
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 12, Number 6, December 2022, 2143–2162 DOI:10.11948/20210082

BIFURCATIONS OF DOUBLE
HETERODIMENSIONAL CYCLES WITH

THREE SADDLE POINTS

Huimiao Dong1, Tiansi Zhang1,† and Xingbo Liu2

Abstract In this paper, bifurcations of double heterodimensional cycles of
an “∞” shape consisting of two saddles of (1,2) type and one saddle of (2,1)
type are studied in three dimensional vector field. We discuss the gaps between
returning points in transverse sections by establishing a local active coordinate
system in the tubular neighborhood of unperturbed double heterodimensional
cycles, through which the preservation of “∞”-shape double heterodimensional
cycles is proved. We then get the existence of a new heteroclinic cycle con-
sisting of two saddles of (1,2) type and one saddle of (2,1) type, which is
composed of one big orbit linking p1, p3 and two orbits linking p3, p2 and p2,
p1 respectively, and another heterodimensional cycle consisting of one saddle
p1 of (2,1) type and one saddle p2 of (1,2) type, which is composed of one orbit
starting from p1 to p2 and another orbit starting from p2 to p1. Moreover, the
1-fold and 2-fold large 1-heteroclinic cycle consisting of two saddles p1 and p3
of (1,2) type is also presented. As well as the coexistence of a 1-fold large
1-heteroclinic cycle and the “∞”-shape double heterodimensional cycles and
the coexistence conditions are also given in the parameter space.

Keywords Double heterodimensional cycles, heteroclinic bifurcation, bifur-
cation theory, Poincaré map.

MSC(2010) 34C23 , 34C27, 34C29.

1. Introduction
Homoclinic and heteroclinic bifurcation is one of the dominant themes in nonlinear
dynamical system and has been extensively studied, see [9, 11, 12, 22, 31, 40, 46, 48].
Many effective methods for bifurcation study have been established like the singular
perturbation theory [45], the alternative method [37], the Melnikov method [4],
the invariant manifold theory [1], the variational method [33] and the blowing up
method [38], etc.

However, most of the works about bifurcation of heteroclinic cycles were con-
cerned with the equidimensional cycles. It is known that, in equidimensional het-
eroclinic cycles with many saddles, the unstable manifolds of all saddles have a
same dimension, the bifurcation results can be extended to the case of m-point
heteroclinic cycles for m ≥ 3 from the 3-point case, which has been confirmed by
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Jin and Zhu [15]. Whereas, the heterodimensional cycle with m saddle points for
m ≥ 3, leads to the distributing asymmetry of the codimensions of this cycle. In
[1973], Newhouse and Palis originally analyzed heteroclinic cycles with unequal di-
mension in discrete dynamical systems, which were called heterodimensional cycles,
and found that heterodimensional cycles were more general in practical problems
contrasted to equidimensional cycles. [8] demonstrated that a heterodimensional cy-
cle could be produced from a heteroclinic cycle connecting non-hyperbolic equilibria
when it underwent a transcritical bifurcation. [2] deduced that diffeomorphisms re-
vealing either a homoclinic tangency or a heterodimensional cycle were C1-dense in
the complement of the C1-closure of a hyperbolic system.

Since then, many scholars have turned to study heterodimensional cycles in
continuous systems (see [5, 7, 24, 36]). We know that the unequal dimension of the
unstable manifolds of singular orbits may lead to the distributing asymmetry of the
codimensions of the cycle, so there are more challenges in studying the bifurcation
of heterodimensional cycles than in the equidimensional cycles. Moreover, it is dif-
ficult to take the bifurcations of m points heterodimensional cycles with m > 3 as a
direct extension of the equidimensional case. Zhu et al. [28, 41] discussed heterodi-
mensional cycles bifurcations with two saddle points under orbit-flip and inclination
flip, respectively, and derived the conditions for the existence and uniqueness of dif-
ferent orbits types in a four-dimensional system. Liu et al. [23] studied the generic
2-2-1 heterodimensional cycles connecting to three saddles and showed some new
bifurcation behaviors different from the well-known equidimensional cycles. After
this, they continually considered the bifurcations of heterodimensional cycles con-
taining two saddles in three-dimensional vector fields in [26] and got that the per-
turbation system did not have any homoclinic orbits coexisting with the persistent
heterodimensional cycle and gave an example to show the existence of a heterodi-
mensional cycle. [2] and [25] then analyzed the generic and nongeneric bifurcations
of heterodimensional cycles with two saddles of four dimensional nonlinear systems,
respectively. Heterodimensional cycles can also be found in solitary wave problems
and biology systems, see [29] for example.

Notice that the heterodimensional cycles studied in [23] connected three saddles,
two of which had two-dimensional unstable manifolds and one of which had one-
dimensional unstable manifold. In fact, there are lots of unsolved problems of
bifurcation of heterodimensional cycles, especially in the case of the cycles with m
saddles for m > 2. To well carry out the research in the paper, we fix the number of
saddles m = 3 and suppose the heterodimensional cycles are in the shape of “∞”,
which is called a double heterodimensional cycle.

As to the “∞”-type cycles, Zhang [44] concerned a double homoclinic loops with
resonance characteristic roots in a four-dimensional system and got a complete bi-
furcation diagram under some conditions. Jin et al studied the bifurcation problems
of double homoclinic loops with resonant condition for higher dimensional systems
and obtained the existence, number and existence regions of the small homoclinic
loops, small periodic orbits, and the large homoclinic loops, large periodic orbits,
respectively (see [19]). In order to form an “∞”-shaped double heterodimensional
cycle, the manifold of the middle saddle point of the three needs to be divided into
left and right parts. The left part forms a heterodimensional cycle with the first
saddle point, and the right part forms another heterodimensional cycle with the
third saddle point. Based on it, we set e−1 = −e−4 and e+3 = −e+2 (the symbols are
defined in the later paper).
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Take a Cr system

ẋ = f(x, µ), (x, µ) ∈ R3 ×Rl, (1.1)

when µ = 0, the unperturbed system associated with (1.1) is

ẋ = f(x, 0), x ∈ R3, (1.2)

where f(x, µ) is sufficiently smooth with respect to the phase variable x and the
parameter µ, l ≥ 4, r ≥ 4, 0 < |µ| ≪ 1. To further expand our discussion, we make
the following five hypotheses.

(A1) System (1.1) has three hyperbolic equilibria pi, i = 1, 2, 3. W s
pi

and Wu
pi

are the Cr stable and unstable manifolds of pi, respectively. Moreover, the spectra
of system (1.1) are

σ (Dxf(pi, µ)) =
{
−ρ1i (µ), λ

1
i (µ), λ

2
i (µ)

}
, i = 1, 3,

σ (Dxf(p2, µ)) =
{
−ρ12(µ),−ρ22(µ), λ

1
2(µ)

}
,

with

−ρ1i (µ) < 0 < λ1
i (µ) < λ2

i (µ),

−ρ22(µ) < −ρ12(µ) < 0 < λ1
2(µ), λ1

k(µ) < ρ1k(µ), (k = 1, 2, 3)

and for notational convenience, we use λ1
i = λ1

i (0), ρ1i = ρ1i (0), λ2
1 = λ2

1(0), λ2
3 =

λ2
3(0), ρ22 = ρ22(0), ρ

j
2 = ρj2(0) (i = 1, 2, 3; j = 1, 2) as the corresponding spectra of

the unperturbed system (1.2).
(A2) System (1.2) has a heteroclinic network Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 connecting

the saddle equilibrium pi, where Γk = {x = γk(t), t ∈ R}, γ1(−∞) = γ2(+∞) = p1,
γ1(+∞) = γ2(−∞) = γ3(−∞) = γ4(+∞) = p2, γ3(+∞) = γ4(−∞) = p3.

