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CAPACITY SOLUTION AND NUMERICAL
APPROXIMATION TO A NONLINEAR

COUPLED ELLIPTIC SYSTEM IN
ANISOTROPIC SOBOLEV SPACES∗

Francisco Ortegón Gallego1,†, Mohamed Rhoudaf 2

and Hajar Talbi2

Abstract In this paper, we analyze the existence and the numerical sim-
ulation of a capacity solution to a coupled nonlinear elliptic system, whose
unknowns are the temperature inside a semiconductor material u, and the
electric potential φ. The model problem we refer to is

−∆p⃗ u = ρ(u)|∇φ|2 in Ω

div(ρ(u)∇φ) = 0 in Ω

φ = φ0 on ∂Ω

u = 0 on ∂Ω

where Ω is an open bounded set of RN , N ≥ 2 and ∆p⃗ u =
N∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
,

is the p⃗−Laplacian operator. We consider the case of a nonuniformly elliptic
problem.

Keywords Anisotropic Sobolev spaces, capacity solutions, weak solution,
nonlinear elliptic equation, thermistor problem.
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1. Introduction
Let Ω ⊂ RN be an open bounded set, N ≥ 2 an integer and ~p = (p1, . . . , pN ) ∈ RN ,
with pj ≥ 2, for all j = 1, . . . , N . Without loss of generality, we will assume that
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2 ≤ p1 ≤ p2 ≤ . . . ≤ pN < ∞. We consider the following nonlinear coupled elliptic
system 

−
N∑
i=1

∂i
(
|∂iu|pi−2∂iu

)
= ρ(u)|∇ϕ|2 in Ω

div(ρ(u)∇ϕ) = 0 in Ω

ϕ = ϕ0 on ∂Ω

u = 0 on ∂Ω

(1.1)

where ∂i stands for the i-th partial derivative operator, that is, ∂i = ∂
∂xi

, 1 ≤ i ≤ N ;
the function ϕ0 is given, and ρ ∈ C(R)∩L∞(R) is such that ρ(s) > 0, for all s ∈ R.

In this framework, the domain Ω represents the spatial region occupied by a
semiconductor device, ρ is the electric conductivity, u is the temperature and ϕ is
the electric potential. In this situation, Ω is called thermistor and for ~p = (2, . . . , 2)
the system (1.1) becomes the classical thermistor problem for an isotropic material.

Notice that we are not assuming that ρ is bounded below far from zero. In
fact, in many practical cases it is ρ(s) → 0 as s → +∞. This means that we are
dealing with a nonuniformly elliptic problem and, consequently, the search for weak
solutions to problem (1.1) is not suitable in this context. Indeed, if u is unbounded
in Ω, the equation for ϕ becomes degenerate, so that no a priori estimates for ∇ϕ
will be available. In order to circumvent this difficulty, we will consider the function
Φ = ρ(u)∇ϕ as a whole, and then show that it belongs to L2(Ω)N . This means
that a new formulation of the system (1.1) is possible and the solution to this new
formulation will be called capacity solution.

The concept of capacity solution was first introduced by Xu in [20] in the analysis
of a modified version of the evolution thermistor problem. This author adapted this
concept to more general settings by assuming weaker assumptions [19] or with mixed
boundary conditions [21,22].

The existence of a weak solution of the thermistor problem associated with (1.1)
in the case where the first elliptic equation is of the form −div(a(x,∇u)) + g(x, u),
where the operator a is of Leray-Lions type, and g satisfies the sign condition but
without any restriction on its growth, in the classical Sobolev spaces has been proved
in [4]. An existence result of a capacity solution to the parabolic-elliptic equation in
the classical Sobolev spaces is given by González Montesinos and Ortegón Gallego
in [11]. Also, Moussa, Ortegón Gallego and Rhoudaf have studied this problem in
the setting of the Orlicz-Sobolev spaces [17]. Other similar situations have been
considered in this direction, including the evolution case. See for instance [2, 3, 7,
10,12,13,16,18].

In the present work we show an existence result of a capacity solution (Defini-
tion 2.1) to the thermistor problem (1.1). The thesis of this paper generalizes the
one given by Xu in [20] and by González Montesinos and Ortegón Gallego in [11]
both in the evolution case. In fact, our functional setting is different since we study
the existence of a temperature u in the anisotropic Sobolev space W 1,p⃗(Ω), pj ≥ 2
for all j = 1, . . . , N , which have never been considered in previous works on the
thermistor problem. We have also carried out some 2D numerical simulations in
order to approximate a solution of problem (1.1). To do so, we have developed a
fixed-point like iterative algorithm, which is then discretized by the finite element
method (FEM) with mesh adapting. These numerical experiments have revealed
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that this algorithm seems to be convergent for all values of the exponents p1 and
p2 in the interval (2, 5). The rate of convergence is very rapid for p1 and p2 near 3,
but it becomes lower and lower as one of the exponent tends to 2 or 5.

The remaining part of this paper is organized as follows. In Section 2 we in-
troduce the anisotropic Sobolev spaces W 1,p⃗(Ω) and recall some useful results con-
cerning these spaces. In Section 3 we first study the existence of a weak solution
to problem (1.1) under a stronger assumption on ρ (uniform ellipticity). Then, we
show the existence of a capacity solution to problem (1.1) in several steps: intro-
duction of approximate problems, setting of a priori estimates and passing to the
limit. We show that the sequence of solutions to these approximate problems con-
verge (up to a subsequence) to a capacity solution to the system (1.1). Section 4
is devoted to the description of an iterative algorithm leading to the approximate
solution of the system (1.1). We have implemented this algorithm and run it in the
bidimensional case. We discuss the behavior of this algorithm for different values of
the exponents p1 and p2 in the range [2, 5] and show some graphs of the numerical
temperature distribution u.

2. Preliminaries and definitions
Let Ω be an open bounded domain in RN (N ≥ 2) with boundary ∂Ω. We begin by
recalling the definition of the anisotropic Sobolev spaces, and giving some of their
properties.

We denote by ~p = (p1, . . . , pN ) ∈ RN . For a distribution u in Ω, ∂iu is the
i-th partial derivative operator, that is, ∂iu = ∂u/∂xi, i = 1, . . . , N in the sense of
distributions. Without loss of generality, we shall assume that the components of
the vector ~p are ordered as follows

1 ≤ p1 ≤ p2 ≤ . . . ≤ pN−1 ≤ pN <∞.

We introduce the anisotropic Sobolev space of exponent ~p, W 1,p⃗(Ω), defined as
(notice that, since Ω is bounded, its measure is finite and thus Lpi(Ω) ⊂ Lp1(Ω) for
all i = 1, . . . , N)

W 1,p⃗(Ω) =
{
u ∈ Lp1(Ω), ∂iu ∈ Lpi(Ω), for all i = 1, . . . , N

}
.

