fz,λ))− EV

m(πM (fV
P ))
}
−
{
EV
z (πM (fz,λ))− EV

z (πM (fV
P ))
}

≤ 36M
√
µm

t+ 32
√
Cι

(
M

√
µm

) 2
2+ι

R
ι

2+ι ,

where t = log
(

4
δ−4µmβ(am)

)
.

Proof. Let FR =
{
V (yπM (f)(x))− V (yπM (fV

P )(x)) : f ∈ BR

}
. The quantity S2

can be expressed as S2 = 1
m

∑m
i=1

(∫
Z
g(z)dP (i) − g(zi)

)
for g ∈ FR. Let

∏
1

= Prob

 sup
g∈FR

1

µm

µm∑
j=1

µm

m

(2j−1)am∑
i=2(j−1)am+1

(∫
Z

g(z)dP (i) − g(z′i)

) ≥ ϵ

2

 .

To shorten the notation in this proof, we define

∆(g) =
1

µm

µm∑
j=1

µm

m

(2j−1)am∑
i=2(j−1)am+1

(
g(z′i)−

∫
Z

g(z)dP (i)

)
.

Obviously, −V (−M) ≤ g(z) ≤ V (−M) . Then
∥∥g(z)− ∫

Z
g(z)dP (i)

∥∥
∞ ≤ 2V (−M).

Let ℓ = N (FR,
ϵ
4 ) and consider a set of functions {gk}ℓk=1 ⊂ FR such that the disks

B(k), k = 1, 2, · · · , ℓ centered at gk and with radius ϵ
4 cover FR. For all g ∈ B(k),

|∆(g)−∆(gk)| ≤
1

µm

µm∑
j=1

µm

m

(2j−1)am∑
i=2(j−1)am+1

∣∣∣∣g(z′i)− gk(z
′
i)−

∫
Z

(
g(z)− gk(z)

)
dP (i)

∣∣∣∣
≤ 1

µm

µm∑
j=1

µm

m

(2j−1)am∑
i=2(j−1)am+1

2 ∥g − gk∥C(X) ≤ ∥g − gk∥C(X) ≤
ϵ

4
.
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It yields that
sup

g∈B(k)

∆(g) ≤ − ϵ

2
⇒ ∆(gk) ≤ − ϵ

4
.

Therefore, for any ϵ > 0, the above fact together with (3.13) implies that

∏
1

=Prob
{

sup
g∈FR

−∆(g) ≥ ϵ

2

}
= Prob

{
sup

g∈FR

∆(g) ≤ − ϵ

2

}

≤
ℓ∑

k=1

Prob

{
sup

g∈B(k)

∆(g) ≤ − ϵ

2

}
≤ ℓ Prob

{
∆(gk) ≤ − ϵ

4

}
≤N (FR,

ϵ

4
) exp

{
− µmϵ2

128V 2(−M)

}
.

In the same way, we can conclude that

∏
2

= Prob

 sup
g∈FR

1

µm

µm∑
j=1

µm

m

2jam∑
i=(2j−1)am+1

(∫
Z

g(z)dP (i) − g(z′i)

)
≥ ϵ

2


≤ N (FR,

ϵ

4
) exp

{
− µmϵ2

128V 2(−M)

}
.

In addition, for any g1 , g2 ∈ FR, we observe that∣∣g1 − g2
∣∣ ≤ ∥f1 − f2∥C(X) , f1, f2 ∈ BR.

Hence
N (FR,

ϵ

4
) ≤ N (BR,

ϵ

4
) ≤ N (B1,

ϵ

4R
).

(2.11) yields that

logN (B1,
ϵ

4R
) ≤ Cι

(
4R

ϵ

)ι

.

Applying Lemma 3.6, we have

Prob
{

sup
g∈FR

1

m

m∑
i=1

(∫
Z

g(z)dP (i) − g(zi)

)
> ϵ+

2V (−M)

µm

}

≤2N (B1,
ϵ

4R
) exp

(
− µmϵ2

128V 2(−M)

)
+ 2µmβ(am).

