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NONEXISTENCE OF STABLE SOLUTIONS OF
THE WEIGHTED LANE-EMDEN SYSTEM
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Abstract The aim of this paper is to study the stability of the positive
solutions of the weighted Lane-Emden system. By applying the structure of
the m-biharmonic weighted equation, we prove the nonexistence of positive
stable solutions for the case 0 <p<1<p ! <6.
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1. Introduction
The famous Lane-Emden equation
~Au=uP, zecRN (1.1)

has played the important role in the development of nonlinear analysis in last
decades.

It is well known that, the stable solutions of the corresponding Lane-Emden
equation and system, or the biharmonic equation (see [13]), which have been widely
studied by many experts. For the corresponding second order equation

—Au = |ufP"tu, in RV, (1.2)

Farina [8] obtained the optimal Liouville type result for solutions stable at infinity.
Indeed, he proved that a smooth nontrival solution to (1.2) exists, if 1 < p < pyL
and N > 2. Here py, stands for Joseph-Lundgren exponent (see [12]). However,
Farina’s technique may fail to do completely classify the stable solutions and finite
Morse index solutions of the biharmonic equation(p > 1)

A%y = |uP"lu  in RV, (1.3)

To solve this problem, Dévila, Dupaigne, Wang and Wei [5] give a complete
classification of stable and finite Morse index solutions (whether positive or sign
changing), in the full exponent range. They derive a monotone formula for solutions
of equation (1.3) by using Pohozaev identity and simplify the problem to the non-
existence of stable homogeneous solutions.

TThe corresponding author. Email: DantingYe@zjnu.edu.cn(D. Ye)

1College of Information Engineering, Jinhua Polytechnic, Jinhua, Zhejiang,
321000, China

2Colloge of Mathematics and computer Science, Zhejiang Normal University,
Jinhua, Zhejiang, 321000, China


http://www.jaac-online.com
http://dx.doi.org/10.11948/20210069

2134 H. Chen, B. Tao & D. Ye

Equation(1.1) and (1.3) are special cases of the Lane-Emden system

—Au =", in RV, L4
—Av=1? inRV. 4

With p, 6 > 0 among which, the problem of existence and nonexistence (known as
the Liouville theorem) of stable solutions has attracted wide attention [10,11], but
has not yet fully answered.
The famous Lane-Emden conjecture says that the system(1.4) admit no positive
classical solutions in subcritical case
1 1 N -2

. 1.
P+l 0417 N (1.5)

Moreover, we can check readily that if pf > 1,

2p+1)(6 + 1)

(1) N<2+a+p8= P

2(p+1) B = 2(6+1)
pf—1 > - pb-—1 "

In [19] this system admits no radial solutions in dimensions N < 2. Souplet [21]
proved the Lane-Emden conjecture in dimension N = 3. Cowan [2] proved the non-
existence, up to translations, of the stability (radial or not) if p,6 > 2 and N < 10.
Moreover Chen, Dupaigne and Ghergu [4] showed the stability of radial solutions
when p,0 > 1. They proved that if p,6 > 1, then a radial solution is unstable if
and only if N <10, or N > 11 and

where oo =

2

(V=2 (= B)* < pPaB(N —2—a)(N — 2 — B).

4

Recently, Hu [15] drived Liouville type theorem for the weighted Lane-Emden
system

—Au = |z|[fv, in RY,
—Av = |z]|*uP, in RV,

by using Pohozaev identity to construct a monotonicity formula and revealing their
certain equivalence relation.
In general weighted Lane-Emden equations

—Au=pvP,u >0, in RV,
(1.7)
—Av = pue,v >0, in RY,

for p = (14 |z|?)% with p,6 > 1 in (1.7) was considered, Liouville type theorems for
the classical positive stable solutions in higher space dimension was established by
the authors [3,7]. In 2017, Hajlaoui, Harrabi and Mtiri [14] improved the previous
works [9,16] and mainly obtained a new comparison property which is key to deal
with the case 1 < 6 < %.
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As a generalization, the weighted elliptic system with the advection term is
generally of the form

—wAu — Vw - Vu = wvP, in RY, (18)
—wAV — Vw- Vv =wyu?, in RY,

has also been studied recently, see [17] and the references there in for example.
For w = (1 + [2[2)%,w; = (1 +|z?)% and wy = (1 + |x|2)g with o, 3,0 > 0 and
N >3, p>0>1, Hu [17] proved the non-existence of the stable solution.