(A3) Let e±i = lim
t→±∞

γ̇i(−t)

|γ̇i(−t)|
, then

e+1 ∈ Tp1W
u
1 , e+2 , e

+
3 ∈ Tp2W

u
2 , e+4 ∈ Tp3W

u
3 ,

e−1 , e
−
4 ∈ Tp2

W s
2 , e−2 ∈ Tp1

W s
1 , e−3 ∈ Tp3

Wu
3 ,

where e+i , e
−
i (i = 1, 2, 3) are unit eigenvectors corresponding to λ1

i and ρ1i (i =
1, 2, 3) respectively, where TqM denotes the tangent space of the manifold M at q.
Furthermore they satisfy the equation e−1 = −e−4 , e+3 = −e+2 (see [44] for details).

(A4)

lim
t→+∞

Tγ1(t)W
u
1 = span

{
e−1 , e

+
2

}
, lim

t→−∞
Tγ1(t)W

s
2 = span

{
e+1 , e

−
2

}
;

lim
t→+∞

Tγ2(t)W
u
2 = span

{
e−2

}
, lim

t→−∞
Tγ2(t)W

s
1 = span

{
e+2

}
;

lim
t→+∞

Tγ3(t)W
u
2 = span

{
e−3

}
, lim

t→−∞
Tγ3(t)W

s
3 = span

{
e+3

}
;

lim
t→+∞

Tγ4(t)W
u
3 = span

{
e−4 , e

+
3

}
, lim

t→−∞
Tγ4(t)W

s
2 = span

{
e+4 , e

−
3

}
.

(A5)

dim(Tγ1(t)W
u
1 ∩ Tγ1(t)W

s
2 ) = 1, dim(Tγ2(t)W

u
2 ∩ Tγ2(t)W

s
1 ) = 1,

dim(Tγ3(t)W
u
2 ∩ Tγ3(t)W

s
3 ) = 1, dim(Tγ4(t)W

u
3 ∩ Tγ4(t)W

s
2 ) = 1.



2146 H. Dong, T. Zhang & X. Liu

Remark 1.1. Under the assumption (A1), p1 and p3 have a 1-dimensional stable
manifold and a 2-dimensional unstable manifold, while p2 has a 2-dimensional stable
manifold and a 1-dimensional unstable manifold, hence Γ is an “∞” shape double
heterodimensional cycles with two saddles p1 and p3 of (1,2) type and one saddle
p2 of (2,1) type.

Remark 1.2. Hypothesis (A4) shows that Wu
pi

and W s
pi

have strong inclination
property. Due to the assumption (A5), p1 has a 2-dimensional unstable manifold,
p2 has a 2-dimensional stable manifold, and dim(Tγ1(t)W

u
1 ∩ Tγ1(t)W

s
2 ) = 1, we

can know the codimension of the heteroclinic orbit Γ1 is 0. In the same way, the
codimension of heteroclinic orbit Γ4 is also 0, and the codimension of the heteroclinic
orbits Γ2 and Γ3 are both 2. Then the orbits Γ1 and Γ4 are transversal, that is,
they can be preserved even under small perturbations. (see Figure 1).
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Figure 1. Double heterodimensional cycles of three saddle points pi with four orbits γk(t).

Now, take time Tk (k = 1, 2, 3, 4) large enough such that γk(±Tk) are in some
small neighborhoods Ui of pi(i = 1, 2, 3). Then we can take transverse sections
vertical to the tangency Tγk

to each orbit γk:

S0
1 :

{
x
∣∣x = γ1(−T1)

}
⊂ U1; S1

1 :
{
x
∣∣x = γ1(T1)

}
⊂ U2;

S0
2 :

{
x
∣∣x = γ2(−T2)

}
⊂ U2; S1

2 :
{
x
∣∣x = γ2(T2)

}
⊂ U1;

S0
3 :

{
x
∣∣x = γ3(−T3)

}
⊂ U2; S1

3 :
{
x
∣∣x = γ3(T3)

}
⊂ U3;

S0
4 :

{
x
∣∣x = γ4(−T4)

}
⊂ U3; S1

4 :
{
x
∣∣x = γ4(T4)

}
⊂ U2.

(1.3)

Generally, if the small parameter µ ̸= 0, the original double heterodimen-
sional cycles Γ may be broken, then some new orbits γ+

k (t, µ) (resp. γ−
k (t, µ))

(k = 1, 2, 3, 4) appear from unstable (resp. stable) manifold of the equilibrium
pi(i = 1, 2, 3) of system (1.1) with the following properties

γ̇±
k = f(γ±

k , µ);

γ+
1 (t, µ) ∈ Wu

1 (p1), γ−
1 (t, µ) ∈ W s

2 (p2),

γ+
2 (t, µ) ∈ Wu

2 (p2), γ−
2 (t, µ) ∈ W s

1 (p1),

γ+
3 (t, µ) ∈ Wu

2 (p2), γ−
3 (t, µ) ∈ W s

3 (p3),

γ+
4 (t, µ) ∈ Wu

3 (p3), γ−
4 (t, µ) ∈ W s

2 (p2), (1.4)
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γ±
k (t, 0) = γk(t),

γ+
k (−Tk, µ) ∈ S0

k,

γ+
k (−Tk + T̃k, µ), γ

−
k (Tk, µ) ∈ S1

k,∥∥∥γ+
k (−Tk + T̃k, µ)− γ−

k (Tk, µ)
∥∥∥ = 0(k = 1, 4),∥∥∥γ+

k (−Tk + T̃k, µ)− γ−
k (Tk, µ)

∥∥∥ ≪ 1(k = 2, 3),

where T̃k(k = 1, 2, 3, 4) are the orbit taking time from S0
k to S1

k and the W s
i (pi)

and Wu
i (pi) are the stable and unstable manifolds of the equilibrium pi, (i =

1, 2, 3). Because the original heteroclinic trajectories γ1(t) and γ4(t) are obtained
as two transversal intersections of 2-dimensional manifolds, they are structurally
stable, and after a small perturbation, the intersections are preserved. That is,
the gaps

∥∥∥γ+
k (−Tk + T̃k, µ)− γ−

k (Tk, µ)
∥∥∥ = 0 (k = 1, 4). As well as, if the gaps∥∥∥γ+

k (−Tk + T̃k, µ)− γ−
k (Tk, µ)

∥∥∥ = 0 (k = 2, 3) in S1
k, it mean the original double

heterodimensional cycles are kept (see Figure 2).

Figure 2. The gap
∥∥∥γ+

k (−Tk + T̃k, µ) − γ−
k (Tk, µ)

∥∥∥ ̸= 0(k = 2, 3) in the figure, the original double
heterodimensional cycles do not exist.

If there is an orbit starting from the section S0
1 and arriving at the section S1

3

that passes through the sections S1
1 and S0

3 with finite time without orienting to the
saddle point p2, we denote it by γ1(t, µ). Similarly, we can define γ4(t, µ) in this way.
Set the time of the orbit γ1(t, µ) from S1

1 to S0
3 to be τ2 and the time of γ4(t, µ)

from S1
4 to S0

2 to be τ4; and from S0
k to S1

k to be T̃k, k = 1, 2, 3, 4, respectively.
Moreover, system (1.1) still has solutions γj(t, µ), j = 1, 4,

γ̇j(t, µ) = f(γj , µ);

γj(−Tj , µ) ∈ S0
j , γj(−Tj + T̃j , µ) ∈ S1

j ,

γ1(−T1 + T̃1 + τ2 + T̃3, µ) ∈ S1
3 ,

γ4(−T4 + T̃4 + τ4 + T̃2, µ) ∈ S1
2 ,∥∥∥γ1(−T1 + T̃1 + τ2 + T̃3, µ)− γ−
3 (T3, µ)

∥∥∥ ≪ 1,∥∥∥γ4(−T4 − T̃4 + τ4 − T̃2, µ)− γ−
2 (T2, µ)

∥∥∥ ≪ 1,

(1.5)

where γ±
k (t, µ) (k = 2, 4), and γ−

3 (t, µ) still meet equation (1.4). Clearly system
(1.1) has a heterodimensional cycle composed of one big orbit linking p1, p3 and



2148 H. Dong, T. Zhang & X. Liu

two orbits linking p3, p2 and p2, p1, respectively, with two saddles of (1,2) type
and one saddle of (2,1) type if the gaps

∥∥∥γ1(−T1+T̃1+τ2+T̃3, µ)−γ−
3 (T3, µ)

∥∥∥ =

0,
∥∥∥γ−

2 (T2, µ)− γ+
2 (−T2 + T̃2, µ)

∥∥∥ = 0 (see Figure 3), which is called the sec-
ond shape heterodimensional cycle, or has a large 1-heteroclinic cycle composed
by two big orbits linking p1, p3 and p3, p1 of (1,2) type respectively, if the gaps∥∥∥γ1(−T1+T̃1+τ2+T̃3, µ)−γ−

3 (T3, µ)
∥∥∥ = 0,

∥∥∥γ4(−T4+T̃4+τ4+T̃2, µ)−γ−
2 (T2, µ)

∥∥∥ =

0 (see Figure 4).