The space W 1,p⃗(Ω) is a Banach space equipped with the norm

‖u‖1,p⃗ = ‖u‖Lp1 (Ω) +

N∑
i=1

‖∂iu‖Lpi (Ω) (2.1)

where ‖ · ‖Lpi (Ω) is the usual norm in the Lebesgue space Lpi(Ω). We define
also W 1,p⃗

0 (Ω) as the closure of C∞
c (Ω) = {v ∈ C∞(Ω) / supp v is compact in Ω}

in W 1,p⃗(Ω), i.e.

W 1,p⃗
0 (Ω) =

{
u ∈W 1,p1

0 (Ω) / ∂iu ∈ Lpi(Ω), for all i = 1, . . . , N
}
,

and, thanks to the Poincaré inequality, we can equip this space with the following
norm

‖u‖
W 1,p⃗

0 (Ω)
=

N∑
i=1

‖∂iu‖Lpi (Ω) .
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The dual of W 1,p⃗
0 (Ω) is denoted by W−1,p⃗′

(Ω), where ~p′ := (p′1, . . . , p
′
N ), p′i ∈

R ∪ {+∞} being the conjugate of pi, i.e. 1/p′i + 1/pi = 1 for all i = 1, . . . , N .

Remark 2.1. Assume that pi ≥ 2 for all i = 1, . . . , N then, since Ω is bounded,

Lpi(Ω) ↪→ L2(Ω) ↪→ Lp′
i(Ω), for all i = 1, . . . , N. (2.2)

In particular,

W 1,p⃗
0 (Ω) ↪→ H1

0 (Ω), and H−1(Ω) ↪→W−1,p⃗′
(Ω).

We will make use of the following anisotropic Sobolev embedding result.

Lemma 2.1. Let Ω be a bounded open set of RN . Then, the natural injection
W 1,p⃗

0 (Ω) ↪→ Lp1(Ω) is compact.

The proof of this lemma follows immediately from the classical embedding the-
orems of Sobolev spaces and the fact that W 1,p⃗

0 (Ω) ↪→ W 1,p1

0 (Ω) with continuous
injection (see [9]).

Now we state the definition of a capacity solution to problem (1.1).

Definition 2.1. A triplet (u, ϕ,Φ) is called a capacity solution to problem (1.1) if
the following conditions are fulfilled:
(C1) u ∈W 1,p⃗

0 (Ω), ϕ ∈ L∞(Ω) and Φ ∈ L2(Ω)N .
(C2) (u, ϕ,Φ) satisfies the system of differential equations

−
N∑
i=1

∂i
(
|∂iu|pi−2∂iu

)
= div(ϕΦ) in Ω,

div Φ = 0 in Ω.

(C3) For every S ∈ C1
c (R) =

{
v ∈ C1(R) / supp v is compact}, one has

S(u)ϕ− S(0)ϕ0 ∈ H1
0 (Ω) and

S(u)Φ = ρ(u)[∇(S(u)ϕ)− ϕ∇S(u)]. (2.3)

Remark 2.2. The notion of capacity solution requires a triplet (u, ϕ,Φ) whereas
the problem (1.1) refers only to two unknowns (u, ϕ). Evidently, the third com-
ponent appearing in the triplet (u, ϕ,Φ) is, in some way, related to the first two
components u and ϕ. Note that if u is bounded in Ω, then it is straightforward
that both notions of solutions (weak solution and capacity solution) are equivalent.
Indeed, taking S ∈ C1

0 (R) such that S = 1 in the interval
[
−‖u‖L∞(Ω), ‖u‖L∞(Ω)

]
,

then (C3) becomes ϕ− ϕ0 ∈ H1
0 (Ω) and Φ = ρ(u)∇ϕ.

On the other hand, if u is not bounded, we take m > 0 and a function Sm ∈
C1

0 (R) such that Sm = 1 on {|s| ≤ m}. Using Sm in (2.3) and multiplying by
χ{|u|≤m} we get

χ{|u|≤m}Φ = χ{|u|≤m}ρ(u)∇ (Sm(u)ϕ) , for all m > 0

which yields Φ = ρ(u)∇ϕ almost everywhere in Ω.
In particular, the fundamental difference between a capacity solution and a weak

solution is that, in the first case, ∇ϕ is considered in the almost everywhere sense
whereas in the second case, ∇ϕ is regarded in the sense of distributions.
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3. Main results
This section is devoted to formulate and prove the main results of this article. We
consider the system (1.1) under the following assumptions on data:

(A.1) ρ ∈ C(R) and there exists ρ̄ ∈ R such that 0 < ρ(s) ≤ ρ̄, for all s ∈ R.

(A.2) ϕ0 ∈ H1(Ω) ∩ L∞(Ω).

Theorem 3.1. Under the assumptions (A.1) and (A.2), the system (1.1) admits a
capacity solution in the sense of Definition 2.1.

In order to prove this result, we first show the existence of a weak solution
to a similar problem but under a less restrictive assumption rendering the second
equation uniformly elliptic, namely,

(A.1)′
 ρ ∈ C(R) and there exist ρ1 and ρ2 ∈ R, such that

0 < ρ1 ≤ ρ(s) ≤ ρ2, for all s ∈ R.

Theorem 3.2. Assume (A.1)′ and (A.2). Then, the problem (1.1) admits a weak
solution (u, ϕ), that is

u ∈W 1,p⃗
0 (Ω), ϕ− ϕ0 ∈ H1

0 (Ω) ∩ L∞(Ω),
N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iv =

∫
Ω

ρ(u)|∇ϕ|2v, for all v ∈W 1,p⃗
0 (Ω),∫

Ω

ρ(u)∇ϕ∇ψ = 0, for all ψ ∈ H1
0 (Ω).

(3.1)

Proof. In order to prove the existence of a weak solution of our problem, Schauder’s
fixed point theorem will be applied together with a result on the existence and
uniqueness of a weak solution to a certain elliptic problem.

Let ω ∈ Lp1(Ω), we consider the elliptic problemdiv(ρ(ω)∇ϕ) = 0 in Ω,

ϕ = ϕ0 on ∂Ω.
(3.2)

Thanks to Lax-Milgram’s theorem, (3.2) has a unique solution ϕ ∈ H1(Ω), and
thanks to (A.2) it is ϕ ∈ L∞(Ω) ∩ H1(Ω). Indeed, by the maximum principle we
have

‖ϕ‖L∞(Ω) ≤ ‖ϕ0‖L∞(Ω) . (3.3)

Moreover, by using ϕ− ϕ0 ∈ H1
0 (Ω) as a test function in (3.2) we get,∫

Ω

ρ(ω)∇ϕ∇ (ϕ− ϕ0) = 0

hence,
ρ1

∫
Ω

|∇ϕ|2 ≤
∫
Ω

ρ(ω) |∇ϕ‖∇ϕ0| ≤ ρ2

∫
Ω

|∇ϕ| |∇ϕ0| .
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By the Cauchy-Schwarz inequality, we obtain∫
Ω

|∇ϕ|2 ≤ C (ρ1, ρ2, ϕ0) = C. (3.4)

This means that ρ(ω) |∇ϕ|2 ∈ L1(Ω). We can use the equation for ϕ to show that
this last term also belongs to H−1(Ω). Indeed, let φ ∈ D(Ω) and take ξ = φϕ as a
test function in (3.2). We have∫

Ω

ρ(ω)∇ϕ∇(φϕ) = 0

that is, ∫
Ω

ρ(ω)|∇ϕ|2φ = −
∫
Ω

ρ(ω)ϕ∇ϕ∇φ = 〈div(ρ(ω)ϕ∇ϕ), φ〉D′(Ω),D(Ω),

and thus,
ρ(ω)|∇ϕ|2 = div(ρ(ω)ϕ∇ϕ) in D′(Ω). (3.5)

Since ρ(ω)ϕ∇ϕ ∈ L2(Ω)N , we deduce the regularity

ρ(ω) |∇ϕ|2 ∈ H−1(Ω).

