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Abstract In this paper, we study the modified gauged Schrödinger equation
under some assumptions on the functions V and f . By using dual approach,
Jeanjean’s monotone trick and Mountain Pass Theorem, we obtain the stand-
ing wave solutions for the generalized modified Chern-Simons-Schrödinger sys-
tem.
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žaev identity, monotone trick, mountain pass theorem.

MSC(2010) 35J60, 35J20.

1. Introduction
In this paper, we are concerned with the following quasilinear Chern–Simons–Schrö-
dinger equation with general nonlinearity as follows:

−∆u+ V (x)u− κu∆(u2) + q
h2(|x|)
|x|2

(1 + κu2)u,

+ q
(∫ +∞

|x|

h(s)

s
(2 + κu2(s))u2(s)ds

)
u = f(u) in R2, (1.1)

where u : R2 → R is a radially symmetric function, κ, q are positive constants,
h(l) =

∫ l

0
u2(s)sds (l ≥ 0).

If q = 0, (1.1) reduces to the following quasilinear elliptic problem

−∆u+ V (x)u− κu(∆u2) = f(u) in R2. (1.2)

The solutions of (1.2) are related to the solitray wave solutions for the following
quasilinear Schrödinger equation

iϕt +∆ϕ−W (x)ϕ+ κϕ∆(|ϕ|2) + h(|ϕ|2)ϕ = 0 in R2. (1.3)
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where ϕ : R2×R → C, W : R2 → R is a given potential, h : R2×R → R is a suitable
function. The quasilinear equation of the form (1.3) was used for the superfluid film
equation in fluid mechanics by Kurihara [21]. For more physical background, we
can refer to [2,29] and references therien. Set ϕ = e−iwtu(x), where w ∈ R and u is
a real function satisfies (1.3) if and only if the function u solves the Eq. (1.2) with
V (x) =W (x)− w a new potential.

Compared to the semilinear problem, the quasilinear case (k 6= 0) becomes
much more complicated since the effect of the non-convex term. A major difficulty
of (1.2) here is that the natural functional corresponding to (1.2) is not well defined
for all u ∈ H1

r (R2). In recent years, some ideas and methods have been used to
overcome this difficulty. For example, by using a constrained minimization, Ruiz
and Siciliano [36] proved for the first time that (1.2) has a ground state solution,
by using the change of variables, the problem (1.2) was transformed into a related
semilinear problem in [27]. Along this lines, there have been a large number of
works about standing wave solutions of problem (1.2), we refer the reader to [5–7,
13,44,45,48,50,51] and the references therein.

If κ = 0, (1.1) turns into the following nonlocal elliptic problem

−∆u+ V (x)u+ q
h2(|x|)
|x|2

u+ 2q
(∫ +∞

|x|

h(s)

s
u2(s)ds

)
u = f(u), (1.4)

Eq. (1.4) is usually to seek the standing waves of the following nonlinear Chern-
Simons-Schrödinger system

iD0ϕ+ (D1D1 +D2D2)ϕ+ f(ϕ) = 0,

∂0A1 − ∂1A0 = −Im(ϕD2ϕ),

∂0A2 − ∂2A0 = −Im(ϕD1ϕ),

∂1A2 − ∂2A1 = − 1
2 |ϕ|

2,

(1.5)

where i denotes the imaginary unit, ∂0 = ∂
∂t , ∂1 = ∂

∂x1
, ∂2 = ∂

∂x2
for (t, x1, x2) ∈

R1+2, ϕ : R1+2 → C is the complex scalar field, Aj : R1+2 → R is the gauge
field, Dj = ∂j + iAj is the covariant derivative for j = 0, 1, 2. The Chern–Simons–
Schrödinger system was first proposed and studied by Jackiw and Pi [16–18], con-
sisting of Schrödinger equation augmented by the gauge field. The two-dimensional
Chern–Simons–Schrödinger system is a non-relativistic quantum model describing
the dynamics of a large number of particles in the plane, in which these particles
interact directly and through the spontaneous electromagnetic field. Furthermore,
this feature of the system is important for the study of the high-temperature super-
conductor, fractional quantum Hall effect and Aharovnov–Bohm scattering. For the
further mathematical and physical backgrounds of (1.5), we refer readers to [25,26],
and the references therein.

As usual in Chern–Simons theory, (1.5) is invariant under the gauge transofr-
mation

ϕ 7→ ϕeiχ, Aj 7→ Aj − ∂jχ,

where χ : R1+2 → R is an arbitrary C∞ function. The existence of standing waves of
(1.5) with power function type nonlinearity, that is f(u) = λ|u|p−1u(p > 1, λ > 0),
has been investigated in [3, 4, 12,23,24,34], they look for solutions for (1.5) of type

ϕ(t, x) = u(|x|)eiwt, A0(t, x) = k(|x|),
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A1(t, x) =
x2
|x|2

h(|x|), A2(t, x) = − x1
|x|2

h(|x|), (1.6)

where w > 0 is a given frequency, λ > 0 and p > 1, u, k, h are real valued functions
depending only on |x|. The ansatz (1.6) satisfies the Coulomb gauge condition
∂1A1 + ∂2A2 = 0. Byeon et al. [3] got the following nonlocal semi-linear elliptic
equation

−∆u+ wu+
h2(|x|)
|x|2

u+
(∫ +∞

|x|

h(s)

s
u2(s)ds

)
u = λ|u|p−1u in R2. (1.7)