Figure 3. The gap ||γ1(−T1 + T̃1 + τ2 + T̃3, µ)− γ−
3 (T3, µ)|| ̸= 0,

∥∥∥γ−
2 (T2, µ) − γ+

2 (−T2 + T̃2, µ)
∥∥∥ ̸= 0

in the figure, there is not the second heterodimensional cycle in general, which consists of two saddles
of (1,2) type and one saddle of (2,1) type and is composed of one big orbit linking p1, p3 and two orbits
linking p3, p2 and p2, p1 respectively.

Figure 4. The gap
∥∥∥γ1(−T1 + T̃1 + τ2 + T̃3, µ) − γ−

3 (T3, µ)
∥∥∥ ̸= 0,

∥∥∥γ4(−T4 + T̃4 + τ4 + T̃2, µ)−

γ−
2 (T2, µ)

∥∥∥ ̸= 0 in the figure, there is not a large 1-heteroclinic cycle in general.

Remark 1.3. In fact, system (1.1) has another second heterodimensional cycle
composed of one big orbit linking p3, p1 and two orbits linking p1, p2 and p2, p3 re-
spectively, if the gaps

∥∥∥γ4(−T4 + T̃4 + τ4 + T̃2, µ)− γ−
2 (T2, µ)

∥∥∥ = 0 and ||γ−
3 (T3, µ)−

γ+
3 (−T3+ T̃3, µ)|| = 0 hold. The corresponding image is similar to Figure 3 by turn-

ing Figure 3 upside down.
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Next, we regularize the normal form of system (1.1). As a direct application of
the stable (unstable) manifold theorem and the strong stable (unstable) manifold
theorem, one may find two successive Cr and Cr−1 transformations in some neigh-
borhood Ui (i = 1, 2, 3) of z = 0 to straighten the invariant manifolds such that for
j = 1, 3

Wu
pj

= {(x, y, u) : y = u = 0}, W s
pj

= {(x, y, u) : x = u = 0},
Wuu

pj
= {(x, y, u) : x = y = 0}, W s

p2
= {(x, y, v) : x = v = 0},

Wu
p2

= {(x, y, v) : y = v = 0}, W ss
p2

= {(x, y, v) : x = y = 0}.

Also, we can straighten the orbit segments Γk

⋂
Ui (k = 1, 2, 3, 4; i = 1, 2, 3).

After that system (1.1) has the following form in the small neighborhood Ui

(i = 1, 3) of pi:

ẋ = [λi
1(µ) + a(µ)xu+ o(|xu|)]x+O(µ)[O(x2u) + O(y)],

ẏ = [−ρi
1(µ) + b(µ)xu+ o(|xu|)]y +O(µ)[O(xyu) + O(µ)],

u̇ = [λi
2(µ) + c(µ)xu+ o(|xu|)]u+ y2Hi(x, y, u),

(1.6)

and has Ck normal form in U2 of p2 as:

ẋ = [λ2
1(µ) + a(µ)xv + o(|xv|)]x+O(µ)[O(x2v) + O(y)],

ẏ = [−ρ2
1(µ) + b(µ)xv + o(|xv|)]y +O(µ)[O(xyv) + O(µ)],

v̇ = [λ2
2(µ) + c(µ)xv + o(|xv|)]v + y2H2(x, y, v),

(1.7)

where H1(x, 0, 0) = 0, H2(0, y, 0) = 0. System (1.6)-(1.7) are at least Ck, where
k = min

{
r − 2, [

λ2
i

λ1
i
]− 1 , [

ρ2
2

ρ1
2
]− 1

}
≥ 2, which is owing to that the weak stable

manifold of pi and the weak unstable manifold of p2 are approximately C
[
λ2
i

λ1
i

]
, C

[
ρ22
ρ12

]
,

respectively (see [35] P.56). Of course, the same kind of change of variable can be
achieved by using the theory of exponential dichotomies and weighted exponential
dichotomies. But by [35], the extra conditions ρ21 ≥ 3ρ11 and λ2

j ≥ λ1
j (j = 1, 3)

ensure that such change of coordinates are possible, so that systems (1.6)-(1.7) are
smooth.

The rest of the paper is structured as follows. In section 2, we firstly establish a
local moving frame system near the unperturbed heterodimensional cycle, then we
define a Poincaré map to give the successor function and the bifurcation equations
by using the implicit function theorem. Section 3 shows the bifurcation results on
different parameter regions by analyzing the bifurcation equations.

2. Main Method
From the above discussion, we find that the gap in the transverse section S1

k of some
orbits is crucial to study bifurcations of system (1.1). So in this section we try to
quantizate the gap size by the method mentioned in [46,47]. That is, we firstly need
to take fundamental solutions of linear variational equation (see equation (2.1) as
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below) and use them as an active coordinate system along the heteroclinic orbits.
Then using the new coordinates, we construct the global map spanned by the flow
of (2.1) between the sections along the orbits. Next, we set up local maps near
equilibria. Finally the whole Poincaré map can be obtained by composing these
maps and the implicit function theorem reveals the bifurcation equation.

The linear variational system of (1.2) is:

Ẏk = Dxf (γk(t), 0)Yk. (2.1)

Based on the hypotheses (A3) and (A4), system (2.1) has a fundamental solu-
tion matrix Yk(t) = (φ1

k, φ
2
k, φ

3
k) with φ1

k(t) ∈ (Tγk(t)W
u
k )

c ∩ Tγk(t)W
s
2 , φ2

k(t) =
γ̇k(t)/ |γ̇k(−Tk)| ∈ Tγk(t)W

u
k ∩ Tγk(t)W

s
2 , φ3

k(t) ∈ Tγk(t)W
u
k ∩ (Tγk(t)W

s
2 )

c, for
k = 1, 4, and it satisfies

Yk(−Tk) =


0 1 0

1 0 0

w̄13
k

0 1

 , Yk(Tk) =


0 0 w31

k

0 w22
k 0

w13
k

0 w33
k

 , (2.2)

where w13
k > 0, w33

k w31
k > 0, w22

1 < 0,
∣∣(w13

k )−1
∣∣ ≪ 1,

∣∣w33
k · (w31

k )−1
∣∣ ≪ 1, Wu

4 =
Wu

3 . The notation (W )c means subspace complementary to W .
As for k = 2, 3, the fundamental solution matrix of system (2.1) satisfies φ1

k(t),
φ3
k(t) ∈ (Tγk(t)W

u
2 )

c, φ2
k(t) = γ̇k(t)/ |γ̇k(−Tk)| ∈ Tγk(t)W

u
2 ∩Tγk(t)W

s
k−(−1)k , W s

4 =

W s
3 , such that

Yk(−Tk) =


0 w21

k 0

w̄12
k 0 1

1 0 0

 , Yk(Tk) =


w11

k 0 w31
k

w12
k 1 w32

k

w13
k 0 w33

k

 , (2.3)

where w11
2 < 0, wk =

∣∣∣∣∣∣w
11
k w31

k

w13
k w33

k

∣∣∣∣∣∣ ̸= 0,
∣∣wi2

k · w−1
k

∣∣ ≪ 1, i = 1, 3.

Remark 2.1. For the elements of fundamental solution matrix, one can refer to
[30,44] or [42,43] for details.