The identity (3.5) is the key that allows us to solve the classical thermistor problem
(1.1) and to introduce the notion of a capacity solution as well.

Now, we set out the following nonlinear elliptic problem:
−

N∑
i=1

∂i
(
|∂iu|pi−2∂iu

)
= div(ρ(ω)ϕ∇ϕ) in Ω,

u = 0 on ∂Ω.

(3.6)

The variational formulation of this problem is given as follows:
To find u ∈W 1,p⃗

0 (Ω) such that
N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iv = −
N∑
i=1

∫
Ω

ρ(ω)ϕ∂iϕ∂iv, for all v ∈W 1,p⃗
0 (Ω).

(3.7)

Notice that div(ρ(ω)ϕ∇ϕ) ∈ H−1(Ω) ↪→ W−1,p⃗′
(Ω). The problem (3.6) is of

the form Au = f , with f ∈W−1,p⃗′
(Ω) and the operator A satisfies the Leray-Lions

conditions on W 1,p⃗
0 (Ω); then, by the Minty-Browder theorem, the problem (3.6) has

at least one weak solution u ∈W 1,p⃗
0 (Ω).

We may define the operator G : ω ∈ Lp1(Ω) 7→ G(ω) = u ∈ W 1,p⃗
0 (Ω) with u

being the unique solution to (3.7). Since W 1,p⃗
0 (Ω) ↪→ Lp1(Ω), G maps Lp1(Ω) into

itself. Our strategy is to show that G satisfies the hypotheses of Schauder’s fixed
point theorem, which will then yield the desired weak solution to problem (3.1).

We first show the following estimate:

‖u‖Lp1 (Ω) ≤ C(ϕ0, ρ2) = R. (3.8)
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Indeed, taking v = u as a test function in (3.7), from (3.3) and (A.1)′ we obtain

N∑
i=1

∫
Ω

|∂iu|pi ≤ ρ2‖ϕ0‖L∞(Ω)

N∑
i=1

(∫
Ω

|∂iϕ|p
′
i

)1/p′
i
(∫

Ω

|∂iu|pi

)1/pi

.

Moreover, using Young’s inequality we obtain

N∑
i=1

∫
Ω

|∂iu|pi ≤
N∑
i=1

ρ
p′
i

2 ‖ϕ0‖
p′
i

L∞(Ω)C(Ω, pi)

∫
Ω

|∂iϕ|2 +
N∑
i=1

1

pi

∫
Ω

|∂iu|pi ,

it follows by (3.4) that
N∑
i=1

∫
Ω

|∂iu|pi ≤ C(ϕ0, ρ2).

Due to the Poincaré inequality, for some constant C = C(Ω) > 0, it is

‖u‖Lp1 (Ω) ≤ C‖∂1u‖Lp1 (Ω),

which yields the estimate (3.8).
From (3.8), for R > 0 large enough, the operator G transforms the ball BR ={

v ∈ Lp1(Ω) / ‖v‖Lp1 (Ω) ≤ R
}

into itself. Since the embeddingW 1,p⃗
0 (Ω) ↪→ Lp1(Ω)

is compact, the operator G is compact. To complete the proof, it remains to show
that G is continuous. Indeed, let (ωn) ⊂ BR such that ωn → ω strongly in Lp1(Ω)
and consider the corresponding functions to ωn and ω, that is, un = G (ωn), ϕn,
u = G(ω) and ϕ. Put F i

n = ρ (ωn)ϕn∂iϕn and F i = ρ(ω)ϕ∂iϕ, 1 ≤ i ≤ N . We
have to show that

un → u = G(ω) strongly in Lp1(Ω).

It is easy to check that, for some subsequence still denoted in the same way, we
have

F i
n → F i strongly in L2(Ω) for each i, 1 ≤ i ≤ N.

By subtracting the respective equations of (3.7) for un and u, and taking v = un−u
as a test function, we obtain

N∑
i=1

∫
Ω

[
|∂iun|pi−2∂iun − |∂iu|pi−2∂iu

]
∂i(un − u) = −

N∑
i=1

∫
Ω

(F i
n − F i)∂i(un − u).

(3.9)
Since pi ≥ 2, for all i = 1, . . . , N , then for some α > 0, we have (see [6])[

|∂iun|pi−2∂iun − |∂iu|pi−2∂iu
]
∂i(un − u) ≥ α|∂i(un − u)|pi (3.10)

which implies that, using (3.9),

α

N∑
i=1

∫
Ω

|∂i(un − u)|pi ≤
N∑
i=1

‖F i
n − F i‖

Lp′
i (Ω)

‖∂i(un − u)‖Lpi (Ω).

Using Young’s inequality, we get

α

N∑
i=1

∫
Ω

|∂i(un−u)|pi ≤
N∑
i=1

1

p′i

(
1

α

)p′
i/pi

‖F i
n−F i‖p

′
i

Lp′
i (Ω)

+

N∑
i=1

α

pi
‖∂i(un−u)‖pi

Lpi (Ω).
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Therefore
N∑
i=1

∫
Ω

|∂i(un − u)|pi ≤
N∑
i=1

1

p′i

(
1

α

)p′
i/pi

C(Ω, pi)‖F i
n − F i‖2L2(Ω) → 0.

Finally,
un → u strongly in W 1,p⃗

0 (Ω) ↪→ Lp1(Ω).

consequently, the operator G has at least one fixed point: u = G(u), which gives a
weak solution to problem (3.6). This completes the proof of Theorem 3.2.
Proof of Theorem 3.1. The proof of this result is divided into four steps. We
first introduce a sequence of approximate problems and derive a priori estimates
for the approximate solutions. Then, we show two ordinary results, namely the
strong convergence, modulo a subsequence, of both (∇un) and (ϕn) in L1(Ω), where
(un, ϕn) stand for a weak solution to the approximate problem of (1.1). The passing
to the limit will lead to the desired result.
Step 1 : Approximate problems and a priori estimates.
For every n ∈ N, we introduce the following regularization of the data,

ρn(s) = ρ(s) +
1

n
. (3.11)

and consider the approximate system given as

−
N∑
i=1

∂i
(
|∂iun|pi−2∂iun

)
= ρn(un)|∇ϕn|2 in Ω, (3.12)

div(ρn(un)∇ϕn) = 0 in Ω, (3.13)
ϕn = ϕ0 on ∂Ω, (3.14)
un = 0 on ∂Ω. (3.15)

From (A.1), we have that n−1 ≤ ρn(s) ≤ ρ̄ + 1 = ρ3, for all s ∈ R. Consequently,
for every n ∈ N, ρn satisfies (A.1)′. Using Theorem 3.2 we deduce the existence of
a weak solution (un, ϕn) to the system (3.12)-(3.15).

