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Abstract The aim of this paper is to study the stability of the positive
solutions of the weighted Lane-Emden system. By applying the structure of
the m-biharmonic weighted equation, we prove the nonexistence of positive
stable solutions for the case 0 < p < 1 < p−1 < θ.
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1. Introduction
The famous Lane-Emden equation

−∆u = up, x ∈ RN (1.1)

has played the important role in the development of nonlinear analysis in last
decades.

It is well known that, the stable solutions of the corresponding Lane-Emden
equation and system, or the biharmonic equation (see [13]), which have been widely
studied by many experts. For the corresponding second order equation

−∆u = |u|p−1u, in RN , (1.2)

Farina [8] obtained the optimal Liouville type result for solutions stable at infinity.
Indeed, he proved that a smooth nontrival solution to (1.2) exists, if 1 < p < pJL
and N ⩾ 2. Here pJL stands for Joseph-Lundgren exponent (see [12]). However,
Farina’s technique may fail to do completely classify the stable solutions and finite
Morse index solutions of the biharmonic equation(p > 1)

∆2u = |u|p−1u in RN . (1.3)

To solve this problem, Dávila, Dupaigne, Wang and Wei [5] give a complete
classification of stable and finite Morse index solutions (whether positive or sign
changing), in the full exponent range. They derive a monotone formula for solutions
of equation (1.3) by using Pohozaev identity and simplify the problem to the non-
existence of stable homogeneous solutions.
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Equation(1.1) and (1.3) are special cases of the Lane-Emden system−∆u = vp, in RN ,

−∆v = uθ, in RN .
(1.4)

With p, θ > 0 among which, the problem of existence and nonexistence (known as
the Liouville theorem) of stable solutions has attracted wide attention [10,11], but
has not yet fully answered.

The famous Lane-Emden conjecture says that the system(1.4) admit no positive
classical solutions in subcritical case

1

p+ 1
+

1

θ + 1
>

N − 2

N
. (1.5)

Moreover, we can check readily that if pθ > 1,

(1.5) ⇔ N < 2 + α+ β =
2(p+ 1)(θ + 1)

pθ − 1
(1.6)

where α = 2(p+1)
pθ−1 , β = 2(θ+1)

pθ−1 .

In [19] this system admits no radial solutions in dimensions N ≤ 2. Souplet [21]
proved the Lane-Emden conjecture in dimension N = 3. Cowan [2] proved the non-
existence, up to translations, of the stability (radial or not) if p, θ ⩾ 2 and N ⩽ 10.
Moreover Chen, Dupaigne and Ghergu [4] showed the stability of radial solutions
when p, θ ⩾ 1. They proved that if p, θ ⩾ 1, then a radial solution is unstable if
and only if N ⩽ 10, or N ⩾ 11 and[

(N − 2)2 − (α− β)2

4

]2
< pθαβ(N − 2− α)(N − 2− β).

Recently, Hu [15] drived Liouville type theorem for the weighted Lane-Emden
system −∆u = |x|βv, in RN ,

−∆v = |x|αup, in RN .

by using Pohozaev identity to construct a monotonicity formula and revealing their
certain equivalence relation.

In general weighted Lane-Emden equations−∆u = ρvp, u > 0, in RN ,

−∆v = ρuθ, v > 0, in RN ,
(1.7)

for ρ = (1+ |x|2)α
2 with p, θ > 1 in (1.7) was considered, Liouville type theorems for

the classical positive stable solutions in higher space dimension was established by
the authors [3, 7]. In 2017, Hajlaoui, Harrabi and Mtiri [14] improved the previous
works [9, 16] and mainly obtained a new comparison property which is key to deal
with the case 1 < θ ⩽ 4

3 .
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As a generalization, the weighted elliptic system with the advection term is
generally of the form −ω∆u−∇ω · ∇u = ω1v

p, in RN ,

−ω∆v −∇ω · ∇v = ω2u
θ, in RN ,

(1.8)

has also been studied recently, see [17] and the references there in for example.
For ω = (1 + |x|2) δ