Now we select (φ1
k, 0, φ

3
k) as a local coordinate system along Γk. Take a coordi-

nate transformation

X(t) = γk(t) + Yk(t)Ξk(t) = γk(t) + φ1
k(t)ξ

1
k + φ3

k(t)ξ
3
k, t ∈ [−Tk, Tk], (2.4)

where Ξk = (ξ1k, 0, ξ
3
k)

∗ is the coordinate decomposition of system (1.1) and the
sign “∗” stands for transposition. Let γk(t) = (γx

k (t), γ
y
k(t), γ

u
k (t))

∗ in the small
neighborhood Ui of pi, (i = 1, 3), and γk(t) = (γx

k (t), γ
y
k(t), γ

v
k(t))

∗ in the small
neighborhood U2 of p2. Since Tk > 0 (k = 1, 2, 3, 4) is large enough so that
γ1(−T1), γ2(T2) ∈ U1, γ3(T3), γ4(−T4) ∈ U3, γ1(T1), γ2(−T2), γ3(−T3), γ4(T4) ∈ U2

and for k = 1, 3, 4, γk(−Tk) = (δ, 0, 0)∗, γ2(−T2) = (−δ, 0, 0)∗, for k = 2, 3, 4,
γk(Tk) = (0, δ, 0), γ1(T1) = (0,−δ, 0), where δ > 0 is small enough. Then system
(1.1) can be rewritten in the new variable Ξ, namely, for k = 1, 2, 3, 4

Ξ̇ = Y −1
k Dµf(γk(t), 0)µ+ Y −1

k D2
xµf(γk(t), 0)Y Ξµ+O(|Yk| |Ξ|2) + O(|Yk|−1 |µ|2).

(2.5)
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To integrate (2.5), we get∫ Tk

−Tk

Ξ̇ dt =

∫ Tk

−Tk

Y −1
k Dµf(γk(t), 0)µ dt+ h.o.t., (2.6)

that is,
Ξ(Tk) = Ξ(−Tk) +Mkµ+ h.o.t., (2.7)

where Mk = (M1
k , 0,M

3
k )

∗ =
∫ Tk

−Tk
Y −1
k Dµf(γk(t), 0)dt and Y −1 is the fundamental

solution matrix of the adjoint system for system (2.1).
Notice that in (2.4), Ξk = (ξ1k, 0, ξ

3
k)

∗ represents the coordinate decomposition
of (1.1) in the new local coordinate system corresponding to φ1

k(t) and φ3
k(t), so

Ξ(−Tk) ∈ S0
k and Ξ(Tk) ∈ S1

k, scilicet, (2.7) maps a point in S0
k to a point in S1

k,
which produces the global map from points in S0

k to points in S1
k in some small

subset of Ui.
On the other hand, there is a local linearization of system (1.1) as follow due to

(A1) and (1.6),(1.7) for i = 1, 3

Dxf(pi, µ) = λ1
i (µ)x

∂x

∂x
− ρ1i (µ)u

∂x

∂y
+ λ2

i (µ)y
∂x

∂u
,

Dxf(p2, µ) = λ1
2(µ)x

∂x

∂x
− ρ12(µ)y

∂x

∂y
− ρ22(µ)v

∂x

∂v
,

(2.8)

where x = (x, y, u), (x0
k, y

0
k, u

0
k) ∈ S0

k or (x1
j , y

1
j , u

1
j ) ∈ S1

j for k = 1, 4, j = 2, 3 and
(x0

k, y
0
k, v

0
k) ∈ S0

k or (x1
j , y

1
j , v

1
j ) ∈ S1

j for k = 2, 3, j = 1, 4.
Let Ξk(Tk) = Ξ1

k = (ξ1,1k , 0, ξ1,3k ) and Ξk(−Tk) = Ξ0
k = (ξ0,1k , 0, ξ0,3k ). Suppose

λ1
i < ρ1i (i = 1, 2, 3), we take sk = e−λ1

k(µ)τk , k = 1, 2, 3, 4, where τ1, τ3 are the
time spent from S1

2 to S0
1 and from S1

3 to S0
4 respectively, and λ1

4 = λ1
2; For the

convenience of calculation, we denote by λj
i (µ) = λj

i , ρ1i (µ) = ρ1i , λ1
2(µ) = λ1

2,
ρj2(µ) = ρj2, i = 1, 3; j = 1, 2.

Based on the linear approximation solutions of equation (2.8), we have

x0
k = eλ

1
kτkx1

k

∂x

∂x
+ e−ρ1

kτky1k
∂x

∂y
+ eλ

2
kτku1

k

∂x

∂u
(k = 1, 3),

x0
k = eλ

1
kτkx1

k

∂x

∂x
+ e−ρ1

kτky1k
∂x

∂y
+ e−ρ2

kτkv1k
∂x

∂v
(k = 2, 4).

(2.9)

By equation (2.9), it is easy to obtain the local map from points in S1
k to points

in S0
k, where the βh = ρ1h

/
λ1
h, (h = 1, 2, 3).

x1
2 = x(T2) ≈ x0

1s1, y01 = y(T2 + τ1) ≈ y12s
β1

1 , u1
2 = u(T2) ≈ u0

1s

λ2
1

λ1
1

1 ;

x1
1 = x(T1) ≈ x0

3s2, y03 = y(T1 + τ2) ≈ y11s
β2

2 , v03 = v(T2 + τ2) ≈ v11s

ρ22
λ1
2

2 ;

x1
3 = x(T3) ≈ x0

4s3, y04 = y(T3 + τ3) ≈ y13s3
β3 , u1

3 = u(T3) ≈ u0
4s

λ2
3

λ1
3

3 ;

x1
4 = x(T4) ≈ x0

2s4, y02 = y(T4 + τ4) ≈ y14s
β2

4 , v02 = x(T4 + τ4) ≈ v14s

ρ22
λ1
2

4 .

(2.10)
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From (2.1)-(2.4) and replacing x by Ξ, we establish the relationship between the
old coordinates and their new coordinates

ξ0,1k = y0k, ξ0,3k = u0
k − w̄13

k y0k, x0
k = δ,

ξ1,1k = (w13
k )−1v1k − (w13

k )−1w33
k (w31

k )−1x1
k,

y1k = (−1)
k
δ, ξ1,3k = (w31

k )
−1

x1
k, (k = 1, 4).

ξ0,1i = v0i , ξ0,3i = y0i − w̄12
k v0i , x0

i = (−1)
i−1

δ,

ξ1,1i = w−1
i (w33

i x1
i − w31

i u1
i ), ξ1,3i = w−1

i (w11
i u1

i − w13
i x1

i ),

y1i = δ + wi
−1(w12

i w33
i − w32

i w13
i )x1

i + w−1
i (w32

i w11
i − w12

i w31
i )u1

i ≈ δ, (i = 2, 3).
(2.11)

Now take points Ξ1
1 ∈ S1

1 , Ξ1
2 ∈ S1

2 , Ξ1
3 ∈ S1

3 , Ξ1
4 ∈ S1

4 , system (1.1) has
orbits γ1(t, µ), γ2(t, µ), γ3(t, µ), γ4(t, µ) starting from Ξ1