The maximum principle yields

‖ϕn‖L∞(Ω) ≤ ‖ϕ0‖L∞(Ω) , (3.16)

therefore, there exists a function ϕ ∈ L∞(Ω) and a subsequence, still denoted in
the same way, such that

ϕn → ϕ weakly-∗ in L∞(Ω). (3.17)

Now let multiply (3.13) by ξ = ϕn − ϕ0 ∈ H1
0 (Ω) and integrate over Ω, we get∫

Ω

ρn (un)∇ϕn∇ (ϕn − ϕ0) = 0,

hence, ∫
Ω

ρn (un) |∇ϕn|2 ≤ C1, for all n ≥ 1 (3.18)
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where C1 = C1

(
ρ̄, ‖ϕ0‖H1(Ω)

)
. Consequently, the sequence (ρn (un)∇ϕn) is bounded

in L2(Ω)N . Therefore, there exists a function Φ ∈ L2(Ω)N and a subsequence, still
denoted in the same way, such that

ρn (un)∇ϕn → Φ weakly in L2(Ω)N . (3.19)

This weak limit function Φ ∈ L2(Ω)N is in fact the third component of the triplet
appearing in the Definition 2.1 of a capacity solution. We have also〈

ρn (un) |∇ϕn|2 , ξ
〉
H−1(Ω),H1

0 (Ω)
= −

∫
Ω

ρn (un)ϕn∇ϕn∇ξ, ∀ξ ∈ H1
0 (Ω)

with (div (ρn (un)ϕn∇ϕn)) ⊂ H−1(Ω) ↪→ W−1,p⃗′
(Ω) a bounded sequence due to

(A.1), (3.16) and (3.18).
Taking un as a test function in (3.12), we obtain

N∑
i=1

∫
Ω

|∂iun|pi = −
N∑
i=1

∫
Ω

ρn(un)ϕn∂iϕn∂iun.

In virtue of (3.11) and (3.16), and applying Hölder’s inequality, we get

N∑
i=1

∫
Ω

|∂iun|pi ≤
N∑
i=1

‖ϕ0‖L∞(Ω)ρ
1/2
3

∫
Ω

ρn(un)
1/2|∂iϕn||∂iun|.

Using Young’s inequality, we obtain

N∑
i=1

∫
Ω

|∂iun|pi ≤
N∑
i=1

1

p′i
‖ϕ0‖

p′
i

L∞(Ω)ρ
p′
i/2

3

∫
Ω

ρn(un)
p′
i/2|∂iϕn|p

′
i+

N∑
i=1

1

pi

∫
Ω

|∂iun|pi .

That is
N∑
i=1

∫
Ω

|∂iun|pi ≤ C. (3.20)

Then (un) is bounded in W 1,p⃗
0 (Ω). Therefore, there exists a function u ∈ W 1,p⃗

0 (Ω)
and a subsequence, still denoted in the same way, such that

un → u weakly in W 1,p⃗
0 (Ω). (3.21)

Moreover, due to (3.20) and (3.21), we deduce that (un) is relatively compact in
Lp1(Ω), therefore we may assume that

un → u strongly in Lp1(Ω) and a.e. in Ω. (3.22)

Finally, from (A.1), we deduce

ρn(un) → ρ(u) weakly-∗ in L∞(Ω) and a.e. in Ω. (3.23)

On the other hand, due to (3.20), we have∫
Ω

∣∣|∂iun|pi−2∂iun
∣∣p′

i =

∫
Ω

|∂iun|pi ≤ C, i = 1, . . . , N.
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Thus |∂iun|pi−2∂iun is bounded in Lp′
i(Ω), then there exists function ϑi ∈ Lp′

i(Ω)
and a subsequence, still denoted in the same way, such that

|∂iun|pi−2∂iun → ϑi weakly in Lp′
i(Ω), for all i = 1, . . . , N. (3.24)

Step 2: Almost everywhere convergence of the gradients (∇un).
In this step we prove that ϑi = |∂iu|pi−2∂iu, for all i = 1, . . . , N . To do so, we need,
modulo a subsequence, that

∇un → ∇u a.e. in Ω

i.e.
∂iun → ∂iu a.e. in Ω, for all i = 1, . . . , N. (3.25)

In fact we will establish the following proposition.

Proposition 3.1. Let (un, ϕn) be a solution to the problem (3.12)-(3.15) and u ∈
W 1,p⃗

0 (Ω) given (3.21). Then, for a suitable subsequence, still denoted in the same
way,

∂iun → ∂iu a.e. in Ω, for all i = 1, . . . , N.

Proof. Let 0 < θ < 1 and k > 0. We define the truncation function at height k,
Tk, as

Tk(s) = min(k,max(s,−k)) =

 s if |s| ≤ k

ks/|s| if |s| > k

Consider

IΩ,n =

∫
Ω

{
N∑
i=1

(
|∂iun|pi−2∂iun − |∂iu|pi−2∂iu

)
∂i (un − u)

}θ

.

We will prove that IΩ,n → 0 as n→ ∞. Indeed,

IΩ,n =

∫
Ak

{
N∑
i=1

(
|∂iun|pi−2∂iun − |∂iu|pi−2∂iu

)
∂i (un − u)

}θ

+

∫
Bk

{
N∑
i=1

(
|∂iun|pi−2∂iun − |∂iu|pi−2∂iu

)
∂i (un − u)

}θ

= IAk,n + IBk,n,

where
Ak = {x ∈ Ω : |u(x)| ≤ k}, Bk = {x ∈ Ω : |u(x)| > k}.

We can write IAk,n as:

IAk,n =

∫
Ak

{
N∑
i=1

(
|∂iun|pi−2∂iun − |∂iTk(u)|pi−2∂iTk(u)

)
∂i (un − Tk(u))

}θ

,

which is smaller than∫
Ω

{
N∑
i=1

(
|∂iun|pi−2∂iun − |∂iTk(u)|pi−2∂iTk(u)

)
∂i (un − Tk(u))

}θ

= JΩ,n.



2194 F. Ortegón Gallego, M. Rhoudaf & H. Talbi

According to the a priori estimate proved in the previous step,

N∑
i=1

(
|∂iun|pi−2∂iun − |∂iu|pi−2∂iu

)
∂i (un − u)

is bounded in L1(Ω). Using Hölder inequality, we get

IBk,n ≤

[∫
Bk

N∑
i=1

(
|∂iun|pi−2∂iun − |∂iu|pi−2∂iu)

)
∂i (un − u)

]θ
meas (Bk)

1−θ

hence
IAk,n + IBk,n ≤ JΩ,n + c2 meas (Bk)

1−θ
= JΩ,n + ω1(k).