Because of the appearance of the Chern-Simons term(∫ +∞

|x|

h(s)

s
u2(s)ds+ h2(|x|)

|x|2
)
u,

Eq. (1.7) is not a pointwise identity any more. This nonlocal term cause some
mathematical difficulties that make the study of it is rough and particulary inter-
esting. Following [3], (1.7) possesses a variational structure, that is, the standing
wave solutions are obtained as critical points of the energy functional associated to
(1.7). For the case p ∈ (1, 3), Pomponio and Ruiz [34] have studied the existence and
nonexistence of positive solutions for (1.7) under the different range of frequency
w. By the method of invariant sets of descending flow and a novel perturbation
approach, the authors in [24] studied the existence and multiplicity of sign-changing
solutions. For the case p ∈ (5,+∞), in [15], Huh studied the existence of infinitely
many solutions by using the Mountain Pass Theorem. This result was improved
by Seok [38]. After then, the authors in [23] proved the existence of least energy
sign-changing radial solutions. In [12], the authors studied the existence of multiple
nodal solutions. For the case p ∈ (3, 5), motivated by [35], by using a constraint
minimization taking into account the Nehari-Pohožaev manifold, the authors in [3]
obtained a positive solution of problem (1.7). For the nice properties of the gener-
alized Nehari manifold, we refer to previous works in [31,32] and references therein.
Luo [28] obtained the existence, multiplicity, quantitative property and asymptotic
behavior of normalized solutions with prescribed L2-norm for Eq. (1.7). For the
case p = 3, the initial value problem, wellposedness, global existence, blow-up and
scattering etc. have been considered in [1,14,25,26,30]. Furthermore, many authors
study the general nonlinearity case. For example, Wan and Tan [42] studied the ex-
istence, non-existence and multiplicty of standing waves for asymptotically 1-linear
nonlinearity case. Tang et al. [40] proved the existence and multiplicty of nontrivial
solutions which generalized the result in [15]. Ji et al. [20] proved the existence of
positive solutions for elliptic equations with the critical exponential growth. Li et
al. [22] generalizes the results of [20]. For more related work about the system, we
refer to [8, 10,33,39,41,47,49,52] and the references therein.

To best of our knowledge, based on the work of [3], there are few articles fo-
cused on Chern-Simons term for modified Schrödinger equation, except for [11]
which proved the existence and nonexistence of solutions for (1.1) without poten-
tial V replacing with a positive constant w and f(u) = |u|p−1u(p > 1) by using
constrained minimizatioin, the Pohozaev–Nehari manifold and [21] which founded
the ground state solutions of (1.1) involving symmetric variable potential V and
f(u) = |u|p−1u(p > 5) by using the change of variables which reduces the quasilin-
ear problem to a semilinear one. Motivated by arguments in [7, 51], in the present
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paper, we also try to consider problem (1.1) with symmetric variable potential by
a dual approach, and then establish the existence of ground state solutions and in-
finitely many solutions by Jeanjean’s monotone trick and Mountain Pass Theorem,
respectively. In order to state the first result of this paper, we give the following
conditions on potential V ∈ C1(R2,R) and f ∈ C(R,R):

(V1) V (x) = V (|x|) and there exists 0 < β ≤ γ, such that β ≤ V (x) ≤ γ for all
x ∈ R2.

(V2) The function ∇V (x) · x ≥ 0 for all x ∈ R2.
(f1) lim

|s|→0

f(s)
s = 0 and there exist constants C > 0 and q ∈ (2,+∞) such that

|f(s)| ≤ C(1 + |s|q−1), ∀s ∈ R.

(f2) There exists a constant p ∈ (6,+∞) such that lim
|s|→+∞

F (s)
|s|p = +∞, where

F (s) =
∫ s

0
f(t)dt.

(f3) There exists two constants ϵ > 8 and ξ ∈ (0, ϵβ−2
2ϵ ] such that

1

2ϵ
sf(s)− F (s) + ξs2 ≥ 0, ∀s ∈ R,

and sf(s) ≥ 0 for all s ∈ R2.
Let X = H1

r (R2), in general, the problem like (1.1) has an energy functional
I : X → R of the form

I(u) =
1

2

∫
R2

(
(1 + 2κu2)|∇u|2 + V (x)u2

)
dx+

q

2

∫
R2

u2(x)

|x|2
(∫ |x|

0

su2(s)ds
)2

dx

+
q

4
κ

∫
R2

u4(x)

|x|2
(∫ |x|

0

su2(s)ds
)2

dx−
∫
R2

F (u)dx.

It is well known that I is not well defined in general in X and the term
∫
R2 u

2|∇u|2dx
is not convex. This cause that the usual variational techniques cannot be applied
directly to I. To overcome this difficulty, we apply an argument developed by
Colin-Jeanjean [9] and Liu et al [27]. We make use of a change of u = g(v), where
g′(t) = 1/

√
1 + 2g2(t) on [0,+∞) and g(−t) = −g(t) on (−∞, 0], then define an

associated equation that we shall call dual. If v is a weak solution of

−∆v + V (x)g(v)g′(v) + q
ĥ2[g(v(|x|))]

|x|2
(1 + κg2(v))g(v)g′(v)

+ q
(∫ +∞

|x|

ĥ[g(v(s))]

s
(2 + κg2(v(s))g2(v(s))ds

)
g(v)g′(v) = f(g(v))g′(v), (1.8)

where ĥ2[g(v(|x|))] :=
( ∫ |x|

0
g2(v(s))sds

)2

, then u = g(v) ∈ X is a weak solution of
(1.1). Therefore, after the change of variables, the energy functional on X associated
to (1.8) in form can be transformed into

J(v) =
1

2

∫
R2

(
|∇v|2 + V (x)g2(v)

)
dx+

q

2
C(g(v)) + q

4
κD(g(v))−

∫
R2

F (g(v))dx,

(1.9)
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where

C(g(v)) :=
∫
R2

g2(v(x))

|x|2
(∫ |x|

0

sg2(v(s))ds
)2

dx,

D(g(v)) :=

∫
R2

g4(v(x))

|x|2
(∫ |x|

0

sg2(v)(s)ds
)2

dx.

We note from the Cauchy inequality that for some C0 > 0,

ĥ2[gv((|x|))] :=
(∫ |x|

0

sg2(v(s))ds
)2

=
(∫

B|x|

1

2π
g2(v(y))dy

)2

≤ C0|x|2‖g(v)‖4L4 .

Then for v ∈ X, we have

C(g(v)) ≤ C0‖g(v)‖4L4‖g(v)‖2L2 , (1.10)
D(g(v)) ≤ C0‖g(v)‖8L4 . (1.11)

Our first result is as follows:

Theorem 1.1. Assume that the conditions (V1)-(V2) and (f1)-(f3) are satisfied.
Then problem (1.1) has a ground state solution.