2, Ξ1
1, Ξ1

3, Ξ1
4 and inter-

secting S1
1 , S1

3 , S1
4 , S1

2 at points Ξ̃1
2, Ξ̃1

1, Ξ̃1
4, Ξ̃1

3, respectively. From (2.4), (2.7)
and (2.11), Poincaré map can be defined as Ψ = Ξ̃1

k − Ξ1
k = (Ψ1,Ψ2,Ψ3,Ψ4) =

Ψ(Ψ1
1,Ψ

3
1,Ψ

1
2,Ψ

3
2,Ψ

1
3,Ψ

3
3,Ψ

1
4,Ψ

3
4) = Ψ(s1, s2, s3, s4, u

0
1, u

0
4, v

1
1 , v

1
4), where

Ψ1
1 = δsβ1

1 − (w13
1 )−1v11 + (w13

1 )−1w33
1 (w31

1 )−1δs2 +M1
1µ+ h.o.t.,

Ψ3
1 = u0

1 − w̄13
1 δsβ1

1 − (w31
1 )−1δs2 +M3

1µ+ h.o.t.,

Ψ1
2 = v14s

ρ22
λ1
2

4 + w2
−1w31

2 u0
1s

λ2
1

λ1
1

1 − w2
−1w33

2 δs1 +M1
2µ+ h.o.t.,

Ψ3
2 = δsβ2

4 + w2
−1w13

2 δs1 − w2
−1w11

2 u0
1s1

λ2
1

λ1
1 + w̄12

2 v41s

ρ22
λ1
2

4 +M3
2µ+ h.o.t.,

Ψ1
3 = v11s

ρ22
λ1
2

2 − w3
−1w33

3 δs3 + w3
−1w31

3 u0
4s

λ2
3

λ1
3

3 +M1
3µ+ h.o.t.,

Ψ3
3 = −δsβ2

2 + w3
−1w13

3 δs3 − w3
−1w11

3 u0
4s

λ2
3

λ1
3

3 − w̄12
3 v11s

ρ22
λ1
2

2 +M3
3µ+ h.o.t.,

Ψ1
4 = δsβ3

3 − (w13
4 )−1v14 − (w13

4 )−1w33
4 (w31

4 )−1δs4 +M1
4µ+ h.o.t.,

Ψ3
4 = u0

4 − w̄13
4 δs3

β3 + (w31
4 )−1δs4 +M3

4µ+ h.o.t..

(2.12)

By the implicit function theorem, equations (Ψ1,Ψ4) = 0 can give solutions of v11 ,
u0
1, v14 and u0

4. Putting them into (Ψ2,Ψ3) = 0, and fixing s1 = s3 = 0, we can get
the bifurcation equation

w33
1 (w31

1 )
−1

δs2

ρ22
λ1
2
+1

+ w13
1 M1

1µs2

ρ22
λ1
2 +M1

3µ+ h.o.t. = 0,

δsβ2

2 + w̄12
3 M1

1µw
13
1 s

ρ22
λ1
2

2 −M3
3µ+ h.o.t. = 0,

− w33
4 (w31

4 )
−1

δs

ρ22
λ1
2
+1

4 + w13
4 M1

4µs

ρ22
λ1
2

4 +M1
2µ+ h.o.t. = 0,

δsβ2

4 − w̄12
3 M1

4µw
13
4 s

ρ22
λ1
2

4 +M3
2µ+ h.o.t. = 0.

(2.13)

Remark 2.2. Generally, in two dimensional plane system, when we study bifur-
cations of singular cycle, Poincaré mapping can only be established on one side of
the singular cycle. Therefore, there are no other types of orbits except the one with
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infinite approaching to saddle point on the left side of p1 and the right side of p3.
However, in high-dimensional system, it remains to be verified whether other types
of orbits can bypass different surfaces for connection. To make the study go on, we
assume that s1 = s3 = 0, that is, the orbit starting from S1

2 to S0
1 just be a singular

orbit which is infinitely approaching p1 when t → ±∞; for the orbit starting from
S1
3 to S0

4 is similar near p3.

3. Heterodimensional cycle bifurcation of “∞” type

In this section, we analyze the bifurcation of system (1.1) under hypotheses (A1)-
(A5) about the existence of double heterodimensional cycles (“∞”), the second het-
erodimensional cycle and large 1-heteroclinic cycle. Clearly if ||γ−

k (Tk, µ)−γ+
k (−Tk+

T̃k, µ)|| = 0 (k = 2, 3), the double heterodimensional cycle (“∞”) of system (1.1)

is persistent; if
∥∥∥γ1(−T1+T̃1+τ2+T̃3, µ)−γ−

3 (T3, µ)
∥∥∥=0 and

∥∥∥∥γ−
2 (T2, µ)−γ+

2 (−T2+

T̃2, µ)

∥∥∥∥=0 or ||γ4(−T4+T̃4+τ4+T̃2, µ)−γ−
2 (T2, µ)||=0 and ||γ−

3 (T3, µ)−γ+
3 (−T3+

T̃3, µ)∥ = 0, that is, s4 = 0, s2 > 0 or s2 = 0, s4 > 0, system (1.1) has the sec-
ond shape heterodimensional cycle; if

∥∥∥γ1(−T1 + T̃1 + τ2 + T̃3, µ)− γ−
3 (T3, µ)

∥∥∥ = 0,∥∥∥γ4(−T4 + T̃4 + τ4 + T̃2, µ)− γ−
2 (T2, µ)

∥∥∥ = 0, that is, s2 > 0 and s4 > 0, system
(1.1) has the large 1-heteroclinic cycle. What is noteworthy is that we find if
0 < ||γ1(−T1+T̃1+τ2+T̃3, µ)−γ−

3 (T3, µ)|| ≪ 1,
∥∥∥γ+

2 (−T2+T̃2, µ)−γ−
2 (T2, µ)

∥∥∥ = 0

(or 0 <
∥∥∥γ4(−T4+T̃4+τ4+T̃2, µ)−γ−

2 (T2, µ)
∥∥∥≪1,

∥∥∥γ+
3 (−T3+T̃3, µ)−γ−

3 (T3, µ)
∥∥∥=0

), that is, the conditions make s2 > 0 (or s4 > 0) untenable and s4 = 0 (or s2 = 0)
be tenable, system (1.1) has the third heterodimensional cycle consisting of one
saddle p1 of (2.1) type and one saddle p2 of (1,2) type and composed of one orbit
starting from p1 (or p2) to p2 (or p3) and another orbit starting from p2 (or p3)
to p1 (or p2) under the assumption (A5). So in the following, we need to consider
solutions s2 and s4 of the bifurcation equation (2.13).

Theorem 3.1. Suppose that (A1)-(A5) hold and Rank (M1
2 ,M

3
2 ,M

1
3 ,M

3
3 ) = 4,

there is an (l − 4)-dimensional surface

L23=
{
µ : M1

2µ+h.o.t.=0;M3
2µ+h.o.t.=0; M1

3µ+h.o.t.=0;M3
3µ+h.o.t.=0

}
,

with a normal plane Σ23 = span
{
M1

2 ,M
3
2 ,M

1
3 ,M

3
3

}
, such that system (1.1) has

a unique double heteroclinic loop (“∞”) connecting p1, p2 and p3 in the tubular
neighborhood of Γ as µ ∈ L23, 0 < |µ| ≤ 1.

Proof. As we explained above, s2 = 0 in equation (2.13) means the flying time
of an orbit starting from S1

1 to S0
3 is infinite, that is, the orbit must go into the

equilibrium p2, which corresponds to a heteroclinic orbit; and for s4 = 0, it is
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similar. Hence, set s2 = s4 = 0 in equation (2.13), we have

M1
2µ+ h.o.t. = 0,

M3
2µ+ h.o.t. = 0,

M1
3µ+ h.o.t. = 0,

M3
3µ+ h.o.t. = 0.

If Rank(M1
2 ,M

3
2 ,M

1
3 ,M

3
3 ) = 4, they can define a codimension-4 surface L23(µ).

When µ ∈ L23, system (1.1) has four heteroclinic orbits connecting the equilibriums
pi, i = 1, 2, 3, and they form an “∞”-type double heterodimensional cycle, or it says
that the original heterodimensional loop is preserved.

Define eight regions:

B+
+ = {µ|w13

1 M 1
1µ > 0,M1

3µ > 0}, B−
+ = {µ

∣∣w13
1 M1

1µ > 0,M1
3µ < 0};

B+
− = {µ|w13

1 M1
1µ < 0,M1

3µ > 0}, B−
− = {µ|w13

1 M1
1µ < 0,M1

3µ < 0};
N+

+ = {µ
∣∣w13

4 M1
4µ > 0,M1

2µ > 0}, N−
+ = {µ

∣∣w13
4 M1

4µ > 0,M1
2µ < 0},

N+
− = {µ|w13

4 M1
4µ < 0,M1

2µ > 0}, N−
− = {µ|w13

4 M1
4µ < 0,M1

2µ < 0}.