For the weighted Lane-Emden system, the Liouville type results are less under-
stood for 0 < p < 1.

In this paper we are going to study the stbale solutions of the weighted Lane-
Emden system:

—Au=1v",u>0, in RY,
(1.9)

—Av = pug,v >0, in RV,

where 0 < p < 1 and p : RY — R is a radial continuous function satisfying
the following assumption: (%) There exists @ > 0 and A > 0 such that p(x) >
Apo(z) in RN, where po(z) = (1 + |z]?)%.

The main results of this paper are stated as

Theorem 1.1. If 0 < p < 1 < p~! < 0 satisfies (1.5), then (1.9) has no stable
solution.

2. Proof of the main result

In this section we will prove the stable solution of the weighted

—Au = pvP,u >0, in RV,
—Av=pu?,v>0, inRY,
we will use the equivalence between m—biharmonic weighted equation and the sys-

tem to prove the stable solution for such system.
To introduce the notion of stability, we consider a general system given by

— Au = f(z,v), —Av=g(z,u)in 2, a bounded regular domain in RY, (2.1)

where f,g € C'(£2 x R). Following Montenegro [19], a smooth solution (u,v) of
(2.1) is said to be stable in {2 if the following eigenvalue problem

_Angv(xvv)<+77§7 _AC:gu(xau)£+n<a in {2

has a nonnegative eigenvalue 7, with a positive smooth eigenfunctions pair(¢, ¢).
Let (u,v) be a solution of system (1.9) with § > p~! > 1 > p > 0. Our approach

is based on the formal equivalence noticed in [1,6,22], between the weighted Lane-

Emden system (1.9) and a fourth order problem, called the m-biharmonic weighted



2136 H. Chen, B. Tao & D. Ye

1
equation. More precisely, let m = 54— 1>2 asv=(—Au)""! > 0 in RV,
(—Au)™"t = (—Au)™"2(—=Au) > 0, recall

—Au=v">0, wu>0,inRY,

—Av:pu‘g>07 v >0, in RV,
So 0 < (—Au)™=2 = |Au|™2, we derive that u satisfies
A2 u = A(|Au/™2Au) = pu’  in RV,
So we are led to consider §# > m — 1> 1, and
A2 u = A(|Au|™ 2 Au) = plul®~tu. (2.2)

We say that u € Wf’én (RN) N LEFHRY) is a weak solutions of (2.2) in RV, if

o
for any regular bounded domain {2, u is a critical point of the followig functional

I(v) = %/ﬂ |Av|™dx — 9% /Qp|v\9+1dx, Yo € W2™(0Q) N LITH(0).
Naturally, a weak solution to (2.2) is said stable in mathbbR"Y | if
Ay(h) :== (m — 1)/ |Av|™ 2| AR)?dx — 9/ plul’~th? >0, Yhe C3(2). (2.3)
Q Q

Next, we will use the relationship between the stability for the m—biharmonic
weighted equation and the stability for the system (1.9) to handle the case 0 < p < 1.
In fact, a direct calculation yields that if pf > 1 (or equivalently § > m — 1),

2m(0 + 1) o< N(m —1)+2m

(1'6)@N<76—(m—1) N —om

(2.4)

It means that the range of pairs (p,6) satisfying (1.5) and pf > 1 corresponds
exactly to the subcritical case of the m—biharmonic weighted equarion (2.2).
1
Lemma 2.1. Let (u,v) be a solution of system (1.9) with 6 > — :=m —1 >
b

1. Suppose that (u,v) is stable in a regular bounded domain Q2 , then u is a stable
solution of equation (2.2) .

Proof. By the definition of stability, there exist smooth positive functions &, ¢
and 7 > 0 such that

“AE=pP g, —AC=0pu’ ¢ in 02

Using (,¢) as super-solution, (ming¢, ming() as sub-solution, and the stan-
dard monotone iterations, we can claim that there exist positive smooth functions
©, x verifying

—Ap = poPly, —Ax =0pu’ "ty in 0.