Another purpose of the present is to establish the infinitely many nontrivial so-
lutions for problem (1.1). For this purpose, besides (V1), we introduce the following
assumptions on f :

(f ′1) there exist constants c′1, c′2 > 0 and 2 < j < 8, j < r < +∞ such that

|f(s)| ≤ c′1|s|j−1 + c′2|s|r−1, ∀s ∈ R;

(f ′2) lim
|s|→+∞

F (s)
|s|8 = +∞ and there exists r0 ≥ 0 such that F (s) ≥ 0 for all s ∈ R

and |s| ≥ r0;
(f ′3) F̄ (s) :=

1
8f(s)s− F (s) ≥ 0 and there exists C1 > 0 and τ > 1 such that

|F (s)|τ ≤ C1|s|2τ F̄ (s)

for all s ∈ R with s large enough;
(f4) f(s) = −f(−s) for all s ∈ R.

Our second result is as follows:

Theorem 1.2. Assume that the conditions (V1), (f ′1)-(f ′3) and (f4) are satisfied.
Then problem (1.1) possess infinitely many solutions {un} such that ‖un‖ → +∞
and I(un) → ∞.

Remark 1.1. The authors in [6] considered the existence of ground state solutions
for quasilinear equation, which improved the main results obtained in [45]. Very
recently, using the similar agruments in [46], the authors generalize the results from
quasilinear schrödinger equation [5] to modified Chern-Simons-Schrödinger equation
and improved the main results in [11]. Furthermore, our results in Theorem 1.1-
Theorem 1.2 extend some results for quasilinear schrödinger equation [6,51] to the
generalized modified Chern-Simons-Schrödinger systems.
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An outline of this paper is as follows: In section 2, we give some preliminaries.
In section 3, we complete the proof of Theorem 1.1 Consequently, the proof of
Theorem 1.2 is given in section 4.
Notations. Throughout this paper, we make use of the following notations:

• C, ci, Ci(i = 0, 1, 2.....) possibly denote positive constants, not necessarily the
same one;

• Lr(R2) denotes the Lebesgue space with norm ‖v‖Lr =
(∫

R2 |v|rdx
)1/r, where

1 ≤ r < +∞;
• H1(R2) denotes a sobolev space with norm ‖v‖ =

(∫
R2(v

2 + |∇v|2)dx
)1/2;

• H1
r (R2): = {v ∈ H1(R2): v(x) = v(|x|)};

• “⇀ ” and “ → ” denote weak and strong convergence, respectively.

2. Variational framework and preliminaries
In this section, we show the variational framework and some preliminary lemmas
which are crucial for proving our results. Let us recall some properties of the change
of variables: g : R → R, which are proved in [9, 27,48] as follows:

Lemma 2.1 ( [9,27,48]). The function g(t) and its derivative satisfy the following
properties: (g1) g is uniquely defined, C∞ and invertible;
(g2)

g(t)
t → 1 as t→ 0;

(g3) |g(t)| ≤ |t| for all t ∈ R;
(g4) g(t)/

√
t→ 21/4 as t→ +∞;

(g5) |g(t)| ≤ 21/4|t|1/2 for all t ∈ R;
(g6) g(t)/2 ≤ tg′(t) ≤ g(t) for all t > 0;
(g7) g

2(t)/2 ≤ tf(t)g′(t) ≤ g2(t) for all t ∈ R;
(g8) there exists a positive constant C such that

|g(t)| ≥

{
C|t|, if |t| ≤ 1,

C|t|1/2, if |t| ≥ 1;

(g9) |g′(t)| ≤ 1 for all t ∈ R;
(g10) |g(t)g′(t)| ≤ 1/

√
2 for all t ∈ R;

(g11) for all each α > 0, there exists a positive constant C(α) such that

|g(αt)|2 ≤ C(α)|g(t)|2.

Arguing as in [3, 46] standard computation show that

Proposition 2.1. The functional J is continuously differentiable on X and its
critical point v is a weak solution of (1.8).

Moreover, following Proposition2.1, for any ψ ∈ X,

〈J ′(v), ψ〉 =
∫
R2

∇v∇ψdx+
∫
R2

V (x)g(v)g′(v)ψdx+q
∫
R2

{ ĥ2[g(v(|x|))]
|x|2

[1+κg2(v)]

+

∫ +∞

|x|

ĥ[g(v(s))]

s
(2 + κg2(v(s)))g2(v(s))ds

}
g(v)g′(v)ψdx (2.1)

−
∫
R2

f(g(v))g′(v)ψdx.
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In particular, for ς = 2 or ς = 4, by using the integrate by parts, we have∫
R2

ĥ2[g(v(|x|))]
|x|2

gς(v)dx =

∫
R2

(∫ +∞

|x|

gς(v(s))ĥ[g(v(s))]

s
ds

)
g2(v)dx. (2.2)

By a standard argument as in [3,11,45], we establish the following identities for
a solution of (1.8).

Lemma 2.2. Any weak solution of (1.8) satisfies Nehari identity N(v) = 0 and
the Pohožaev identity P (v) = 0, where

N(v) =

∫
R2

(
|∇v|2 + V (x)g(v)g′(v)v + q

ĥ2[g(v(|x|)]
|x|2

(1 + κg2(v))g′(v)v
)

dx

+ q
(∫

R2

(∫ +∞

|x|

ĥ[g(v(s))]

s
(2 + κg2(v(s)))g2(v(s))ds

)
g(v)g′(v)vdx

)
−
∫
R2

f(g(v))g′(v)vdx,

(2.3)

P (v) =

∫
R2

(
V (x)g2(v) +

1

2
∇V (x) · xg2(v)

)
dx+ 2qC(g(v)) + qκD(g(v)

− 2

∫
R2

F (g(v))dx.
(2.4)

Next, the following convergence lemma is necessary for proving the compactness:

Lemma 2.3 ( [11]). Suppose that a sequence {vn} converges weakly to a function
v in X as n → +∞. Then for each ψ ∈ X, C(vn), C′(vn)ψ and C′(vn)vn, D(vn)
and D′(vn)ψ, D′(vn)vn converges up to a subsequence to C(v), C′(v)ψ and C′(v)v,
D(v) and D′(v)ψ, D′(v)v, respectively, as n→ +∞.

Finally, we note that the following inequality holds only for the functions in X.