2 , ω1 = (1 + |x|2)α
2 and ω2 = (1 + |x|2)

β
2 with α, β, δ > 0 and

N ⩾ 3, p ⩾ θ > 1, Hu [17] proved the non-existence of the stable solution.
For the weighted Lane-Emden system, the Liouville type results are less under-

stood for 0 < p < 1.
In this paper we are going to study the stbale solutions of the weighted Lane-

Emden system: −∆u = vp, u > 0, in RN ,

−∆v = ρuθ, v > 0, in RN ,
(1.9)

where 0 < p < 1 and ρ : RN → R is a radial continuous function satisfying
the following assumption: (∗) There exists α ⩾ 0 and A > 0 such that ρ(x) ⩾
Aρ0(x) in RN , where ρ0(x) = (1 + |x|2)α

2 .
The main results of this paper are stated as

Theorem 1.1. If 0 < p < 1 < p−1 < θ satisfies (1.5), then (1.9) has no stable
solution.

2. Proof of the main result
In this section we will prove the stable solution of the weighted−∆u = ρvp, u > 0, in RN ,

−∆v = ρuθ, v > 0, in RN ,

we will use the equivalence between m−biharmonic weighted equation and the sys-
tem to prove the stable solution for such system.

To introduce the notion of stability, we consider a general system given by

−∆u = f(x, v), −∆v = g(x, u) in Ω, a bounded regular domain in RN , (2.1)

where f, g ∈ C1(Ω × R). Following Montenegro [19], a smooth solution (u, v) of
(2.1) is said to be stable in Ω if the following eigenvalue problem

−∆ξ = fv(x, v)ζ + ηξ, −∆ζ = gu(x, u)ξ + ηζ, in Ω

has a nonnegative eigenvalue η, with a positive smooth eigenfunctions pair(ξ, ζ).
Let (u, v) be a solution of system (1.9) with θ > p−1 > 1 > p > 0. Our approach

is based on the formal equivalence noticed in [1,6,22], between the weighted Lane-
Emden system (1.9) and a fourth order problem, called the m-biharmonic weighted



2136 H. Chen, B. Tao & D. Ye

equation. More precisely, let m :=
1

p
+ 1 > 2, as v = (−∆u)m−1 > 0 in RN ,

(−∆u)m−1 = (−∆u)m−2(−∆u) > 0, recall−∆u = vp > 0, u > 0, in RN ,

−∆v = ρuθ > 0, v > 0, in RN .

So 0 < (−∆u)m−2 = |∆u|m−2, we derive that u satisfies

∆2
mu := ∆(|∆u|m−2∆u) = ρuθ in RN .

So we are led to consider θ > m− 1 > 1, and

∆2
mu := ∆(|∆u|m−2∆u) = ρ|u|θ−1u. (2.2)

We say that u ∈ W 2,m
loc (RN ) ∩ Lθ+1

loc (RN ) is a weak solutions of (2.2) in RN , if
for any regular bounded domain Ω, u is a critical point of the followig functional

I(v) =
1

m

∫
Ω

|∆v|mdx− 1

θ + 1

∫
Ω

ρ|v|θ+1dx, ∀v ∈ W 2,m(Ω) ∩ Lθ+1(Ω).

Naturally, a weak solution to (2.2) is said stable in mathbbRN , if

Λu(h) := (m− 1)

∫
Ω

|∆v|m−2|∆h|2dx− θ

∫
Ω

ρ|u|θ−1h2 ⩾ 0, ∀h ∈ C2
c (Ω). (2.3)

Next, we will use the relationship between the stability for the m−biharmonic
weighted equation and the stability for the system (1.9) to handle the case 0 < p < 1.
In fact, a direct calculation yields that if pθ > 1 (or equivalently θ > m− 1),

(1.6) ⇔ N <
2m(θ + 1)

θ − (m− 1)
⇔ θ <

N(m− 1) + 2m

N − 2m
. (2.4)

It means that the range of pairs (p, θ) satisfying (1.5) and pθ > 1 corresponds
exactly to the subcritical case of the m−biharmonic weighted equarion (2.2).