On the other hand, JΩ,n can be written as (ε > 0)

JΩ,n =

∫
{|un − Tk(u)| ≤ ε}

{ N∑
i=1

(
|∂iun|pi−2∂iun − |∂iTk(u)|pi−2∂iTk(u)

)
∂i (un − Tk(u))

}θ

+

∫
{|un − Tk(u)| > ε}

{ N∑
i=1

(
|∂iun|pi−2∂iun − |∂iTk(u)|pi−2∂iTk(u)

)
∂i (un − Tk(u))

}θ

.

(3.26)

The first integral can be written as

∫
Ω

{
N∑
i=1

(
|∂iun|pi−2∂iun − |∂iTk(u)|pi−2∂iTk(u)

)
∂iTε (un − Tk(u))

}θ

.

Using Hölder’s inequality and the a priori estimate of the previous step we obtain

JΩ,n ≤

{
N∑
i=1

∫
Ω

(
|∂iun|pi−2∂iun − |∂iTk(u)|pi−2∂iTk(u)

)
∂iTε (un − Tk(u))

}θ

× (meas(Ω))1−θ + c3 meas {x ∈ Ω : |un − Tk(u)| > ε}1−θ
.

On the other hand, using Tε (un − Tk(u)) in (3.12) as a test function it yields

JΩ,n ≤ c4

[ ∫
Ω

ρn (un) |∇ϕn|2 Tε (un − Tk(u))

−
N∑
i=1

∫
Ω

(|∂iTk(u)|pi−2∂iTk(u))∂iTε (un − Tk(u))
]θ

+ c3 meas {x ∈ Ω : |un − Tk(u)| > ε}1−θ
.

We remark from (3.18) that∫
Ω

ρn (un) |∇ϕn|2 Tε (un − Tk(u)) ≤ ε

∫
Ω

ρn (un) |∇ϕn|2 ≤ εC,
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we have

lim
n→∞

N∑
i=1

∫
Ω

(|∂iTk(u)|pi−2∂iTk(u))∂iTε (un − Tk(u))

=

N∑
i=1

∫
Ω

(|∂iTk(u)|pi−2∂iTk(u))∂iTε (u− Tk(u))

= ω2(k),

and also

lim sup
n→∞

meas {|un − Tk(u)| > ε}1−θ ≤ meas {|u− Tk(u)| ≥ ε}1−θ
= ω3(k),

Thus
lim sup
n→∞

JΩ,n ≤ c4 (εC − ω2(k))
θ
+ c3ω3(k).

Hence we have shown that

lim sup
n→∞

[IAk,n + IBk,n] ≤ ω1(k) + c4 (εC − ω2(k))
θ
+ c3ω3(k),

where ωi(k) converge to zero as k tends to infinity. Letting k → ∞ then ε→ 0, we
obtain that IΩ,n → 0, that is∥∥∥∥∥∥

{
N∑
i=1

(
|∂iun|pi−2∂iun − |∂iu|pi−2∂iu

)
∂i (un − u)

}θ
∥∥∥∥∥∥
L1(Ω)

→ 0.

Thus, for a suitable subsequence still denoted by (un), we have{
N∑
i=1

(
|∂iun|pi−2∂iun − |∂iu|pi−2∂iu

)
∂i (un − u)

}θ

→ 0 a.e.

Since θ is positive, we have{
N∑
i=1

(
|∂iun|pi−2∂iun − |∂iu|pi−2∂iu

)
∂i (un − u)

}
→ 0 a.e.

Finally, from (3.10), it yield

∂iun → ∂iu a.e. for i = 1, . . . , N

and so
∇un → ∇u a.e.

Step 3 : L1-convergence of (ϕn).
In this step, we will show that ϕn → ϕ strongly in L1(Ω) modulo a subsequence.
This result generalizes Lemma 4 of González Montesinos and Ortegón Gallego in [11]
which, in its turn, is an adaptation of a result due to Xu in [20] (see also [4]).
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Lemma 3.1. Let ~p = (p1, . . . , pN ), such that pi ≥ 2 for all i = 1, . . . , N and let (un)
be a bounded sequence in W 1,p⃗

0 (Ω). Then, there exists a subsequence (un(k)) ⊂ (un),
such that for every ε > 0, there correspond a positive number M = M(ε) and a
function ψ ∈W 1,1(Ω) satisfying the following properties:

0 ≤ ψ ≤ 1, (3.27)
‖ψ − 1‖L1(Ω) + ‖∇ψ‖L1(Ω) ≤ ε, (3.28)
|u|,

∣∣un(k)∣∣ ≤M on {ψ > 0} for all k ≥ 1, (3.29)

where un(k) → u strongly in Lp1(Ω) and a.e. in Ω.

Proof. Since p1 ≥ 2, we have

Lp1(Ω) ↪→ Lp′
1(Ω). (3.30)

Since (un) is relatively compact in Lp1(Ω) and owing to (3.30), we can extract a
subsequence

(
un(k)

)
⊂ (un) such that

∞∑
k=1

∥∥un(k) − u
∥∥
Lp′1 (Ω)

≤ 1. (3.31)

Fix K > 0, we define the function γ as

γ = (|u| −K)+ +

∞∑
k=1

(∣∣un(k) − u
∣∣−K

)+
.

Putting vk = un(k) − u, k ≥ 1, and v0 = u, we have∫
Ω

(|vk| −K)
+
+

∫
Ω

∣∣∣∇ (|vk| −K)
+
∣∣∣

=

∫
{|vk|>K}

(|vk| −K)
+ |vk|
|vk|

+

∫
{|vk|>K}

∣∣∣∇ (|vk| −K)
+
∣∣∣ |vk||vk|

≤ 1

K

(
‖vk‖Lp1 (Ω) + ‖∇vk‖(Lp1 (Ω))N

)
‖vk‖Lp′1 (Ω)

.

Summing these inequalities, bearing in mind that
(
un(k)

)
and (vk) are bounded in

W 1,p⃗
0 (Ω), and using (3.31), we obtain

∞∑
k=0

(∥∥∥(|vk| −K)
+
∥∥∥
L1(Ω)

+
∥∥∥∇ (|vk| −K)

+
∥∥∥
L1(Ω)

)

≤C0

K

∞∑
k=0

‖vk‖Lp′1 (Ω)
=
C0

K

(
‖u‖

Lp′1 (Ω)
+

∞∑
k=1

∥∥un(k) − u
∥∥
Lp′1 (Ω)

)

≤C0

K

(
‖u‖

Lp′1 (Ω)
+ 1
)
=
C

K
.

Hence,
‖γ‖W 1,1(Ω) ≤

C

K
.
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Finally, for a given ε > 0, take K = C/ε, then

‖γ‖L1(Ω) + ‖∇γ‖L1(Ω) ≤ ε.