Therefore, we have

Ap) in (2.
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1

Let v € C2(£2). Multiplying the above equation by 42¢~! and integrating by parts,

there holds
1
/9pu9‘172d:c=/vzw_lA(*vl_”Aw)
0 ? p
1 I(Lvl—PA
- [ vere e A + | e G TR g
? p a9 on
1 1 2=t
:f/ vl_pAgoA('ngo_l)dx—/ fvl_pAchry 14 )dS(x)
PJao on P on

A(Lvl-PA
+/ 72¢*1ud5(z)
o0 8n

VI PAQA(YV oY) de

"RNRP,-®I R,

+
\r—\\

VTP APV (279 Vy — 2o 2V p)da

S5

1
i — 40P Ay 2V - Vydr + » /Q 201 P A VY| 2dx

1
/2v1_pAap'ycp_1A'ydx+f/ 2ul_pAg0'yz<p_3\ch|2dm
pPJo PJo

—1/ VTP APy o2 Apde. (2.5)
PJo

Using Cauchy-Schwarz’s inequality and the fact that —Ay > 0, we get

4 2
| - */ v Py P APV - Vryda| < —*/ v P AQ| VAo da
9 .
- */ VTP APy VP da
bJo
Combining (2.5) and (2.6), one obtains, using again the Cauchy-Schwarz’s inequal-
ity,

7
< f/ Ul_pAap(Acp)zgo_szdx—&—l/ v TP(Ay)2de
[0 pJa

—1/ v TP AQ(Ap) o d
P Jo

= 1/ v P (Ay) de
pPJo

Recall that p = — and (— Au)% = v, we obtain the desired result (2.3). O

According to "the above lemma, we know that system (1.9) is equivalent to the
equation (2.2). Therefore, to prove them 1.1 in the case p € (0,1) and pf > 1, we
need only to prove

1
/G/JU" < /vl*”AwAwfldx—f/ v TP (D) de
0 P

Lemma 2.2. Let § > m —1 > 1, if u is a weak stable solution to the equa-
tion (2.2) in RN with N verifying (2.4), then u = 0.
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To lemma 2.2, we use first the stability condition (2.3) to get the following crucial
lemma which provides an important integral estimate for, u and Au.

Lemma 2.3. Let u € W2 (2) N LY (82) be a weak stable solution of (2.2) in 12,

loc loc

with @ > m — 1> 1. Then, for any integer
k> max (m, "0 +D Y
20+1—m)

there exists a positive constant C' = C(N, e, m, k)such that for any ¢ € C?(02) sat-
isfying 0 < ¢ < 1,

/ Al et / p|u|9+1c4kdx<0{ / AL+ [V 4 V2™ =5 der |
N N (94

(2.7)
Proof. For any € € (0,1) and, n € C?({2), there holds
[ 12 A Pz
Q
:/ |Au|™ 2 (uAn + 2VuVn + nAu)?dx (2.8)
Q

<49 [ urata T [ A2 Al + 190
2 Q
Take n = (%, ¢ € C%(02),0 < ¢ < 1,k > m > 2. Apply Young’s inequality, we get
PR NG R
2
<Ci [ uPlaul™ 2(1Ad? + (966 da

62/ |Au|mg4kdw+05’k,m/ |u\m(|AC|2 + |VC|4)C4k_2mdx.

2 o)

and

/ A2 Vu2|V(CP) P =4k / |Au|m4|w|2|v<|2<4’“*2dx
(9]

<@ [ ¢tan Sk [ vt
Inserting the two above estimates into (2.8), we arrive at

/ A2 A (u¢?*) Pdi <(14C.) /
(9] (9]

+Coton [ 10" 1ACE +[9C)F (¥ da. (29)
7
We need also the following technical lemma [18].

Lemma 2.4. Let k > % > 1 and € > 0, there exists Cnem,k > 0 such that for
any u € W2 (02) werifying (2.3), ¢ € C2°(2) with 0 < ¢ < 1, there holds

m mdk—m Aul™ 4k
JRLCEL SRSy VS
P Q P

(2.10)
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m 2m 2 -lm\ 4k—2m
o LT
2

Proof. A direct calculation gives

/ [Vu|™|V¢|m ¢t /VU'VUIVUI"LQIVCI’”C‘““”
dr = dx
Q P ? P
m dk—m
:7/ div(Vu\Vu|m*2)ude
p o (2.12)
ve|m 4k—m
—/u|Vu|m_2Vu-V(7| cIe )dx
2 P
::Il+12.
The integral I; can be estimated as
m—4 my72 4k—m
L= (m— 2)/ u|Vu™*| V" VEu(Vu, Vu) i
n P
/ UAU|VU|m_2‘VC|mC4k_md / uvu|vu|m—2|vc‘mc4k—md
— T — T
n P Q P
2 m—2 m rdk—m m—2 m 4k—m
O £ sy g )
Q P 0 P
m—1 m 4k—m
+/ Pl Vul ™[ Vem e (2.13)
n P
Applying Young’s inequality, there holds, for any € > 0,
/ |ul| Au||Vu[ 2|V
p dzx
2
m A R m dk—m m m 4k—m
<Cm/ [ul % |Au| 3 [VE|™¢ d“e/ [Vulm V¢t
Q p Q p
m 2m ~4k—2m m 4k m m4k—m
SO [ ey Sy U N
Q P n P ? P
(2.14)
On the other hand,
/ |ul|V2u|[Vu[ 2|V ¢|m 22 gthmm
dx
Q P
m 2, | 2 m ~4k—m m m 4k—m
gCm/ [u % |V2u| % 9]¢ dHE/ [Vul" vt
Q P 0 4
m 2m ~4k—2m 2, |m 4k m m 4dk—m
<O [ MTITELTCE [T [ DTG,
Q P ? P ? P
(2.15)