Lemma 2.1. Let (u, v) be a solution of system (1.9) with θ >
1

p
:= m − 1 >

1 . Suppose that (u, v) is stable in a regular bounded domain Ω , then u is a stable
solution of equation (2.2) .

Proof. By the definition of stability, there exist smooth positive functions ξ, ζ
and η ≥ 0 such that

−∆ξ = pvp−1ζ + ηξ, −∆ζ = θρuθ−1 + ηζ. in Ω

Using (ξ, ζ) as super-solution, (minΩ ξ, minΩ ζ) as sub-solution, and the stan-
dard monotone iterations, we can claim that there exist positive smooth functions
φ, χ verifying

−∆φ = pvp−1χ, −∆χ = θρuθ−1φ in Ω.

Therefore, we have

θρuθ−1φ = ∆(
v1−p

p
∆φ) in Ω.
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Let γ ∈ C2
c (Ω). Multiplying the above equation by γ2φ−1 and integrating by parts,

there holds∫
Ω

θρuθ−1γ2dx =

∫
Ω

γ2φ−1∆(
1

p
v1−p∆φ)

= −
∫
Ω

∇(γ2φ−1)∇(
1

p
v1−p∆φ) +

∫
∂Ω

γ2φ−1
∂( 1pv

1−p∆φ)

∂n
dS(x)

=
1

p

∫
Ω

v1−p∆φ∆(γ2φ−1)dx−
∫
∂Ω

1

p
v1−p∆φ

∂(γ2φ−1)

∂n
dS(x)

+

∫
∂Ω

γ2φ−1
∂( 1pv

1−p∆φ)

∂n
dS(x)

=
1

p

∫
Ω

v1−p∆φ∆(γ2φ−1)dx

=
1

p

∫
Ω

v1−p∆φ∇(2γφ−1∇γ − γ2φ−2∇φ)dx

=
1

p

∫
Ω

−4v1−p∆φγφ−2∇φ · ∇γdx+
1

p

∫
Ω

2v1−p∆φφ−1|∇γ|2dx

+
1

p

∫
Ω

2v1−p∆φγφ−1∆γdx+
1

p

∫
Ω

2v1−p∆φγ2φ−3|∇φ|2dx

− 1

p

∫
Ω

v1−p∆φγ2φ−2∆φdx. (2.5)

Using Cauchy-Schwarz’s inequality and the fact that −∆φ > 0, we get

| − 4

p

∫
Ω

v1−pγφ−2∆φ∇φ · ∇γdx| ≤ −2

p

∫
Ω

v1−p∆φ|∇γ|2φ−1dx

− 2

p

∫
Ω

v1−p∆φγ2|∇φ|2φ−3dx.

(2.6)

Combining (2.5) and (2.6), one obtains, using again the Cauchy-Schwarz’s inequal-
ity, ∫

Ω

θρuθ−1γ2 ≤ 2

p

∫
Ω

v1−p∆φγ∆γφ−1dx− 1

p

∫
Ω

v1−p(∆φ)2φ−2γ2dx

≤ 1

p

∫
Ω

v1−p∆φ(∆φ)2φ−2γ2dx+
1

p

∫
Ω

v1−p(∆γ)2dx

− 1

p

∫
Ω

v1−p∆φ(∆φ)2φ−2γ2dx

=
1

p

∫
Ω

v1−p(∆γ)2dx.

Recall that p = 1
m−1 and (−∆u)

1
p = v, we obtain the desired result (2.3).

According to the above lemma, we know that system (1.9) is equivalent to the
equation (2.2). Therefore, to prove them 1.1 in the case p ∈ (0, 1) and pθ > 1, we
need only to prove

Lemma 2.2. Let θ > m − 1 > 1, if u is a weak stable solution to the equa-
tion (2.2) in RN with N verifying (2.4), then u ≡ 0.
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To lemma 2.2, we use first the stability condition (2.3) to get the following crucial
lemma which provides an important integral estimate for, u and ∆u.