If we take the function ψ = (1 − γ)+, then it is easy to check that the conditions
(3.27)-(3.29) are all satisfied for K ≥ C/ε and M = K + 1.

Lemma 3.2. For any function S ∈ C1
0 (R) there exists a subsequence, still denoted

in the same way, such that

S (un)ϕn → S(u)ϕ weakly in H1(Ω). (3.32)

Furthermore, if 0 ≤ S ≤ 1, then there exists a positive constant C, independent
of S, such that

lim sup
n→∞

∫
Ω

ρn (un) |∇ [S (un)ϕn − S(u)ϕ]|2 ≤ C ‖S′‖∞ (1 + ‖S′‖∞) .

Lemma 3.3. There exists a subsequence
(
ϕn(k)

)
⊂ (ϕn) such that

lim
k→∞

∫
Ω

∣∣ϕn(k) − ϕ
∣∣ = 0.

Proof. The proof of these lemmas are identical to those of Lemma 3.5 and 3.6
in [4].

Now we are ready to end the proof of Theorem 3.1.
Step 4 : Passing to the limit.
Owing to (3.17), (3.19) and (3.21) it is straightforward to check the condition (C1)
of Definition 2.1. The convergences in Proposition 3.1 and Lemma 3.3 lead us to
the condition (C2) of Definition 2.1. In order to obtain the condition (C3), using
Proposition 3.1 and Lemma 3.3 again with (3.32), it is enough to make k → ∞ in
the following expression:

S
(
un(k)

)
ρn(k)

(
un(k)

)
∇ϕn(k) = ρn(k)

(
un(k)

) [
∇
(
S
(
un(k)

)
ϕn(k)

)
− ϕn(k)∇S

(
un(k)

)]
.

This completes the proof of Theorem 3.1.

Remark 3.1. We recall that if we choose pi = p, for any i = 1, . . . , N, we obtain
the classic results.

Remark 3.2. All the results in Section 3 also hold if our anisotropic operator
is changed to a more general one, i.e., a non linear differential operator A from
W 1,p⃗

0 (Ω) into its dual of the form

A(u) = −
N∑
i=1

∂iai(x, u,∇u)

where each ai(x, s, ξ) is a Caratheodory function on Ω×R× RN such that, for some
constants α, β > 0, and for all ξ, ξ′ ∈ RN , and a.e. x ∈ Ω, the following inequalities
hold:

[ai(x, s, ξ)− ai(x, s, η)] (ξi − ηi) ≥ α|ξi − ηi|pi , for all i = 1, . . . , N,

and
|ai(x, s, ξ)| ≤ β

[
ci(x) + |s|p1/p

′
i + |ξ|pi−1

]
, for all i = 1, . . . , N,

where ci ∈ Lp′
i(Ω), for all i = 1, . . . , N and ai(x, s, 0) = 0 for all i = 1, . . . , N.
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4. Numerical simulations
We have carried out some 2D numerical simulations for the approximation of the
solution to system (1.1). In this case, this problem can be written as

− ∂

∂x

[∣∣∣∣∂u∂x
∣∣∣∣p1−2

∂u

∂x

]
− ∂

∂y

[∣∣∣∣∂u∂y
∣∣∣∣p2−2

∂u

∂y

]
= ρ(u)|∇ϕ|2 in Ω,

div(ρ(u)∇ϕ) = 0 in Ω,

ϕ = ϕ0 on ∂Ω,

u = u0 on ∂Ω,

(4.1)

where Ω = (0, L) × (0, L) ⊂ R2, L = 0.05 m, p1, p2 ≥ 2, ~p = (p1, p2), the electric
conductivity ρ is given by

ρ(s) = 10e−|s−30|/20, s ∈ R. (4.2)

The potential on the boundary has been taken as ϕ0(x, y) = V0y/L, where V0 is
the potential difference applied between the north and south sides of Ω. Finally,
the boundary condition for the temperature is assumed to be constant, u0 = 30 ◦C
(that is, the u of system (1.1) is in fact u− u0 of (4.1) and ρ(s) is ρ(s− u0)).

In order to compute the numerical approximation of (4.1), we propose the iter-
ative algorithm below. First, take some values ε0, ε1 > 0 small enough, δ > 0 and
introduce the functions a1(∇u) and a2(∇u) given by

a1(∇u) = ε0 +

∣∣∣∣∂u∂x
∣∣∣∣p1−2

, a2(∇u) = ε0 +

∣∣∣∣∂u∂y
∣∣∣∣p2−2

.

Then, proceed as follows:
Step 1: Initialization. Take an initial guess u0 ∈ H1(Ω) with u0 = u0 on ∂Ω.
Step 2: Intermediate iteration. Assume un is already known. Compute ϕn+1 ∈
H1(Ω) solution to  div(ρ(un)∇ϕn+1) = 0 in Ω,

ϕn+1 = ϕ0 on ∂Ω.
(4.3)

Then, compute ũn+1 ∈ H1(Ω) solution to

ũn+1 − un

δ
− ∂

∂x

[
a1(∇un)

∂ũn+1

∂x

]
− ∂

∂y

[
a2(∇un)

∂ũn+1

∂y

]
= ρ(un)|∇ϕn+1|2 in Ω,

ũn+1 = u0 on ∂Ω.

(4.4)

Step 3: New iteration un+1. Define the new iteration as

un+1 =
ũn+1 + un

2
.
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Step 4: Termination test. If ‖ũn+1 − un‖ < ε1 then stop and we keep un+1 as
the approximate solution to (4.1), otherwise we increase n by one and repeat the
procedure from Step 2.

Remark 4.1. The numerical algorithm described in steps 1–4 generates a sequence
(un, ϕn), n = 0, 1, 2, . . . Each function un and ϕn is computed from the resolution
of certain linear elliptic problems in Ω. The equations (4.3) and (4.4) consist of a
fixed point technique. We could consider the same procedure without the first term
in (4.4), that is, (ũn+1−un)/δ. In this case, in general, the resulting algorithm does
not show good convergence properties. The introduction of the term (ũn+1−un)/δ
may lead to the stabilization of the method and to the convergence of the sequence
(un, ϕn). However, in general, the convergence of this algorithm is not guaranteed
and our numerical computations have shown that this property is strongly related
to the choice of the parameter δ for values of p1 or p2 close to 2 or 5. In a certain
interval (p∗, p∗), with 2 ≤ p∗ < p∗ ≤ 5, this algorithm has shown to be convergent
for p1, p2 ∈ (p∗, p

∗) and a wide range of values of δ even for δ > 1 (see Tables 1–3
below).

Remark 4.2. The introduction of the small parameter ε0 > 0, in the definition
of the diffusion functions a1(∇u) and a2(∇u), is necessary in order to assure the
well-posedness of the problem (4.4). In our numerical simulations, we have taken
ε0 = 10−12.