Now we shall estimate the integral

2., |m 4k
/ [VZu" ™
n P
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Remark that there exists Cy N, m > 0 such that
/ |V2p|™dx < CON,m/ |Ap|™dx, Yo € WE™RN). (2.16)
RN RN

/ VW™ L o) [ 1o,
n n P

P
Aul™ 4k m m 4k—m
Q P Q

p
m 2m 2 ~1m\ 4k—2m
ro [ UV TG
Q p
So
m 4k m m 4k—m
I1<C/ 7|Au| < da:+C/ [Vu[™[VE™e dx
¢ vrlL) \V4 2m v29m 4k’—2ni) v m—lv mdk—m (218)
o WMV TGt [T,
2 p )
Iy = —m (2.19)
[

Using lemma 2.4 with €™ and (2.9), we see that
/ | Al 2| A(u¢*) Pdz <O e m. / Jul ™ (|AC]™ + V[P + V2 ™)¢H 2" da
Q Q
+(1+ Cm,k,e)/ |Au|™ ¢ da. (2.20)
Q

Thanks to the approximation argument, the stability property (2.3) holds true with
u(?*. We deduce then, for any € > 0, there exists Cn ¢ ., > 0 such that

9/ plu|®T ¢ de — (m —1)(1 + Cm,k;75)/ | Au|™ ¢4
! v (2.21)
<Oxem [ ™ IACI" + [VCP™ + [V )¢ da,

2

Moreover, multiplying the equation (2.2) by u¢** and integrating by parts, there
holds

/\Au\m(4kd$—/p(x)ua+1g4k

i0) [0}

< [ Julldu A de + C [ 1wVl V() da.
i0) 2

Using Young’s inequality and applying again lemma 2.4, we can deduce that for
any € > 0, there exists Cn ¢ m,r > 0 such that

(1—Cm7k,6)/ |Au|mC4kdx—/ p|u|9+1C4kdx
Q Q

<ChNoekm / ™A™ + [TCPm 4 V2™ e, (2.22)
(94
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(m—1)(14 2Cp k)

Taking € > 0 but small enough, multiplying (2.22) by —C
— Um,ke

, adding
it with (2.21), we get

—1)(1 +2C, e
(m— 1)Cm,k,€/Q|Au|mC4kdx+ [9_ (m 1)7(0—:”” ok, )] /Q,O|U|G+1C4kdx

<CN,eJ«,m/Q u ™ (|AC|™ + V™ + [V ¢ da.
As 8 >m —1> 1, using € > 0 small enough, we have

/Q|Au\mg4kda:+ /ﬂ p\uwﬂc“dm% [l (AC™ + o] VP4 V2™ 2
(2.23)

0+1
m so that 4km < (4k — 2m)(0 + 1), applying Holder inequality,

we conclude then

/|Au|mc4kd$+/ p|u|9+1(4kdx
0 9]

For k >

<OL (1AQI™ + [VEP™ + V20| =00 da] ST [ 16 5 )
7 7
m 2m 2 Mmoo f={m 1) 041 -4k 7\ g2g
<OL[ (1G4 [VEP™ + [V =0T da] S [ plul gt .
7 7
We get readily the estimate (2.7). O

Now we choose ¢ a cut-off function in C°(Bs) verifying 0 < ¢p < 1, and ¢g = 1
in By. Applying (2.7) with ¢ = ¢o(R~'z) for R > 0, there holds

2m(6+1)

/ plul’Ttdr < / plu|T ¢ de < CRN=tm-1 .
Br RN

Under the assumption (2.4), tending R — oo, we obtain w = 0, we prove then
lemma 2.2, hence the case p > 1 > p > 0 for theorem 1.1. O
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