Lemma 2.3. Let u ∈ W 2,m
loc (Ω)∩Lθ+1

loc (Ω) be a weak stable solution of (2.2) in Ω,
with θ > m− 1 > 1. Then, for any integer

k ⩾ max

(
m,

m(θ + 1)

2(θ + 1−m)

)
,

there exists a positive constant C = C(N, ϵ,m, k)such that for any ζ ∈ C2
c (Ω) sat-

isfying 0 ⩽ ζ ⩽ 1,∫
Ω

|∆u|mζ4kdx+

∫
Ω

ρ|u|θ+1ζ4kdx ⩽ C

[∫
Ω

(|∆ζ|m+|∇ζ|2m+|∇2ζ|m)
θ+1

θ−(m−1) dx

]
.

(2.7)

Proof. For any ϵ ∈ (0, 1) and, η ∈ C2(Ω), there holds∫
Ω

|∆u|m−2[∆(uη)]2dx

=

∫
Ω

|∆u|m−2(u∆η + 2∇u∇η + η∆u)2dx

⩽(1 + ϵ)

∫
Ω

|∆u|mη2dx+
C

ϵ

∫
Ω

|∆u|m−2(u2|∆η|2 + |∇u|2|∇η|2)dx.

(2.8)

Take η = ζ2k, ζ ∈ C2
c (Ω), 0 ⩽ ζ ⩽ 1, k ⩾ m > 2. Apply Young’s inequality, we get∫

Ω

|u|2|∆u|m−2|∆(ζ2k)|2dx

⩽Ck

∫
Ω

|u|2|∆u|m−2(|∆ζ|2 + |∇ζ|4)ζ4k−4dx

⩽ϵ2
∫
Ω

|∆u|mζ4kdx+ Cϵ,k,m

∫
Ω

|u|m(|∆ζ|2 + |∇ζ|4)ζ4k−2mdx.

and∫
Ω

|∆u|m−2|∇u|2|∇(ζ2k)|2dx =4k2
∫
Ω

|∆u|m−2|∇u|2|∇ζ|2ζ4k−2dx

⩽ϵ2
∫
Ω

|∆u|mζ4kdx+
Cm,k

ϵm−2

∫
Ω

|∇u|m|∇ζ|mζ4k−mdx.

Inserting the two above estimates into (2.8), we arrive at∫
Ω

|∆u|m−2|∆(uζ2k)|2dx ⩽(1+Cϵ)

∫
Ω

|∆u|mζ4kdx+
Cm,k

ϵm−2

∫
Ω

|∇u|m|∇ζ|mζ4k−mdx

+ Cϵ,k,m

∫
Ω

|u|m(|∆ζ|2 + |∇ζ|4)m
2 ζ4k−2mdx. (2.9)

We need also the following technical lemma [18].

Lemma 2.4. Let k ⩾ m

2
> 1 and ϵ > 0, there exists CN,ϵ,m,k > 0 such that for

any u ∈ W 2,m
loc (Ω) verifying (2.3), ζ ∈ C∞

c (Ω) with 0 ⩽ ζ ⩽ 1, there holds∫
Ω

|∇u|m|∇ζ|mζ4k−m

ρ
dx ⩽ ϵ

∫
Ω

|∆u|mζ4k

ρ
dx (2.10)
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+ CN,ϵ,m,k

∫
Ω

|u|m(|∇ζ|2m+|∇2ζ|m)ζ4k−2m

ρ
dx. (2.11)

Proof. A direct calculation gives∫
Ω

|∇u|m|∇ζ|mζ4k−m

ρ
dx =

∫
Ω

∇u · ∇u|∇u|m−2|∇ζ|mζ4k−m

ρ
dx

=−
∫
Ω

div(∇u|∇u|m−2)u
|∇ζ|mζ4k−m

ρ
dx

−
∫
Ω

u|∇u|m−2∇u · ∇(
|∇ζ|mζ4k−m

ρ
)dx

:=I1 + I2.