From the discussion of Theorem 3.1, we know that if one of s2 and s4 is 0,
the second heterodimensional cycle will appear; if s2 > 0 and s4 > 0, a large 1-
heteroclinic cycle connecting with p1 and p3 will exist. As well as, if s2 > 0 and
s4 = 0 or s4 > 0 and s2 = 0, the third heterodimensioonal cycle will arise.

Since the first two equations of equation (2.13) have the same structure as the
last two, we only analyze the first and second equations as following

w33
1 (w31

1 )−1δs

ρ22
λ1
2
+1

2 + w13
1 M1

1µs

ρ22
λ1
2

2 +M1
3µ+ h.o.t. = 0,

δsβ2

2 + w̄12
3 w13

1 M1
1µs

ρ22
λ1
2

2 −M3
3µ+ h.o.t. = 0.

(3.1)

Set t2 = s

ρ22
λ1
2

2 , α =
ρ2
2+λ1

2

ρ2
2

and rewrite the first equation of (3.1) as

w13
1 M1

1µt2 +M1
3µ+ w33

1 (w31
1 )−1δtα2 + h.o.t. ≜ L(t2, µ)−N(t2, µ) = 0, (3.2)

where

L(t2, µ) = w13
1 M1

1µt2 +M1
3µ+ h.o.t., N(t2, µ) = −w33

1 (w31
1 )−1δtα2 + h.o.t..

Then we have

L(0, µ)−N(0, µ) = M1
3µ+ h.o.t.,

L′
t2(t2, µ)−N ′

t2(t2, µ) = w13
1 M1

1µ+ w33
1 (w31

1 )−1αδtα−1
2 + h.o.t..

If w13
1 w33

1 w31
1 M1

1µ < 0, equation L′
t2(t2, µ) − N ′

t2(t2, µ) = 0 has a unique small
positive solution t̃2 = (−(αδw33

1 )−1w13
1 w31

1 M1
1µ)

1
α−1 + h.o.t..

(1) If w33
1 w31

1 < 0, µ ∈ B−
− or w33

1 w31
1 > 0, µ ∈ B+

+ , the straight line L and
the curve N can not intersect in the half plane for t2 > 0, so equation (3.2) has
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not any positive solutions, which means that system (1.1) only has the transversal
heteroclinic orbit γ1(t) in the region Γ1 ∪ Γ2.

(2) If w33
1 w31

1 < 0, µ ∈ B+
− or w33

1 w31
1 > 0, µ ∈ B−

+ , the straight line L2(t2, µ)
and the curve N2(t2, µ) intersect at one positive point, then (3.2) has one positive
solution.

Without loss of generality, we discuss the case w33
1 w31

1 < 0, µ ∈ B+
− . There are

L(0, µ) > N(0, µ), L′
t2(t2, µ) < N ′

t2(t2, µ), L(t̄2, µ)−N(t̄2, µ) = w33
1 (w31

1 )−1δt̄α2 < 0,

where t̄2 = − M1
3µ

w13
1 M1

1µ
+ h.o.t..

When
∣∣M1

3µ
∣∣ = O(

∣∣M1
1µ

∣∣), 0 < t̄2 ≪ 1, (3.2) has a unique solution t1∗2 satisfying

0 < t1∗2 < t̄2 ≪ 1. Putting it into the second equation of (3.1) yields (t1∗2 )
ρ12
ρ22 δ +

w̄12
3 M1

1µw
13
1 (t1∗2 )−M3

3µ+ h.o.t. = 0, it defines a surface

L1
2(µ) =

{
µ : δ(M1

3µ)
ρ12
ρ22 = (−w13

1 M1
1µ)

ρ12
ρ22 M3

3µ+ h.o.t.

}
,

with a normal surface Σ = span{M3
3 } at µ = 0 for M3

3µ > 0. That is to say,
system (1.1) has a heteroclinic orbit γ1(t) consisting of p1 and p3 near Γ1 ∪ Γ3 for
µ ∈ L1

2(µ).
(3) If w33

1 w31
1 < 0, µ ∈ B+

+ or w33
1 w31

1 > 0, µ ∈ B−
− , there are two special cases:

(i) As
∣∣M1

1µ
∣∣ t2 ≪ max{tα2 ,

∣∣M1
3µ

∣∣}, equation (3.2) can be simplified to be

w33
1 (w31

1 )−1δtα2 +M1
3µ+ h.o.t. = 0. (3.3)

It has a solution t2∗2 =
(

−w31
1 M1

3µ

w33
1 δ

) 1
α

+ h.o.t. or s2∗2 =
(

−w31
1 M1

3µ

w33
1 δ

) λ1
2

ρ22+λ1
2 + h.o.t..

Substituting s2∗2 into the second equation of (2.13), we can get a surface

L2
2(µ) =

{
µ : δ(M1

3µ)
λ1
2

ρ22+λ1
2 = (−w33

1 (w31
1 )−1δ)

λ1
2

ρ22+λ1
2 M3

3µ+ h.o.t.

}

tangent to L23(µ) for M3
3µ > 0. So system (1.1) has a heteroclinic orbit consisting

of p1 and p3 near Γ1 ∪ Γ3 for µ ∈ L2
2(µ). Next putting t2∗2 into the verification

condition, it is equivalently
∣∣M1

1µ
∣∣ ≪ ∣∣M1

3µ
∣∣1− 1

α .
(ii) As max{

∣∣M1
1µ

∣∣ t2, tα2 } ≫
∣∣M1

3µ
∣∣, equation (3.2) is then

w33
1 (w31

1 )−1δtα2 + w13
1 M1

1µt2 + h.o.t. = 0, (3.4)

there is a small positive solution t3∗2 =
(
−w13

1 w31
1 M1

1µ

w33
1 δ

) 1
α−1

+h.o.t. or s3∗2 =−w13
1 w31

1 M1
1µ

w33
1 δ

+

h.o.t.. In the same way, we can get the surface L3
2(µ) which is tangent to L23 with

the condition
∣∣M1

1µ
∣∣ ≫ ∣∣M1

3µ
∣∣1− 1

α , where

L3
2(µ) =

{
µ : δ(w13

1 M1
1µ)

β2 = (−δw33
1 (w31

1 )−1)β2M3
3µ+ h.o.t.

}
.

So system (1.1) has a heteroclinic orbit consisting of p1 and p3 in the region Γ1∪Γ3

for µ ∈ L3
2(µ).
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(4) If w33
1 w31

1 < 0, µ ∈ B−
+ or w33

1 w31
1 > 0, µ ∈ B+

− , we have L(0, µ) < N(0, µ),
L′′
t2(t2, µ)−N ′′

t2(t2, µ) = w33
1 (w31

1 )−1α(α− 1)δtα−2
2 + h.o.t. < 0.

Set L(t̃2, µ) − N(t̃2, µ) = H1
2 (µ), where t̃2 = (−w31

1 w13
1 M1

1µ

w33
1 αδ

)
1

α−1 + h.o.t. is the
solution of L′(t2, µ)−N ′(t2, µ) = 0 and

H1
2 (µ) = w13

1 M1
1µ(1− α−1)

(
−w31

1 w13
1 (w33

1 δα)
−1

M1
1µ

) 1
α−1

+M1
3µ+ h.o.t..

When H1
2 (µ) > 0, the straight line L(t2, µ) intersects the curve N(t2, µ) exactly

at two points 0 < t4∗2 < t̃2 < t5∗2 , which means equation (3.2) has two positive
solutions. Therefore, system (1.1) has two heteroclinic orbits connecting p1 and p3
near Γ1 ∪ Γ3.

When H1
2 (µ) = 0, the equations L′

t2(t2, µ) = N ′
t2(t2, µ) and L(t2, µ) = N(t2, µ)

have the solution t̃2, therefore the straight line L(t2, µ) must be tangent to the curve
N(t2, µ) at the point t̃2. Putting it into the second equation of (3.1) yields a surface
L4
2(µ) with a normal surface Σ = span{M3

3 } at µ = 0, where

L4
2(µ) =

{
µ : δ(w13

1 M1
1µ)

β2 = (−αδw33
1 (w31

1 )−1)β2M3
3µ+ h.o.t.