Proposition 2.2 ( [3]). For v ∈ X, the following inequality holds∫
R2

|v|4dx ≤ 2
(∫

R2

|∇v|2dx
) 1

2
(∫

R2

v2

|x|2
(∫ |x|

0

sv2(s)ds
)2

dx
) 1

2

.

3. Existence of ground state solutions
To complete the proof of Theorem 1.1, we will use the following critical point
theorem.

Theorem 3.1 ( [19]). Let (E, ‖ · ‖) be a Banach space and let T ⊂ R+ be an
interval. Consider a family Φη of C1 functional on E of the form

Φη(v) = A(v)− ηB(v), ∀η ∈ T,

where B(v) ≥ 0 and either A(v) → +∞ or B(v) → +∞ as ‖v‖ → +∞. Assume
that there are two points v1, v2 such that

cη = inf
γ∈Γη

max
t∈[0,1]

Φη(γ(t)) > max
{
Φη(v1),Φη(v2)

}
, ∀η ∈ T,

where Γη =
{
γ ∈ C([0, 1], E) : γ(0) = v1, γ(1) = v2

}
. Then for almost every η ∈ T ,

there is a sequence {vn} ⊂ E such that
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(i) {vn} is bounded;
(ii) Φη(vn) 7→ cη;

(iii) Φ′
η(vn) 7→ 0 in the dual E−1 of E.

Moreover, the map η 7→ cη is nonincreasing and continuous from the left.

Letting T = [δ, 1], where δ ∈ (0, 1) is a positive constant, we define the following
energy functional by

Jη(v) =
1

2

∫
R2

(
|∇v|2 + V (x)g2(v)

)
dx+

q

2
C(g(v)) +

q

4
κD(g(v)− η

∫
R2

F (g(v))dx

for all v ∈ X. Similarly, for each η ∈ [δ, 1], the functional Jη possesses the mountain-
pass geometry. Define the mountain pass level

cη = inf
γ∈Γη

max
t∈[0,1]

Jη(γ(t)),

where Γη =
{
γ ∈ C([0, 1], X) : γ(0) = 0, Jη(γ(1)) < 0

}
. Clearly c1 ≤ cη ≤ cδ for

each η ∈ T .

Lemma 3.1. Assume that (f1)-(f2) and (V1) are satisfied. Then there holds:

(i) there exists v ∈ X\{0} such that Jη(v) < 0 for all η ∈ T ;

(ii) cη = inf
γ∈Γ

max
t∈[0,1]

Jη(γ(t)) > max
{
Jη(0), Jη(v)

}
for all η ∈ T , where Γ =

{
γ ∈

C([0, 1], X) : γ(0) = 0, γ(1) = v
}

;

(iii) for any v ∈ X\{0}, there exists a constant C > 0 independent of η such that
cη ≤ C for all η ∈ T .

Proof. (i) Let v ∈ X\{0} be fixed. For any η ∈ T , by (f2), we infer that

Jη(v) ≤ Jδ(v) =
1

2

∫
R2

(
|∇v|2 + V (x)g2(v)

)
dx+

q

2
C(g(v)) +

q

4
κD(g(v)

− δ

∫
R2

F (g(v))dx,

we hereafter denote vt by vt(x) = (v)t(x) = g−1(tαg(v(tx))) for some α > 0,
satisfying 1 < α < 2/8− p if p ∈ (6, 8) and α > 1 arbitrary for p ≥ 8, then by direct
calculations, we have C(g(vt)) = t6α−4C(g(v)) and D(g(vt)) = t8α−4D(g(v)). Thus
we get

Jδ(vt) =
t2α

2

∫
R2

1 + 2t2αg2(v)

1 + 2g2(v)
|∇v|2dx+

t2α−2

2

∫
R2

V (t−1x)g2(v)dx

+
t6α−4

2
qC(g(v)) + t8α−4

4
qκD(g(v))− δt−2

∫
R2

F (tαg(v))dx, ∀v ∈ X.

From (f1) and (f2), for every θ > 0, there exists Cθ > 0 such that

F (ϱ) ≥ θ|ϱ|p − Cθϱ
2, ∀ϱ ∈ R. (3.1)
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Which implies that Jδ(vt) → −∞ as t → +∞. Thus we can take a function
v = g−1(tα0 v(t0x)) ∈ X\{0} with sufficiently large t0 > 0 to satisfy Jη(v) ≤ 0 for all
η ∈ T .

(ii) Let H(s) := − 1
2g

2(s) + F (g(s)), then by (f1) and (g2), (g4), we have

lim
s→0

H(s)

s2
= lim

s→0

(
− 1

2

(g(s)
s

)2

+
F (g(s))

s2

)
= −1

2
, (3.2)

lim
s→+∞

H(s)

|s|q
= lim

s→+∞

(
− 1

2

(g(s)√
s

)2( 1

|s|q−1

)
+
F (g(s))

|s|q
)
≤ C, (3.3)

for all q ∈ (2,+∞). It follows from (3.1)-(3.3) that for any ε > 0, there exist Cε > 0
such that

H(s) ≤ −1

2
s2 + εs2 + Cε|s|q.

Thus by (g3) and (V1), we have

Jη(v) ≥
1

2

∫
R2

(|∇v|2 + βv2)dx− η

∫
R2

(ε|v|2 + Cε|v|q)dx

≥min{1
4
,
β

4
}‖v‖2 − C‖v‖q,

where ε is small enough. Since q > 2, we deduce that Jη has a strict local minimum
at 0 and hence cη > 0.

(iii) By point (i) and (ii), define

γ0(t) =

{
0, if t = 0,

g−1((tt0)
αg(u(tt0x))), if t > 0.

Clearly, γ0(t) ∈ Γ and for any v ∈ X\{0}, cη ≤ max
t>0

Jη(γ0(t)) ≤ max
t>0

Jδ(γ0(t)) for
all η ∈ T . Thus we can choose C > max

t>0
Jδ(γ0(t)) ≥ 0 such that cη ≤ C. This

completes the proof.
By Theorem 3.1, it is easy to know that for any a.e. η ∈ T , there exists a

bounded sequence {vn} ⊂ X such that Jη(vn) → cη and J ′
η(vn) → 0, which is

called (PS)cη sequence.