(2.12)

The integral I1 can be estimated as

I1 =− (m− 2)

∫
Ω

u|∇u|m−4|∇ζ|m∇2u(∇u,∇u)ζ4k−m

ρ
dx

−
∫
Ω

u∆u|∇u|m−2|∇ζ|mζ4k−m

ρ
dx−

∫
Ω

u∇u|∇u|m−2|∇ζ|mζ4k−m

ρ
dx

⩽Cm

∫
Ω

|u||∇2u||∇u|m−2|∇ζ|mζ4k−m

ρ
dx+

∫
Ω

|u||∆u||∇u|m−2|∇ζ|mζ4k−m

ρ
dx

+

∫
Ω

|u||∇u|m−1|∇ζ|mζ4k−m

ρ
dx. (2.13)

Applying Young’s inequality, there holds, for any ϵ > 0,

∫
Ω

|u||∆u||∇u|m−2|∇ζ|mζ4k−m

ρ
dx

⩽Cϵ,m

∫
Ω

|u|m2 |∆u|m2 |∇ζ|mζ4k−m

ρ
dx+ ϵ

∫
Ω

|∇u|m|∇ζ|mζ4k−m

ρ
dx

⩽Cϵ,m

∫
Ω

|u|m|∇ζ|2mζ4k−2m

ρ
dx+ϵ

∫
Ω

|∆u|mζ4k

ρ
dx+ϵ

∫
Ω

|∇u|m|∇ζ|mζ4k−m

ρ
dx.

(2.14)

On the other hand,∫
Ω

|u||∇2u||∇u|m−2|∇ζ|m−2+2ζ4k−m

ρ
dx

⩽Cϵ,m

∫
Ω

|u|m2 |∇2u|m2 |∇ζ|mζ4k−m

ρ
dx+ ϵ

∫
Ω

|∇u|m|∇ζ|mζ4k−m

ρ
dx

⩽Cϵ,m

∫
Ω

v
|u|m|∇ζ|2mζ4k−2m

ρ
dx+ϵ

∫
Ω

|∇2u|mζ4k

ρ
dx+ϵ

∫
Ω

|∇u|m|∇ζ|mζ4k−m

ρ
dx.

(2.15)

Now we shall estimate the integral∫
Ω

|∇2u|mζ4k

ρ
dx.
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Remark that there exists C0N,m > 0 such that∫
RN

|∇2φ|mdx ⩽ C0N,m

∫
RN

|∆φ|mdx, ∀φ ∈ W 2,m(RN ). (2.16)∫
Ω

|∇2(uζ
4k
m )|m

ρ
dx ⩽ C0(N,m)

∫
Ω

|∆(uζ
4k
m )|m

ρ
dx

⩽ C

∫
Ω

|∆u|mζ4k

ρ
dx+ C

∫
Ω

|∇u|m|∇ζ|mζ4k−m

ρ
dx

+ C

∫
Ω

|u|m(|∇ζ|2m + |∇2ζ|m)ζ4k−2m

ρ
dx.

(2.17)

So

I1⩽C

∫
Ω

|∆u|mζ4k

ρ
dx+ C

∫
Ω

|∇u|m|∇ζ|mζ4k−m

ρ
dx

+C

∫
Ω

|u|m(|∇ζ|2m+|∇2ζ|m)ζ4k−2m

ρ
dx+

∫
Ω

|u||∇u|m−1|∇ζ|mζ4k−m

ρ
dx.