}
for M3

3µ > 0. Then, system (1.1) has a 2-fold heteroclinic orbit connecting p1 and
p3 near Γ1 ∪ Γ3.

When H1
2 (µ) < 0, the straight line L2(t2, µ) does not intersect the curve N2(t2, µ)

in the half plane, then there is only the transversal heteroclnic orbit γ1(t) connecting
p1 and p2 near Γ1 ∪ Γ2.

(5) If µ ∈ {µ : M1
3µ+ h.o.t. = M3

3µ+ h.o.t. = 0}, equation (3.1) is
w33

1 (w31
1 )−1δs

ρ22
λ1
2
+1

2 + w13
1 M1

1µs

ρ22
λ1
2

2 + h.o.t. = 0,

δsβ2

2 + w̄12
3 w13

1 M1
1µs

ρ22
λ1
2

2 + h.o.t. = 0.

(3.5)

To solve the first equation of (3.5), there is

(w33
1 (w31

1 )−1δs2 + w13
1 M1

1µ)s2

ρ22
λ1
2 + h.o.t. = 0,

we can get two solutions s
′

2 = 0 and s
′′

2 = −w31
1 w13

1 M1
1µ

w33
1 δ

+ h.o.t. for (w13
1 M1

1µ) ·
(w33

1 w31
1 ) < 0. While for (w13

1 M1
1µ) · (w33

1 w31
1 ) ≥ 0, there is only a zero solution.

Equation (3.5) finally defines a surface

L̄3
2(µ) =

{
µ : M1

3µ+ h.o.t. = M3
3µ+ h.o.t. = 0, (w13

1 M1
1µ) · (w33

1 w31
1 ) < 0

}
.

Putting the expression s
′′

2 into the second equation of (3.5) obtains the set of

µ as {µ|δ(−w13
1 w31

1 M1
1µ

w33
1 δ

)β2 + w̄12
3 M1

1µw
13
1 (−w13

1 w31
1 M1

1µ

w33
1 δ

)
ρ22
λ1
2 = 0,M1

1µ ̸= 0}, which
means system (1.1) has two types of heteroclinic orbits: a large 1-heteroclinc orbit
connecting with p1 and p3 and two heteroclinic orbits connecting with p1 and p2
and with p2 and p3 respectively in the region Γ1 ∪ Γ3 as µ ∈ L

3

2(µ).
The analysis of the third and the fourth equations of (2.13) is similar to that of

the first and the second equations of (2.13), we omit the details and give the main
results in the following.



Bifurcations of double heterodimensional. . . 2157

(1) If w33
4 w31

4 > 0, µ ∈ N−
− or w33

4 w31
4 < 0, µ ∈ N+

+ , system (1.1) only has the
transversal heteroclinic orbit γ4(t) in the region Γ2 ∪ Γ3.

(2) If w33
4 w31

4 > 0, µ ∈ N+
− or w33

4 w31
4 < 0, µ ∈ N−

+ , system (1.1) has a
heteroclinic orbit connecting p3 and p1 in the region Γ1 ∪ Γ3 for µ ∈ L1

4(µ) and∣∣M1
2µ

∣∣ = o(
∣∣M1

4µ
∣∣), where

L1
4(µ) =

{
µ : δ(M1

2µ)
ρ12
ρ22 +(−w13

4 M1
4µ)

ρ12
ρ22 M3

2µ+ h.o.t. = 0

}
.

(3) If w33
4 w31

4 > 0, µ ∈ N+
+ or w33

4 w31
4 < 0, µ ∈ N−

− ,
(i) as

∣∣M1
4µ

∣∣ ≪ ∣∣M1
2µ

∣∣1− 1
α , system (1.1) has a heteroclinic orbit connecting p3

and p1 near Γ1 ∪ Γ3 for µ ∈ L2
4(µ), where

L2
4(µ) =

{
µ : δ

(
M1

2µ
) ρ12

ρ22+λ1
2 + ((w31

4 )
−1

w33
4 δ)

ρ12
ρ22+λ1

2 M3
2µ+ h.o.t.

}
;

(ii) as
∣∣M1

4µ
∣∣ ≫ ∣∣M1

2µ
∣∣1− 1

α , system (1.1) has a heteroclinic orbit connecting p3
and p1 in the region Γ1 ∪ Γ3 for µ ∈ L3

4(µ), where

L3
4(µ) =

{
µ : δ(M1

4µ)
β2

+ ((w31
4 w13

4 )
−1

w33
4 δ)

β2

M3
2µ+ h.o.t. = 0

}
.

(4) If w33
4 w31

4 > 0, µ ∈ N−
+ or w33

4 w31
4 < 0, µ ∈ N+

− and H1
4 (µ) > 0, system (1.1)

has two heteroclinic orbits connecting p3 and p1 near Γ1

⋃
Γ3; when H1

4 (µ) = 0,
system (1.1) has a 2-fold heteroclinic orbit connecting p3 and p1 near Γ1 ∪ Γ3 for
µ ∈ L4

4(µ); when H1
4 (µ) < 0, there is no heteroclinic orbit connecting p3 and p1

near Γ1 ∪ Γ3, where

H1
4 (µ) = w13

4 M1
4µ(1−

1

α
)
(
w13

4 w31
4 (w33

4 δα)
−1

M1
4µ

) 1
α−1

+M1
2µ+ h.o.t.

and
L4
4(µ) =

{
µ : δ(w13

4 w31
4 M1

4µ)
β2

+ (αδw33
4 )

β2
M3

2µ+ h.o.t. = 0
}
.

(5) If µ ∈ {µ : M1
2µ + h.o.t. = M3

2µ + h.o.t. = 0}, system (1.1) has two types
of heteroclinic orbits: a large 1-heteroclinc orbit connecting p3 and p1 and two
heteroclinic orbits connecting p3 and p2 and p2 and p1 respectively in the region
Γ1 ∪ Γ3 as µ ∈ L

3

4(µ), where

L̄3
4(µ) =

{
µ : M1

2µ+ h.o.t. = M3
2µ+ h.o.t. = 0, (w13

4 M1
4µ) · (w33

4 w31
4 ) > 0

}
.

As well as, when w13
4 w33

4 w31
4 M1

4µ ≤ 0, the third equation of (2.13) only has zero
solution.

With the above analysis, we can get the following theorems about existence of
the second and the third shape heterodimensional cycle and the large 1-heteroclinic
cycle under small perturbation.

Theorem 3.2. Under (A1)-(A5) and Rank(M1
2 ,M

3
2 ,M

1
3 ,M

3
3 ) ≥ 3, as well as µ ∈

{µ : M1
2µ+ h.o.t. = M3

2µ+ h.o.t. = 0}.
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(1) If µ ∈ {µ : w33
1 w31

1 < 0, µ ∈ B−
−} or µ ∈ {µ : w33

1 w31
1 > 0, µ ∈ B+

+}, system
(1.1) has the third shape heterodimensional cycle in the (l− 2)-dimensional surface
L1
1(µ) with normal vector span{M1

2 ,M
3
2 } at µ = 0, where

L1
1(µ) =

{
µ : M1

2µ+ h.o.t. = M3
2µ+ h.o.t. = 0, w13

4 w33
4 w31

4 M1
4µ ≤ 0

}
.

(2) If µ ∈ {µ : w33
1 w31

1 < 0, µ ∈ B−
+} or µ ∈ {µ : w33

1 w31
1 > 0, µ ∈ B+

−}, system
(1.1) has the third shape heterodimensional cycle near Γ as µ ∈ L̃4

2, where

L̃4
2 =

{
µ : M1

2µ+ h.o.t. = M3
2µ+ h.o.t. = 0, w13

4 w33
4 w31

4 M1
4µ ≤ 0,H1

2 < 0
}
.