Lemma 3.2. Let η ∈ [δ, 1] be fixed. Assume that {vn} ⊂ X is a sequence of obtain
above. Then there exists vη ∈ X\{0}, such that Jη(vη) = cη and J ′

η(vη) = 0.

Proof. Since {vn} is bounded in X, up to a subsequence, there exists vη ∈ X\{0}
such that vn ⇀ vη in X, vn → vη in Lq(R2) for all q > 2 and vn → vη a.e. in R2.
By Lebesgue dominated convergence Theorem shows that vη is a critical point of
Jη. Let F̃ (x, s) = 1

2V (x)s2 − 1
2V (x)g2(s) + ηF (g(s)), where F̃ (x, s) =

∫ s

0
f̃(x, t)dx.

By (f1) and (g2)-(g3), we have

lim
s→0

F̃ (x, s)

s2
= lim

s→0

(1
2
V (x)− 1

2
V (x)

(g(s)
s

)2

+ η
F (g(s))

s2

)
= 0, (3.4)

and

lim
|s|→+∞

F̃ (x, s)

|s|q
≤ C. (3.5)
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By (3.4) and (3.5), we have that for any ε > 0, there exists Cε > 0 such that

|F̃ (x, s)| ≤ εs2 + Cε|s|q, ∀s ∈ R.

It follows from the above facts∫
R2

(f̃(x, vn)− f̃(x, vη))(vn − vη)dx→ 0, as n→ +∞.

Moreover, by virtue of Lemma 2.4 and (g7), we have

o(1) = 〈J ′
η(vn)− J ′

η(vη), vn − vη〉 =
∫
R2

|∇(vn − vη)|2dx+ V (x)|vn − vη|2dx

+ q〈C′(g(vn))− C′(g(vη)), vn − vη〉
+ qκ〈D′(g(vn))−D′(g(vη)), vn − vη〉

−
∫
R2

(f̃(x, vn)− f̃(x, vη))(vn − vη)dx

≥min{1, β}‖vn − vη‖2 + o(1),

which implies that vn → vη in X. Thus vη is a nontrivial critical point of Jη with
Jη(vη) = cη. By the strong maximum principle, we know that vη is positive. This
completes the proof.
Proof of Theorem 1.1. The proof of Theorem 1.1 consist of the three steps.

Step 1: In view of Theorem 3.1, for a.e. η ∈ T , there exists vη ∈ X such
that vn ⇀ vη 6= 0 in X, Jη(vn) → cη and J ′

η(vn) → 0. By Lemma 3.2, we have
Jη(vη) = cη and J ′

η(vη) = 0. Thus take {ηn} ⊂ T such that ηn → 1, vηn
∈ X,

J ′
ηn
(vηn) = 0 and Jηn(vηn) = cηn . Next, we prove that {vηn} is bounded in X.

Similar to Lemma 2.3, we have∫
R2

(
|∇vηn

|2 + V (x)g(vηn
)g′(vηn

)vηn

+ q
ĥ2(g(vηn(|x|))

|x|2
(1 + κg2(vηn))g(vηn)g

′(vηn)vηn

)
dx

+ q

∫
R2

(∫ +∞

|x|

ĥ[g(vηn(s))]

s
(2 + κg2(vηn

(s)))g2(vηn
(s))ds

)
g(vηn

)g′(vηn
)vηn

dx

=η

∫
R2

f(g(vηn
))g′(vηn

)vηn
dx,

and∫
R2

(
V (x)g2(vηn)+

1

2
∇V (x) · xg2(vηn)+q

ĥ2[g(vηn
(|x|))]

|x|2
(2+κg2(vηn))g

2(vηn)
)

dx

=2η

∫
R2

F (g(vηn))dx.

Hence, we infer that, by(f3), (V2) and (g7),

Jηn(vηn)

≥ ϵ

ϵ− 2

∫
R2

η
(1
ϵ
f(g(vηn

))g′(vηn
)vηn

− F (g(vηn
))
)

dx+
ϵ
2 − 2

ϵ− 2

∫
R2

|∇vηn
|2dx
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+
1
2

ϵ− 2

∫
R2

∇V (x) · xg2(vηn
)dx+

ϵ
2

ϵ− 2

∫
R2

V (x)g2(vηn
)dx

− 1

ϵ−2

∫
R2

g(vηn
)g′(vηn

)vηn
dx+

ϵ
8−1

ϵ−2
q

∫
R2

{ ĥ2(g(vηn
(|x|))

|x|2
(1+κg2(vηn

))g(vηn
)

+

∫ +∞

|x|

ĥ(g(vηn
(s)))

s
(2 + κg2(vηn

(s)))g2(vηn
(s))ds

}
g(vηn

)g′(vηn
)vηn

dx

≥ ϵ

ϵ−2

∫
R2

η
( 1

2ϵ
f(g(vηn))g(vηn)−F (g(vηn)) + ξg2(vηn)

)
dx+

ϵ
2 − 2

ϵ− 2

∫
R2

|∇vηn |2dx

+
ϵ
2

ϵ− 2

∫
R2

V (x)g2(vηn
)dx− 1

ϵ− 2

∫
R2

g2(vηn
)dx− ϵηξ

ϵ− 2

∫
R2

g2(vηn
)dx

≥
ϵ
2 − 2

ϵ− 2

∫
R2

|∇vηn
|2dx+

1
2ϵβ − 1− ϵηξ

ϵ− 2

∫
R2

g2(vηn
)dx

≥C
(∫

R2

(|∇vηn |2dx+ g2(vηn)dx
)
. (3.6)

Since c1≤Jηn
(vηn

)=cηn
≤ cδ, we conclude the boundedness of sequence {‖∇vηn

‖L2

}. From (g1), (g3) and (g8), it holds∫
R2

|vηn |2dx =

∫
|vηn |>1

|vηn |2dx+

∫
|vηn |≤1

|vηn |2dx

≤ C
(∫

R2

|g(vηn)|4dx+

∫
R2

|g(vηn)|2dx
)
.

Then by (1.10), Proposition 2.2 and (3.6), we infer that there exists C > 0 such
that

∫
R2 |vηn

|2dx ≤ C.
Step 2: Next, we will prove that there exists a nontrivial critical point of J .