Let ϵ∗(µm, R,M, δ/2) be the positive root of the following equation:

Cι

(
4R

ϵ

)ι

− µmϵ2

128 V 2(−M)
= log

(
δ − 4µmβ(am)

4

)
,

which can be rewritten as

ϵ2+ι − 128V 2(−M)

µm
log

(
4

δ − 4µmβ(am)

)
ϵι − 22ι+7CιV

2(−M)

µm
Rι = 0.
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Applying Lemme 7.2 in [6], ε∗(µm, R,M, δ/2) can be bounded as

ϵ∗(µm, R,M, δ/2)

≤max

{
16V (−M)

√
µm

√
log

(
4

δ − 4µmβ(am)

)
, 16

√
Cι

(
V 2(−M)

µm

) 1
2+ι

R
ι

2+ι

}

≤16V (−M)
√
µm

log

(
4

δ − 4µmβ(am)

)
+ 16

√
Cι

(
V 2(−M)

µm

) 1
2+ι

R
ι

2+ι .

Substituting V (−M) = 1 + M into the above formula, the conclusion is proved.

3.4. Fast learning rates by iteration
In this section we conduct the iterative algorithm to improve the bound of ||fz,λ||HK

.
Let

WR = {z ∈ Zm : ∥fz,λ∥HK
≤ R}, ∀ R > 0.

The following decay property of the LUMs loss function is required in our error
analysis, which is proved in [8].

Lemma 3.9. Let V be the LUM loss functions with 0 ≤ p < ∞ and 0 < q < ∞.
For t ≥ p

1+p , it holds
V (t) ≤ Cp,qt

−q (3.14)

where Cp,q = (1/(1 + p))q+1(max{p, q})q.

To shorten the notation, define ∆z := EV (πM (fz,λ)) − EV (fV
P ) + λ∥fz,λ∥2HK

.
Applying Lemma 3.3, 3.9, Proposition 3.1, 3.2 and 3.3, the total error can be
derived.

Proposition 3.4. Let V be the LUMs loss with 0 ≤ p < ∞ and 0 < q < ∞. Let
Assumption 1 and Assumption 2 be satisfied with 0 < r ≤ 1 and ι > 0. Assume that
the marginal distribution sequence {P (t)

X }t=1,2,... satisfies (2.2), the sample sequence
{zi}mi=1 is a β-mixing sequence, and the kernel K satisfies (2.10) with s > 0. Let
R ≥ 1, M ≥ 1, 0 < λ ≤ 1. For 0 < δ < 1, there exists a subset VR of Zm with
measure at most δ such that

EV (πM (fz,λ))− EV (fV
P ) + λ∥fz,λ∥2HK

≤Crλ
r + Cp,qM

−q +
2C1ω

1− ω

λ
r−1
2

m
+

C2ω

1− ω

M

m
+ 4κ

√
Cr

λ
r−1
2

√
µm

t

+ 48
M

√
µm

t+
C2ω

1− ω

R

m
+ 32

√
Cι

(
M

√
µm

) 2
2+ι

R
ι

2+ι , ∀ z ∈ WR \ VR,

(3.15)

where t = log
(

4
δ−4µmβ(am)

)
.

Proof. From Proposition 3.1, for any z ∈ Zm, we get

P(m,λ) ≤ 2C1ω

1− ω

λ
r−1
2

m
+

C2ω

1− ω

R

m
+

C2ω

1− ω

M

m
.
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Proposition 3.2 ensures the existence of V1 of Zm with measure at most δ/2 such
that

S1 ≤ (2
√
2 + 1)κ

√
Cr

λ
r−1
2

√
µm

t+ 3(2
√
2 + 1)

M
√
µm

t, ∀ z ∈ WR \ V1.

Proposition 3.3 tells us that there exists a subset V2 of Zm with measure at most
δ/2 such that

S2 ≤ 36M
√
µm

t+ 32
√
Cι

(
M

√
µm

) 2
2+ι

R
ι

2+ι , ∀ z ∈ WR \ V2.