(3) If µ ∈ {µ : w33
1 w31

1 < 0, µ ∈ B+
−} or µ ∈ {µ : w33

1 w31
1 > 0, µ ∈ B−

+}, system
(1.1) has the second shape hetrodimensional cycle near Γ in an (l− 1)-dimensional
surface

L̂1
2 =

{
µ : M1

2µ+ h.o.t. = M3
2µ+ h.o.t. = 0, w13

4 w33
4 w31

4 M1
4µ ≤ 0

}
∩ L1

2(µ)

with normal vector span{M1
2 ,M

3
2 ,M

3
3 } at µ = 0 for

∣∣M1
3µ

∣∣ = o(
∣∣M1

1µ
∣∣), which is

tangent to the surface L23(µ) at µ = 0.
(4) If µ ∈ {µ : w33

1 w31
1 < 0, µ ∈ B+

+} or µ ∈ {µ : w33
1 w31

1 > 0, µ ∈ B−
−}, there

exists two (l − 1)-dimensional surfaces

L̂2
2 =

{
µ : M1

2µ+ h.o.t. = M3
2µ+ h.o.t. = 0, w13

4 w33
4 w31

4 M1
4µ ≤ 0

}
∩ L2

2(µ)

and

L̂3
2 =

{
µ : M1

2µ+ h.o.t. = M3
2µ+ h.o.t. = 0, w13

4 w33
4 w31

4 M1
4µ ≤ 0

}
∩ L3

2(µ)

for
∣∣M1

1µ
∣∣ ≪

∣∣M1
3µ

∣∣1− 1
α and

∣∣M1
1µ

∣∣ ≫
∣∣M1

3µ
∣∣1− 1

α respectively, such that system
(1.1) has the second shape heterodimensional cycle near Γ as µ ∈ L̂2

2, µ ∈ L̂2
2,

respectively, and 0 < |µ| ≪ 1.

Remark 3.1. The second heterodimensional cycle consists of two saddles of (1,2)
type and one saddle of (2,1) type and is composed of one big orbit linking p1, p3
and two orbits linking p3, p2 and p2, p1 respectively (see Figure 3).

Remark 3.2. The existence of another second shape heterdimensional cycle com-
posed of one big orbit linking p3, p1 and two orbits linking p1, p2 and p2, p3 respec-
tively is analogous to Theorem 3.2, we do not repeat here.

Theorem 3.3. Suppose (A1)-(A5) are valid and Rank (M1
2 ,M

3
2 ,M

1
3 ,M

3
3 ) ≥ 3.

(1) If µ ∈ {µ : w33
1 w31

1 < 0, w33
4 w31

4 > 0, µ ∈ B+
− ∪ N+

−} or µ ∈ {µ : w33
1 w31

1 >
0, w33

4 w31
4 < 0, µ ∈ B−

+ ∪N−
+ }, there exists an (l − 2)-dimensional surface

H1
24(µ) =

{
µ :

∣∣M1
3µ

∣∣ = o(
∣∣M1

1µ
∣∣), ∣∣M1

2µ
∣∣ = o(

∣∣M1
4µ

∣∣), µ ∈ L1
2(µ) ∩ L1

4(µ)
}

with normal vector span{M1
2 ,M

1
3 } at µ = 0, which is tangent to the surface L23(µ),

system (1.1) has a 1-fold large 1-heteroclinic cycle near Γ as µ ∈ H1
24(µ) and

0 < |µ| ≪ 1.
(2) If µ ∈ {µ : w33

1 w31
1 < 0, w33

4 w31
4 > 0, µ ∈ B+

+ ∪ N+
+ } or µ ∈ {µ : w33

1 w31
1 >

0, w33
4 w31

4 < 0, µ ∈ B−
− ∪N−

− }, there exists two (l − 2)-dimensional surface

H2
24(µ) =

{
µ :

∣∣M1
1µ

∣∣ ≪ ∣∣M1
3µ

∣∣1− 1
α ,

∣∣M1
4µ

∣∣ ≪ ∣∣M1
2µ

∣∣1− 1
α , µ ∈ L2

2(µ) ∩ L2
4(µ)

}



Bifurcations of double heterodimensional. . . 2159

and

H3
24(µ) =

{
µ :

∣∣M1
1µ

∣∣ ≪ ∣∣M1
3µ

∣∣1− 1
α ,

∣∣M1
4µ

∣∣ ≪ ∣∣M1
2µ

∣∣1− 1
α , µ ∈ L3

2(µ) ∩ L3
4(µ)

}
both with normal vector span{M1

2 ,M
1
3 } at µ = 0 and tangent to the surface L23(µ),

system (1.1) has a 1-fold large 1-heteroclinic cycle near Γ as µ ∈ H2
24(µ) and

µ ∈ H3
24(µ), respectively, and 0 < |µ| ≪ 1.

(3) If µ ∈ {µ : w33
1 w31

1 < 0, w33
4 w31

4 > 0, µ ∈ B−
+ ∪N−

+ }, and H1
2 > 0, H1

4 > 0,
system (1.1) has two 1-fold large 1-heteroclinic cycles near Γ.

(4) If µ ∈ {µ : w33
1 w31

1 > 0, w33
4 w31

4 < 0, µ ∈ B+
− ∪N+

−}, there exists an (l − 2)-
dimensional surface H4

24 with normal vector span{M1
2 ,M

1
3 } and tangent to the

surface L23(µ) at µ = 0, where

H4
24(µ) =

{
µ : H1

2 = 0,H1
4 = 0, µ ∈ L4

2 ∩ L4
4

}
,

system (1.1) has one 2-fold large 1-heteroclinic cycles near Γ for µ ∈ H4
24.

Finally the coexistence of the large 1-heteroclinc cycle, the second shape het-
erodimensional cycle and double heterodimensional cycles are concluded in the the
last theorem.

Theorem 3.4. Suppose (A1)-(A5) are valid, Rank (M1
2 ,M

3
2 ,M

1
3 ,M

3
3 ) ≥ 3 and

0 < |µ| ≪ 1.
(1) System (1.1) does not have any types of heteroclinic cycles coexisting with

the persistent heterodimensional cycle Γ as µ ∈ {µ : µ ∈ L23(µ), w
13
1 w33

1 w31
1 M1

1µ >
0, w13

4 w33
4 w31

4 M1
4µ < 0}.

(2) System (1.1) has exactly the second shape heterodimensional cycle coexisting
with the 1-fold large 1-heteroclinic cycle near Γ if µ ∈ {µ : w33

4 w31
4 > 0, µ ∈

N−
+ ,H1

4 (µ) > 0, µ ∈ L
3

2(µ)}.
(3) System (1.1) has exactly the third heterdimensional cycle coexisting with the

another large 1-heteroclinic cycle near Γ if µ ∈ {µ : w33
1 w31

1 < 0, µ ∈ B−
+ ,H1

2 (µ) =

0, µ ∈ L4
2 ∩ L

3

4(µ)}.
(4) System (1.1) has exactly the double heterodimensional cycles coexisting with

the another large 1-heteroclinic cycle near Γ if µ ∈ L23(µ) and µ ∈ L
3

2(µ) ∩ L
3

4(µ).

Remark 3.3. “Another large 1-heteroclinic cycle” in the third and the fourth con-
clusions of Theorem 3.4 means the 2 fold heteroclinc orbit connecting p1 and p3 and
the 1 fold heteroclinic orbit connecting p3 and p1.

4. Conclusion
In the paper, we obtain the coexistence conditions of the large 1-heteroclinic orbits
and the persistent ∞-shape double heterodimensional cycles for the first time. As
well as, the coexistence conditions of the large 1-heteroclinic cycle and the het-
eroclinic cycle composed of three orbits connecting three saddle points, and two
heteroclinic orbits, respectively. These results are an effective supplement of ∞-
shape double heterodimensional cycles bifurcation with three saddles points and
have profound theoretical significance.

Since the problem we studied has multiple equilibria and the dimension of the
stable (unstable) manifolds at each equilibrium point is different, the analysis is
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rarely difficult, especially for giving expressions of bifurcation equations. In fact,
there are eight successor functions and four bifurcation equations. Under this cir-
cumstance, we only study some specific orbit bifurcations and obtain some bifurca-
tion results as much as possible, such as the large 1-heteroclinic cycle bifurcation.
For large n-heteroclinic cycle bifurcation and the other cases, we leave it for future
maybe with computer assistance.
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