Since Jηn
(vηn

) = cηn
≤ cδ, {vηn

} is bounded in X by step 1. Then by Theorem 3.1,
we get cηn

→ c1. Therefore,

J(vηn
) = Jηn

(vηn
) + (ηn − 1)

∫
R2

F (g(vηn
))dx = cηn

+ o(1) = c1,

and for any φ ∈ X\{0}, there holds

〈J ′(vηn
), φ〉 =〈J ′

ηn
(vηn

), φ〉+ (ηn − 1)

∫
R2

f(g(vηn
))g′(vηn

)φdx

=o(1).

Then {vηn
} is a bounded (PS)c1 sequence of J . This implies that J has a critical

point v ∈ X satisfying J(v) = c1, J ′(v) = 0.
Step 3: To seek ground state solutions, we need to define ϖ = inf{J(v) : v 6=

0, J ′(v) = 0}. By step 1, we can deduce that ϖ ≥ 0. Let {vn} be a sequence such
that J(vn) → ϖ, J ′(vn) = 0. Similar argument in step 1, 2, we can show that {vn}
is a bounded (PS)ϖ sequence of I. Similar arguments in Lemma 3.2, we can prove
that there exists a function v̄ ∈ X such that J(v̄) = ϖ, J ′(v̄) = 0 which shows that
ū = g(v̄) is a ground state solution of (1.1). This completes the proof.
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4. Existence of infinitely many solutions
Recall that a sequence {vn} ⊂ X is said to be a (C)c-sequence if J(vn) → c and
(1 + ‖vn‖)J ′(vn) → 0. X is said to satisfy the (C)c-condition if any (C)c-sequence
has a convergence subsequence. To prove Theorem 1.2, we state the symmetric
Mountain Pass Theorem of Ranbinowitz (see [37], Theorem 9.12).

Proposition 4.1. Let X be an infinite dimensional Banach space, X = Y ⊕ Z,
where Y is finite dimensional. If φ ∈ C1(X,R) satisfies (C)c-condition for all c > 0
and
(i) φ(0) = 0, φ(−u) = φ(u) for all u ∈ X;
(ii) there exist constants ρ, ϱ > 0 such that φ|∂Bρ∩Z ≥ ϱ;
(iii) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such that
φ(u) ≤ 0 on X̃ \BR;
then φ possesses an unbounded sequence of critical values.

Lemma 4.1. Assume that (V1), (f ′1)-(f ′3) are satisfied. Then J satisfies (C)c-
condition.

Proof. Let {vn} ⊂ X be such that

J(vn) → c and (1 + ‖vn‖)J ′(vn) → 0. (4.1)

Then, there is a constant C > 0 such that we have

J(vn)−
1

8
〈J ′(vn), vn〉 ≤ C. (4.2)

We first prove that there exists C > 0 such that∫
R2

(
|∇vn|2 + V (x)g2(vn)

)
dx ≤ C.

Suppose to the contrary that

A2
n :=

∫
R2

(
|∇vn|2 + V (x)g2(vn)

)
dx→ +∞.

Setting ḡ(vn) := g(vn)/An, then ‖ḡ(vn)‖ ≤ 1. Up to a subsequence, we may assume
that ḡ(vn) ⇀ w in X, ḡ(vn) → w in Ls(R2), 2 < s < +∞, ḡ(vn) → w in Ls

loc(R2),
2 ≤ s < +∞ and ḡ(vn) → w a.e. on R2. Set φn = g(vn)

g′(vn)
, then there is a constant

c3 > 0 such that ‖φn‖ ≤ c3‖vn‖. Since {vn} is a (C)c-sequence of J , then from
(4.2), we obtain

C ≥J(vn)−
1

8
〈J ′(vn), φn〉

=
1

8

∫
R2

(2 + (g′(vn))
2)|∇vn|2dx+

3

8

∫
R2

V (x)g2(vn)dx+
1

8
qC(g(vn)) (4.3)

+

∫
R2

[
1

8
f(g(vn))g(vn)− F (g(vn))]dx,

which implies that

C ≥
∫
R2

F̄ (g(vn))dx. (4.4)
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It follows from (1.9), Proposition 2.2 and (4.1), (4.3), (g6)-(g7) that

lim
n→+∞

∫
R2

|F (g(vn))|
A2

n

dx = 1/2. (4.5)

For 0 ≤ a < b, let

Ωn(a, b) = {x ∈ R2 : a ≤ |g(vn(x))| < b}.

If w = 0, then ḡ(vn) → 0 in Ls
loc(R2), 2 ≤ s < +∞, ḡ(vn) → 0 in Ls(R2),

2 < s < +∞. For any 0 < ε < 1
16 , there exist large r1, N > 0 such that∫

Ωn(0,r1)

|F (g(vn))|
|g(vn)|2

|ḡ(vn)|2dx ≤
∫
Ωn(0,r1)

c′1|g(vn)|j + c′2|g(vn)|r

|g(vn)|2
|ḡ(vn)|2dx

≤ (c′1r
j−2
1 + c′2r

r−2
1 )

∫
Ωn(0,r1)

|ḡ(vn)|2 < ε (4.6)

for all n > N . Set τ ′ = τ
τ−1 . Since τ > 1, one see that 2τ ′ ∈ (2,+∞). Hence, it

follows from(f ′3) that∫
Ωn(r1,+∞)

|F (g(vn))|
|g(vn)|2

|ḡ(vn)|2dx

≤
(∫

Ωn(r1,+∞)

( |F (g(vn))|
|g(vn)|2

)τ

dx
) 1

τ
(∫

Ωn(r1,+∞)

|ḡ(vn)|2τ
′
dx

) 1
τ′

≤ C
1
τ
1

(∫
Ωn(r1,+∞)

F̄ (g(vn))dx
) 1

τ
(∫

Ωn(r1,+∞)

|ḡ(vn)|2τ
′
)

dx) 1
τ′ (4.7)

≤ C2

(∫
Ωn(r1,+∞)

|ḡ(vn)|2τ
′
dx

) 1
τ′

≤ C2

(∫
R2

|ḡ(vn)|2τ
′
dx

) 1
τ′
< ε

for all n > N . Combining (4.6) with (4.7), we have∫
R2

|F (g(vn))|
A2

n

dx =

∫
Ωn(0,r1)

|F (g(vn))|
|g(vn)|2

|ḡ(vn)|2dx

+

∫
Ωn(r1,+∞)

|F (g(vn))|
|g(vn)|2

|ḡ(vn)|2dx < 2ε <
1

8
,

for all n > N , which contradicts (4.5).
If w 6= 0, then meas(Ω) > 0, where Ω := {x ∈ R2 : w 6= 0}. For x ∈ Ω, we have

|g(vn)| → +∞ as n → +∞. Hence Ω ⊂ Ωn(r0,+∞) for large n ∈ N , where r0 is
given in (f ′2). By (f ′2), we have

F (g(vn))

|g(vn)|8
→ +∞ as n→ +∞.