Let VR = V1 ∪ V2. The above estimations in connection with Lemma 3.2, 3.9
and Assumption 1 yield that

∆z ≤Crλ
r + Cp,qM

−q +
2C1ω

1− ω

λ
r−1
2

m
+

C2ω

1− ω

M

m
+ 4κ

√
Cr

λ
r−1
2

√
µm

t

+ 48
M

√
µm

t+
C2ω

1− ω

R

m
+ 32

√
Cι

(
M

√
µm

) 2
2+ι

R
ι

2+ι , ∀ z ∈ WR \ VR.

The desired result is proved.
Recalling the definition (1.3) of fz,λ, it is easy to get that by taking f = 0

∥fz,λ∥HK
≤ λ− 1

2 , ∀ z ∈ Zm. (3.16)

We observe that the bound in (3.5) is much better than the one in (3.16).
This motivates us to get a similar tight bound for fz,λ. We will apply Proposition
3.4 iteratively to achieve this target which in turn improves learning rates. This
iteration technique has been used in [22,26].

Lemma 3.10. Suppose that all assumptions in Proposition 3.4 are satisfied. Take
λ = m−α with 0 < α ≤ 1 and M = mβ with 0 < β ≤ ∞. Let 0 < ζ < 1, 0 < η < 1

and m ≥ 8
1
ζ . For any 0 < δ < 1, with confidence 1− 2 log 2

η δ, there holds

∥fz,λ∥HK
≤ R(J) ≤ C5

(
log

2

η

)2
√

log

(
4

δ − 4µmβ(am)

)
mθη , (3.17)

where

θη=max

{
α(1− r)

2
,
α−β q

2
,
α(3−r)−ζ

4
,
α+β−ζ/2

2
,
α(2+ι)+2β− vζ

2+ι
+η

}
≥0

and

C5 =

(
2C2ω

1− ω
+ 64(2Cι)

1
2

)(
1 +

√
Cr +

√
Cp,q + 2

√
C2ω

1− ω
+ 13 + 4

√
κ
√

Cr

)
.

Proof. Take am satisfying m1−ζ ≤ am ≤ m1−ζ + 1, 0 < ζ < 1. Since m ≥ 8
1
ζ , it

follows by µm = [ m
2am

] that

1

µm
≤ 1

m
2am

− 1
≤ 2(m1−ζ + 1)

m− 2(m1−ζ + 1)
≤ 8m−ζ .
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Thus 1√
µm

≤ 2
√
2m−ζ/2. Let λ = m−α, M = mβ and t > 1, we obtain from (3.4)

that for all z ∈ WR \ VR,

∆z ≤Crm
−αr+Cp,qm

−βq+
2C1ω

1−ω
m−α(r−1)+2

2 +8κ
√
2Crm

−α(r−1)+ζ
2 +

C2ω

1−ω
m−(1−β)

+ 96
√
2m−( ζ

2−β)t+
C2ω

1− ω
m−1R+ 64

√
2Cιm

− ζ−2β
2+ι R

ι
2+ι

≤Crm
−αr + Cp,qm

−βq +

(
2C1ω

1− ω
+ 8κ

√
2Cr

)
m−α(r−1)+ζ

2

+

(
C2ω

1− ω
+ 96

√
2

)
m−( ζ

2−β)t+

(
C2ω

1− ω
+ 64

√
2Cι

)
m− ζ−2β

2+ι R. (3.18)

Therefore, we have

∥fz,λ∥HK
≤
√

∆z

λ
≤ cmR

1
2 + dm, (3.19)

where

cm = C3m
α
2 + 2β−ζ

2(2+ι) , dm = C4

√
tmθ,

θ = max

{
α(1− r)

2
,
α− β q

2
,
α(3− r)− ζ

4
,
α+ β − ζ/2

2

}
≥ 0,

C3 = (C2ω/(1− ω))
1/2

+ 8(2Cι)
1/4,

C4 =

(√
Cr +

√
Cp,q + 2

√
C2ω

1− ω
+ 13 + 4

√
κ
√

Cr

)
.