Remark 4.3. We may consider a different approach by just taking un+1 = ũn+1

so that the Step 3 is skipped. This approach generates a new sequence (un, ϕn)
which, in most cases, is not convergent. In fact, the sequence (un) shows an os-
cillatory behavior. Thus, by defining un+1 as the average between ũn+1 and un

given in Step 3, we stabilize the sequence (un) and, in all cases for p1, p2 ∈ (2, 5),
its convergence as it is shown in Tables 1–3.

Remark 4.4. In order to select the initial guess u0 we did the following. First, we
compute the function ϕ0 solution to div(ρ(u0)∇ϕ0) = 0 in Ω,

ϕ0 = ϕ0 on ∂Ω.

Then, we compute u0 as the unique solution to the elliptic problem −∆u0 = ρ(u0)|∇ϕ0|2 in Ω,

u0 = u0 on ∂Ω.

Remark 4.5. The norm ‖ · ‖ in the termination test of Step 4 may be ‖ · ‖H1
0 (Ω),

‖ · ‖L2(Ω), ‖ · ‖H1(Ω) or ‖ · ‖W 1,p⃗(Ω).
Since the boundary-value problems (4.3) and (4.4) have been solved by means

of the FEM, where the discrete solutions are always bounded, we have used instead
the L∞-norm in Ω with tolerance ε1 = 0.5×10−11, that is, the algorithm is stopped
at iteration n+ 1 if ‖ũn+1 − un‖∞ < 0.5× 10−11.

Obviously, since the convergence of this method is not in general guaranteed,
this stop condition may or may not be ever achieved. Thus, we need to consider
a maximum number of iterations Nmax_iter, high enough, so that whenever n =
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Nmax_iter + 1 the algorithm is forced to stop since it may not be convergent. In
that case, one may try to change the value of the parameter δ to a smaller one and
start over again. In fact, we have successfully proceeded this way when one of the
exponent p1 or p2 are close to 2 or 5, where for δ = 10−2 we reached the maximum
number of iterations Nmax_iter whereas for δ = 10−6 the algorithm seems to be
convergent in some cases but with a very low rate of convergence (tables 1 and 2).

In our numerical simulations, for δ = 10−2 we took Nmax_iter = 600 whereas for
δ = 10−6 we took Nmax_iter = 1200.

Remark 4.6. Another possible algorithm consists of keeping the monotone struc-
ture of the original operator in the equation for u. Thus, instead of (4.4) we may
consider for instance

ũn+1−un

δ
− ∂

∂x

[∣∣∣∣∂ũn+1

∂x

∣∣∣∣p1−2
∂ũn+1

∂x

]

− ∂

∂y

[∣∣∣∣∂ũn+1

∂y

∣∣∣∣p2−2
∂ũn+1

∂y

]
= ρ(un)|∇ϕn+1|2 in Ω,

ũn+1 = u0 on ∂Ω.

(4.5)

This is a nonlinear problem and no direct method can be used to solve it. Of course,
we may characterize its solution ũn+1 as the minimum of a certain energy functional
and then, in its turn, solve this optimization problem by generating a minimizing
sequence [5, 6].

Figure 1. Initial triangulation of Ω.

Remark 4.7. Other iterative algorithms are possible in order to approximate a
solution of the nonlinear problem (1.1). For instance, me may consider Newton’s
method or a least squares technique combined with the conjugate gradient method.
In both cases, the corresponding algorithm requires to compute the gradient of
certain operators with respect to u. In particular, we would need an additional
regularity assumption for the electric conductivity, namely ρ ∈ W 1,∞(R). How-
ever, the definition of these two methods cannot be developed for the continuous
problem (1.1) but for a FEM discretized version of the variational formulation (3.1).
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The linear problems (4.3) and (4.4) have been solved by the FEM and imple-
mented in Freefem++ software package [15]. We first build a mesh of the domain Ω
with high density small triangles near the boundary, as shown in Figure 1. When
the iteration n = 15 is reached, we perform a mesh adapting technique in order to
better capture the possible high slope of the solution u. This adapting technique is
applied again at iterations n = 201 and n = 402 whenever these values are reached.
To do so, Freefem++ has a built-in function called adaptmesh based on the mesh
adapting software BAMG [14]. In this way, the following line within a Freefem++
script

if (n==15 || n%201==0){Th=adaptmesh(Th,un);}

will execute the mesh adapting algorithm just at the desired iterations n = 15,
n = 201 and n = 402. We use two degree Lagrange polynomial approximation.

Figure 2 exhibits the distribution of the temperature u for the exponents p1 =
3.6 and p2 = 2.8, 3.2, 3.6, 4.0, 4.4 and 4.8, respectively. The behavior of the
solution puts in evidence the anisotropy of the semiconductor material occupying
the region Ω. In figures 2(a) and 2(b) we have p1 > p2 and the solution takes values
very close to its maximum along an interval parallel to the y-axis. This interval
reduces to just one point when p1 = p2 (Figure 2(c)) which is quite similar to the
isotropic case. Then, for p1 < p2 (figures 2(d)–2(f)) the situation is reversed so that
the solution now takes values close to its maximum along an interval parallel to the
x-axis.

Figure 3 shows the final meshes after the adapting technique in several cases.
We notice that the updated mesh is conveniently adapted and the high slope of the
temperature u are adequately captured.

Tables 1–3 detail the number of iterations executed until the convergence con-
dition of Step 4 is verified, or otherwise the corresponding entry equals the preset
maximum number of iterations. It is remarkable how good the algorithm works for
many values of (p1, p2), the closer to some value near (3,3), the better rate of con-
vergence is shown. On the other hand, when we consider values of p1 or p2 near 5,
the rate of convergence becomes worse or even no convergence at all. Amazingly,
we have found a similar behavior of the algorithm when p1 and p2 are close to 2, at
least for the case V0 = 220.

The information provided by these numerical simulations may be essential for
the design of a thermistor with an anisotropic temperature gradient dependent
diffusion. For instance, if we need a thermistor working inside an electrical circuit
with normal voltage around 10 V, we want this device to switch off the current in
the event of an unattended increase of the voltage, say 220 V. In this situation,
it would be interesting to have a semiconductor material described by a model
like (1.1) with p1 and p2 very close to the value 2.2, but not necessarily equals. Now,
according to the figures 4(a) and 4(b), the normal working temperature would be
less than 50◦C. Thus, the thermistor could be connected to a thermometer that is
programmed to switch off the current as soon as the measured temperature reaches
the value of say 70◦C. This surely would happen if suddenly the potential difference
grows up to 220 V, since the thermistor would reach a temperature of about 152◦C
(Figure 4(b)). In this way, some sensitive parts (usually, very much expensive
than a thermistor and a thermometer) inside the circuit would be protected from
unattended potential difference increase.
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(a) p2 = 2.8, ∥u∥∞ = 36.23.
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(b) p2 = 3.2, ∥u∥∞ = 36.3018.
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(c) p2 = 3.6, ∥u∥∞ = 35.7709.
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(d) p2 = 4.0, ∥u∥∞ = 33.1028.
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(e) p2 = 4.4, ∥u∥∞ = 31.769.
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(f) p2 = 4.8, ∥u∥∞ = 31.1297.