Hence, using Fatou’s Lemma, we have∫
Ω

F (g(vn))

|g(vn)|8
dx→ +∞ as n→ +∞. (4.8)
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It follows from (4.1) and (4.8) that

0 = lim
n→+∞

c+ o(1)

A2
n

= lim
n→+∞

J(vn)

A2
n

= lim
n→+∞

1

A2
n

(1
2

∫
R2

(
|∇vn|2 + V (x)g2(vn)

)
dx+

q

2
C(g(vn))

+
q

4
kD(g(vn))−

∫
R2

F (g(vn))dx
)

= lim
n→+∞

(1
2
+
q

2

C(g(vn))
A2

n

+
qk

4

D(g(vn))

A2
n

−
∫
Ωn(0,r0)

|F (g(vn))|
|g(vn)|2

|ḡ(vn)|2dx

−
∫
Ωn(r0,+∞)

|F (g(vn))|
|g(vn)|2

|ḡ(vn)|2dx
)

≤1

2
+ lim sup

n→+∞

(
(c′1r

j−2
0 + c′2r

r−2
0 )

∫
R2

|ḡ(vn)|2dx

−
∫
Ωn(r0,+∞)

|F (g(vn))|
|g(vn)|2

|ḡ(vn)|2dx
)

≤C − lim inf
n→+∞

∫
Ω

|F (g(vn))|
|g(vn)|8

|g(vn)|2|ḡ(vn)|8dx

=−∞,

which is a contradiction. Thus, there exists C > 0 such that∫
R2

(
|∇vn|2 + V (x)g2(vn)

)
dx ≤ C.

Next, we prove that {vn} is bounded in X, we claim that there exists C > 0 such
that

A2
n :=

∫
R2

(
|∇vn|2 + V (x)g2(vn)

)
dx ≥ C‖vn‖2. (4.9)

In fact, we may assume that vn 6= 0 (if not, the conclusion is trivial). If this
conclusion is not true, up to a subsequence, we have A2

n

∥vn∥2 → 0. Set wn = vn
∥vn∥ and

ln = g2(vn)
∥vn∥2 . Then ∫

R2

(
|∇wn|2 + V (x)ln(x)

)
dx→ 0.

Hence,∫
R2

|∇wn|2dx→ 0,

∫
R2

V (x)ln(x)dx→ 0 and
∫
R2

w2
ndx→ 1,

as n → +∞. Similar to the idea of [44], we claim that for each µ > 0, there exists
C > 0 (independent of n) such that meas(Ωn) < µ, where Ωn := {x ∈ R2 : |vn(x)| ≥
C}. Otherwise, there is an µ0 > 0 and a subsequence {vnk

} of {vn} such that for
any positive integer k,

meas({x ∈ R2 : |vnk
(x)| ≥ k}) ≥ µ0 > 0.
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Set Ωnk
:= {x ∈ R2 : |vnk

(x)| ≥ k}. By (g8), we have

A2
nk

≥
∫
R2

V (x)g2(vnk
)dx ≥

∫
Ωnk

V (x)g2(vnk
)dx ≥ Ckµ0 → +∞,

as k → +∞, a contradiction. Hence the claim is true. Notice that as |vn(x)| ≤ C3,
by (g8) and (g11), we have

C

C3
3

vn
2 ≤ g2

( vn
C3

)
≤ C4g

2(vn).

Thus, ∫
R2\Ωn

w2
ndx ≤ C5

∫
R2\Ωn

g2(vn)

‖vn‖2
dx ≤ C5

∫
R2

ln(x)dx→ 0. (4.10)

Besides, by virtue of the integral absolutely continuity, there exists µ > 0 such that
whenever Ω′ ⊂ R2 and meas(Ω′) < µ,∫

Ω′
w2

ndx ≤ 1

2
. (4.11)

Combining (4.10) with (4.11), we have∫
R2

w2
ndx =

∫
R2\Ωn

w2
ndx+

∫
Ωn

w2
ndx ≤ 1

2
+ o(1),

which implies that 1 ≤ 1
2 , a contradiction. This implies that (4.9) holds. Hence

{vn} is bounded in X. Finally, we prove that {vn} has a convergence subsequence
in X. We claim that there exists C > 0 such that∫

R2

|∇(vn − v)|2 + V (x)(g(vn)g
′(vn)− g(v)g′(v))(vn − v)dx ≥ C‖vn − v‖2. (4.12)

Indeed, we may assume that vn 6= v (if not, the conclusion is trivial). Set

wn =
vn − v

‖vn − v‖
and ln =

g(vn)g
′(vn)− g(v)g′(v)

vn − v
.

We argue by contradiction and assume that∫
R2

(
|∇wn|2 + V (x)ln(x)w

2
n

)
dx→ 0.

Since

d

dt
(g(t)g′(t)) = (g′(t))2 + g(t)g′(t) =

1

(1 + 2g2(t))2
> 0,

g(t)g′(t) is strictly increasing and for each C > 0 there is ϱ1 > 0 such that

d

dt
(g(t)g′(t)) ≥ ϱ1,
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as |t| ≤ C. From this, we see that ln(x) is positive. Hence∫
R2

|∇wn|2dx→ 0,

∫
R2

V (x)ln(x)w
2
ndx→ 0 and

∫
R2

w2
ndx→ 1,

as n → +∞. By a similar argument as (4.10)-(4.11), we can conclude a contradic-
tion.