It follows that
WR ⊆ W

(
cmR

1
2 + dm

)
∪ VR. (3.20)

Let us apply (3.20) iteratively to a sequence {R(j)}Jj=0 defined by R(0) = λ−1/2 =

mα/2 and R(j) = cm
(
R(j−1)

) 1
2 +dm, where j ≥ 2. Then WR(j−1) ⊆ WR(j) ∪VR(j−1) .

(3.16) implies that WR(0) = Zm. Hence we have

Zm = WR(0) ⊆ WR(1) ∪ VR(0) ⊆ · · · ⊆ WR(J) ∪
(
∪J−1
j=0 VR(j)

)
.

Due to the measure of VR(j) is at most δ, we get that the measure of ∪J−1
j=0 VR(j) is

at most Jδ. Hence, WR(J) has measure at least 1− Jδ.
Denote ∆ = 1

2 . It follows from the definition of the sequence {R(j)}Jj=1 that

R(J) ≤ c1+∆+∆2+ ···+∆J−1

m

(
R(0)

)∆J

+

J−1∑
j=1

c1+∆+∆2+ ···+∆j−1

m d∆
j

m + dm. (3.21)

Now we need to bound the two terms on the right-hand side of (3.21).
The first term equals

C
1−∆J

1−∆

3 m
α(2+ι)+2β−ζ

2(2+ι)
1−∆J

1−∆ m
α∆J

2

which can be bounded by

C2
3 m

α(2+ι)+2β−ζ
2(2+s)(1−∆) m(α

2 −α(2+ι)+2β−ζ
2(2+ι)(1−∆) )∆

J

≤ C2
3 m

α(2+ι)+2β−ζ
2+ι m

ζ
2+ι 2−J

.
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Take J to be the smallest integer such that J ≥ log(1/η)/ log 2. The above inequality
can be bounded by

C2
3 m

α(2+ι)+2β−ζ
2+ι +η.

The second term of (3.21) can be bounded by

J−1∑
j=1

C2
3 m

α(2+ι)+2β−ζ
2(2+ι)

1−∆j

1−∆

(
C4

√
t
)∆j

mθ∆j

+ C4

√
tmθ,

≤C2
3 C4

√
tm

α(2+ι)+2β−ζ
2+ι

J−1∑
j=0

m(θ−α(2+ι)+2β−ζ
2+ι )2−j

.

When θ ≤ α(2+ι)+2β−ζ
2+ι , the above expression can be bounded by

C2
3 C4

√
t J m

α(2+ι)+2β−ζ
2+ι .

When θ ≥ α(2+ι)+2β−ζ
2+ι , the bound is

C2
3 C4

√
t J mθ.

According to the above discussion, we finally obtain that

R(J) ≤ C2
3

(
1 + C4

√
t J
)
mθη ,

where θη = max
{
θ, α(2+ι)+2β−ζ

2+ι + η
}
. Hence with confidence 1− Jδ, there holds

∥fz,λ∥HK
≤ C2

3 (1 + C4)
√
t Jmθη .

Finally, the desired result follows by taking J to satisfy J ≤ 2 log 2
η .

4. Proofs of main results
In this section, we will prove our main results. We first provide the proof for the
general case.
Proof of Theorem 2.2. We take am to satisfy m1−ζ ≤ am ≤ m1−ζ + 1 with 0 <

ζ < 1 and µm = [ m
2am

]. Let R = C5J
√
tmθη , t =

√
log
(

4
δ−4µmβ(am)

)
, λ = m−α and

M = mβ . Combining Lemma 3.10 and Proposition (3.4), it holds with confidence
1−

(
2 log 2

η + 1
)
δ that

EV (πM (fz,λ))− EV (fV
P )