(2.18)

I2 = −m (2.19)

Using lemma 2.4 with ϵm and (2.9), we see that∫
Ω

|∆u|m−2||∆(uζ2k)|2dx ⩽CN,ϵ,m,k

∫
Ω

|u|m(|∆ζ|m+|∇ζ|2m+|∇2ζ|m)ζ4k−2mdx

+ (1 + Cm,k,ϵ)

∫
Ω

|∆u|mζ4kdx. (2.20)

Thanks to the approximation argument, the stability property (2.3) holds true with
uζ2k. We deduce then, for any ϵ > 0, there exists CN,ϵ,m,k > 0 such that

θ

∫
Ω

ρ|u|θ+1ζ4kdx− (m− 1)(1 + Cm,k,ϵ)

∫
Ω

|∆u|mζ4kdx

⩽CN,ϵ,m,k

∫
Ω

|u|m(|∆ζ|m + |∇ζ|2m + |∇2ζ|m)ζ4k−2mdx.

(2.21)

Moreover, multiplying the equation (2.2) by uζ4k and integrating by parts, there
holds ∫

Ω

|∆u|mζ4kdx−
∫
Ω

ρ(x)uθ+1ζ4k

⩽
∫
Ω

|u||∆u|m−1|∆(ζ4k)|dx+ C

∫
Ω

|∆u|m−1|∇u||∇(ζ)4k|dx.

Using Young’s inequality and applying again lemma 2.4, we can deduce that for
any ϵ > 0, there exists CN,ϵ,m,k > 0 such that

(1− Cm,k,ϵ)

∫
Ω

|∆u|mζ4kdx−
∫
Ω

ρ|u|θ+1ζ4kdx

⩽CN,ϵ,k,m

∫
Ω

|u|m(|∆ζ|m + |∇ζ|2m + |∇2ζ|m)ζ4k−2mdx. (2.22)
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Taking ϵ > 0 but small enough, multiplying (2.22) by (m− 1)(1 + 2Cm,k,ϵ)

1− Cm,k,ϵ
, adding

it with (2.21), we get

(m− 1)Cm,k,ϵ

∫
Ω

|∆u|mζ4kdx+
[
θ − (m− 1)(1 + 2Cm,k,ϵ)

1− Cm,k,ϵ

] ∫
Ω

ρ|u|θ+1ζ4kdx

⩽CN,ϵ,k,m

∫
Ω

|u|m(|∆ζ|m + |∇ζ|2m + |∇2ζ|m)ζ4k−2mdx.

As θ > m− 1 > 1, using ϵ > 0 small enough, we have∫
Ω

|∆u|mζ4kdx+

∫
Ω

ρ|u|θ+1ζ4kdx⩽C

∫
Ω

|u|m(|∆ζ|m+ v|∇ζ|2m+|∇2ζ|m)ζ4k−2mdx.

(2.23)

For k ⩾ m(θ + 1)

2(θ + 1−m)
so that 4km ⩽ (4k− 2m)(θ+1), applying Hölder inequality,

we conclude then∫
Ω

|∆u|mζ4kdx+

∫
Ω

ρ|u|θ+1ζ4kdx

⩽C[

∫
Ω

(|∆ζ|m + |∇ζ|2m + |∇2ζ|m)
θ+1

θ−(m−1) dx]
θ−(m−1)

θ+1 (

∫
Ω

ρ|u|θ+1ζ
(4k−2m)(θ+1)

m dx)
m

θ+1

⩽C[

∫
Ω

(|∆ζ|m + |∇ζ|2m + |∇2ζ|m)
θ+1

θ−(m−1) dx]
θ−(m−1)

θ+1 (

∫
Ω

ρ|u|θ+1ζ4kdx)
m

θ+1 .

We get readily the estimate (2.7).
Now we choose ϕ0 a cut-off function in C∞

c (B2) verifying 0 ⩽ ϕ0 ⩽ 1, and ϕ0 ≡ 1
in B1. Applying (2.7) with ζ = ϕ0(R

−1x) for R > 0, there holds∫
BR

ρ|u|θ+1dx ⩽
∫
RN

ρ|u|θ+1ζ4kdx ⩽ CRN− 2m(θ+1)
θ−(m−1) .

Under the assumption (2.4), tending R → ∞, we obtain u ≡ 0, we prove then
lemma 2.2, hence the case θp > 1 > p > 0 for theorem 1.1. □
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