On the other hand, by (f ′1), (g1), (g3) and (g9)-(g10), we have∣∣∣ ∫
R2

(f(g(vn))g
′(vn)− f(g(v))g′(v))(vn − v)dx

∣∣∣
≤
∫
R2

C(|vn|j−1 + |vn|r−1 + |v|j−1 + |v|r−1)|vn − v|dx (4.13)

≤C
(
(‖vn‖j−1

Lj + ‖vn‖j−1
Lj )‖vn − v‖Lj + (‖v‖r−1

Lr + ‖v‖r−1
Lr )‖vn − v‖Lr

)
=o(1).

Therefore, by (4.12), (4.13), we have

o(1) =〈J ′(vn)− J ′(v), vn − v〉

=

∫
R2

|∇(vn − v)|2dx+ (g(vn)g
′(vn)− g(v)g′(v))(vn − v)dx

+ q〈C′(g(vn))− C′(g(v)), vn − v〉
+ qκ〈D′(g(vn))−D′(g(v)), vn − v〉

−
∫
R2

(f(g(vn))g
′(vn)− f(g(v))g′(v))(vn − v)dx

≥C‖vn − v‖2 + o(1).

This implies that ‖vn − v‖ → 0. This completes the proof.
Let {ej} is a total orthonormal basis of X and define Xj = Rej ,

Yk =

k⊕
j=1

Xj , Zk =

∞⊕
j=k+1

Xj , k ∈ Z,

and Yk is finite-dimensional.

Proposition 4.2. Assume that (V1) and (f ′1) are satisfied. Then there exist con-
stant m, ρ, ϱ > 0 such that J |Sρ∩Zm ≥ ϱ.

Proof. From Lemma 3.8 in [43], we know that for any 1 ≤ s < +∞, βk(s) :=
sup

v∈Zk,∥v∥=1

‖v‖Ls → 0, as k → +∞. Thus, we can choose an integer m > 1 such

that
‖v‖jLj ≤ C

8c′1
‖v‖j , ‖v‖rLr ≤ C

8c′2
‖v‖r, ∀v ∈ Zm. (4.14)

By a similar argument as (4.9), we can prove that there exists C > 0 such that∫
R2

(
|∇v|2 + V (x)g2(v)

)
dx ≥ C‖v‖2, ∀v ∈ Sρ, (4.15)
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where Sρ := {v ∈ X|‖v‖ = ρ}. For any v ∈ Zm with ‖v‖ = ρ < 1, by (g3) and
(4.14)-(4.15), we have

J(v) =
1

2

∫
R2

(
|∇v|2 + V (x)g2(v)

)
dx+

q

2
C(g(v)) + q

4
kD(g(v))−

∫
R2

F (g(v))dx

≥ C

2
‖v‖2 −

∫
R2

(
c′1|g(v)|j + c′2|g(v)|r

)
dx

≥ C

2
‖v‖2 −

∫
R2

(
c′1|v|j + c′2|v|r

)
dx

≥ C

2
‖v‖2 − C

8
‖v‖j − C

8
‖v‖r

=
C

4
‖v‖2(1− ‖v‖j−2) > 0,

since 2 < j < 8, j < r < +∞. This completes the proof.

Lemma 4.2. Assume that (V1), (f ′1) and (f ′2)are satisfied. Then for any finite
dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such that

J(v) ≤ 0, ∀v ∈ X̃ \BR.

Proof. For any finite dimensional subspace X̃ ⊂ X, there is a positive integral
number m such that X̃ ⊂ Xm. Suppose to the contrary that there is a sequence
{vn} ⊂ X̃ such that ‖vn‖ → +∞ and J(vn) > 0. Hence

1

2

∫
R2

(
|∇vn|2 + V (x)g2(vn)

)
dx+

q

2
C(g(vn)) +

q

4
kD(g(vn)) >

∫
R2

F (g(vn))dx.

(4.16)

Set wn = vn
∥vn∥ . Then, up to a subsequence, we can assume that wn ⇀ w in X,

wn → w in Ls(R2) for all 2 < s < +∞ and wn → w a.e. on R2. Set Ω1 := {x ∈
R2 : w(x) 6= 0} and Ω2 := {x ∈ R2 : w(x) = 0}. If meas(Ω1) > 0, then by (f ′2), (g5)
and Fatou’s Lemma, we have∫

Ω1

F (g(vn))

‖vn‖8
dx =

∫
Ω1

F (g(vn))

g8(vn)

g8(vn)

v4n
w4

ndx→ +∞.

By (f ′1) and (f ′2), there exists λ1 > 0 and λ2 > 0 such that

F (t) ≥ −λ1|t|8 − λ2|t|j , ∀t ∈ R.

Hence ∫
Ω2

F (g(vn))

‖vn‖8
dx ≥ −λ1

∫
Ω2

g8(vn)

‖vn‖8
dx− λ2

∫
Ω2

gj(vn)

‖vn‖8
dx

≥ −λ1
∫
Ω2

|wn|8dx− λ2

∫
Ω2

|wn|j
1

‖vn‖8−j
dx.

Since wn → w in Ls(R2)(2 < s < +∞), it is clear that

lim inf
n→+∞

∫
Ω2

F (g(vn))

‖vn‖8
dx ≥ 0.
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Consequently,

lim
n→+∞

∫
R2

F (g(vn))

‖vn‖8
dx = +∞.

Then by (1.10)-(1.11), (4.16), we obtain C > +∞, a contradiction. This shows
meas(Ω1) = 0, ie. w(x) = 0 a.e. on R2. By the equivalency of all norms in X̃, there
exists ν > 0 such that

‖v‖qq ≥ ν‖v‖2, ∀v ∈ X̃.

Hence
0 = lim

n→+∞
‖wn‖qq ≥ ν‖wn‖2 = ν,

a contradiction. This completes the proof.
Proof of Theorem 1.2. Let X = X, Y = Ym and Z = Zm. Obviously, J(0) = 0
and (f4) implies that J is even. By Lemma 4.1, Proposition 4.2 and Lemma 4.2, all
conditions of Propositoion 4.1 are satisfied. Thus problem (1.8) possesses infinitely
many nontrivial solutions sequence {vn} such that J(vn) → ∞ as n→ +∞. In other
words, problem (1.1) also possesses infintely many nontrivial solutions sequence
{un} such that I(un) → ∞ as n→ +∞. This completes the proof.
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