≤Crm
−αr+Cp,qm

−βq+

(
2C1ω

1−ω
+8κ

√
2Cr

)
m−α(r−1)+ζ

2 +

(
C2ω

1−ω
+96

√
2

)
m−( ζ

2−β)t

+

(
C2ω

1− ω
+ 64

√
2Cι

)
C5

(
log

2

η

)2 √
tm− ζ−2β

2+ι +θη

≤C6

(
log

2

η

)2

tm−ξ,
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where

ξ = min

{
αr, βq,

α(r − 1) + ζ

2
,
ζ − 2β

2
,
ζ − 2β

2 + ι
− θη

}
, θη <

ζ − 2β

2 + ι

and

C6 = Cr + Cp,q +
2C1ω

1− ω
+ 8κ

√
2Cr +

C2ω

1− ω
+ 96

√
2 +

(
C2ω

1− ω
+ 64

√
2Cι

)
C5.

Setting β = ζ
1+2q , then θη < (2q−1)ζ

(2+ι)(1+2q) . If 0 < α < 4(2q−1)ζ
3(2+ι)(1+2q) with q > 1/2,

we get that α(r−1)
2 < (2q−1)ζ

(2+ι)(1+2q) ,
α−βq

2 < α+β−ζ/2
2 < (2q−1)ζ

(2+ι)(1+2q) and α(3−r)−ζ
4 <

(2q−1)ζ
(2+ι)(1+2q) . Additionally, η satisfies (2.16), it follows that α(2+ι)+2β−ζ

2+ι +η< (2q−1)ζ
(2+ι)(1+2q) .

Therefore, the above discussion ensures θη < ζ−2β
2+ι .

Since β(k) ≤ β0k
−ϑ with ϑ > 0 and β0 > 0, we choose m such that δ −

4
(
2 log 2

η + 1
)
µmβ(am) ≤ δ

2 and replace δ by δ
2 log 2

η+1
. Applying Lemma 3.1, the

proof of Theorem 2.2 is complete. □
Proof of Theorem 2.3. The proof is similar to the one for Theorem 2.2. Here we
just need to notice that the sample sequence {zi}mi=1 is an exponentially β-mixing
sequence for k ≥ 1, i.e. β(k) ≤ β0 exp(−β1k

ϑ) with β0 > 0, β1 > 0, ϑ > 0. Hence
under this assumption, we choose m such that δ−4

(
2 log 2

η + 1
)
µmβ(am) ≤ δ

2 .

Now we are in a position to show Theorem 2.1 with the constants C
′
= C6Cp,

C
′′
= C6Cq,τ .

Proof of Theorem 2.1. It was proved in [34] that (2.11) holds for any ι > 0 if
K ∈ C∞(X ×X). With 0 < η < (2q−1)ζ

2(1+2q) , q > 1/2, let us choose ι to be a positive
number satisfying the following four inequalities:

(2q − 1)ζ

2(1 + 2q)
<

(2q − 1)ζ

(2 + ι)(1 + 2q)
<

4(2q − 1)ζ

3(2 + ι)(1 + 2q)
,

1

3
<

2(2q − 1)ζ − 1
2 (2 + ι)(2q − 1)ζ

(2 + ι)(1 + 2q)
,

(2q − 1)ζ

2(1 + 2q)
− η <

2(2q − 1)ζ

(2 + ι)(1 + 2q)
− (2q − 1)ζ

2(1 + 2q)
− 1

3
,

(2q − 1)ζ

2(1 + 2q)
− η <

2(2q − 1)ζ

(2 + ι)(1 + 2q)
.

The first inequality above tells us that the restriction on α is satisfied by choosing
α = (2q−1)ζ

2(1+2q) . The second inequality shows that condition (2.16) for the parameter η
renamed now as η∗ is also satisfied by taking η∗ = 1/3. Thus we apply Lemma 3.1
and Theorem 2.3 by taking r = 1 and α = (2q−1)ζ

2(1+2q) , the proof is complete.
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