Figure 2. Distribution of the temperature u for p1 = 3.6 and the indicated p2. We took δ = 10−2 and
voltage V0 = 220.
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(a) p2 = 2.8. (b) p2 = 3.2.

(c) p2 = 3.6. (d) p2 = 4.0.

(e) p2 = 4.4. (f) p2 = 4.8.

Figure 3. Final mesh after the adapting technique based on the temperature u of Figure 2 for p1 = 3.6
and the indicated p2, respectively, with δ = 10−2 and voltage V0 = 220 V.
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(a) p2 = 2.2, V0 = 10 V, ∥u∥∞ = 44.4279.
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(b) p2 = 2.2, V0 = 220 V, ∥u∥∞ = 152.676.
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(c) p2 = 3.4, V0 = 10 V, ∥u∥∞ = 30.8131.

0

0.01

0.02

0.03

0.04

0.05

0

0.01

0.02

0.03

0.04

0.05

30
32

34
36

38

40

(d) p2 = 3.4, V0 = 220 V, ∥u∥∞ = 39.8339.
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(e) p2 = 4.8, V0 = 10 V, ∥u∥∞ = 30.2232.
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(f) p2 = 4.8, V0 = 220 V, ∥u∥∞ = 31.1306.

Figure 4. Distribution of the temperature u for p1 = 2.2 and the indicated p2. We took δ = 10−2 in
all these cases but (b) where δ = 10−6.
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Table 1. Number of iterations n executed by the algorithm described by steps 1–4 for δ = 10−2 and
V0 = 220 V. An entry below 600 means that the convergence condition ∥ũn+1−un∥∞ < ε1 = 0.5×10−11

was verified for the first time for n equal to that entry. When this entry n equals Nmax_iter = 600,
the sequence (un, φn) does not converge, usually by exhibiting some oscillatory behavior, or else its
convergence is very slow. In those cases, we repeat the algorithm for δ = 10−6.

p1

p2 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

2.0 600 600 600 600 72 44 43 43 42 44 53 65 85 128 379 600
2.2 600 600 600 600 71 42 37 36 39 44 53 65 85 128 380 600
2.4 600 600 600 380 66 41 35 36 39 44 53 65 85 128 377 600
2.6 389 103 99 80 53 40 35 36 39 44 53 65 85 128 381 600
2.8 78 61 50 45 41 36 35 36 39 44 53 65 85 128 380 600
3.0 53 41 39 37 34 32 32 36 39 44 53 65 85 128 378 600
3.2 47 39 33 33 33 31 31 34 40 44 53 65 85 128 577 600
3.4 40 39 35 35 34 34 33 33 38 44 53 65 85 127 396 600
3.6 43 39 38 38 37 36 36 36 38 43 53 65 84 127 402 600
3.8 47 45 45 44 44 43 43 42 42 42 52 66 82 127 577 600
4.0 55 50 49 49 49 49 48 48 48 49 52 64 80 128 383 600
4.2 67 65 65 64 64 64 63 62 61 61 61 64 78 129 393 600
4.4 87 84 84 84 83 83 82 81 80 79 78 77 78 126 392 600
4.6 123 119 119 118 117 302 117 116 116 116 116 116 117 125 376 600
4.8 589 377 378 376 377 377 377 374 374 372 374 370 371 367 382 600
5.0 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600

Table 2. Same as Table 1 for δ = 10−6, V0 = 220 V and Nmax_iter = 1200. In this situation, the
sequence (un, φn) converges very slowly for p1 = 2 and p2 = 2 or p2 = 2.2, and also for p2 = 2 and
p1 = 2.2, p2 = 2.4 or p2 = 2.6. The case p1 = 5 or p2 = 5 generates a sequence (un) with an oscillatory
character.

p1

p2 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

2.0 1200 1200 120 51 44 44 43 43 42 42 45 57 77 117 368 1200
2.2 1200 791 122 50 38 38 37 36 35 37 45 57 77 115 372 1200
2.4 1200 598 90 48 33 32 32 32 33 38 45 57 77 113 369 1200
2.6 1200 180 104 40 31 29 28 30 33 37 45 57 76 114 370 1200
2.8 114 84 66 46 31 26 28 30 33 38 45 57 76 113 369 1200
3.0 59 43 42 40 32 26 27 31 33 37 45 57 76 112 368 1200
3.2 46 39 33 30 29 27 27 30 33 38 45 58 76 115 373 1200
3.4 36 39 31 30 30 30 29 29 33 38 45 57 77 113 375 1200
3.6 40 39 33 33 33 33 33 32 33 37 45 57 77 112 376 1200
3.8 46 39 38 37 38 38 38 37 37 38 44 57 76 111 377 1200
4.0 52 46 45 45 45 44 45 44 44 44 45 56 75 111 375 1200
4.2 64 57 58 57 56 57 56 55 55 54 54 56 73 113 378 1200
4.4 81 76 76 77 76 76 75 74 73 72 72 72 73 110 386 1200
4.6 117 111 109 110 109 109 109 108 109 109 108 107 105 111 379 1200
4.8 395 373 369 366 366 369 372 368 373 369 366 369 368 370 370 1200
5.0 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200

5. Conclusions
We have analyzed the existence of a certain kind of solutions to a nonlinear system
of two coupled partial differential equations of nonuniformly elliptic type in the
framework of anisotropic Sobolev spaces. This model arises in the study of a small
semiconductor device inside an electrical circuit called thermistor. The unknowns
of this system are the temperature and the electric potential. Since we are dealing
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Table 3. Same as tables 1 and 2 for δ = 10−2, V0 = 10 V and Nmax_iter = 600. In this situation, the
sequence (un, φn) converges very slowly for p1 = 5 or p2 = 5. In the other cases, the maximum number
of iterations was not reached.

p1

p2 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0

2.0 44 42 42 41 40 39 39 38 38 38 40 50 68 101 199 600
2.2 45 36 36 35 34 34 33 34 34 34 40 50 68 102 200 600
2.4 45 35 32 31 30 30 30 30 31 34 41 51 68 102 201 600
2.6 46 34 31 28 27 27 27 27 31 35 40 51 68 102 351 600
2.8 46 34 30 27 24 24 24 27 30 35 41 51 68 102 351 600
3.0 46 34 30 27 24 13 24 27 30 35 41 51 68 102 353 600
3.2 45 33 30 26 24 24 24 27 31 34 41 51 68 102 350 600
3.4 45 33 29 27 27 27 27 28 31 35 41 52 68 102 201 600
3.6 45 33 31 30 31 31 31 30 31 34 41 51 68 102 199 600
3.8 45 36 35 35 35 35 35 34 35 35 41 51 69 102 197 600
4.0 45 41 41 40 40 40 41 41 40 40 41 50 68 102 196 600
4.2 54 51 51 50 50 50 50 50 50 50 51 51 67 101 195 600
4.4 69 68 68 68 68 68 68 68 67 67 67 67 68 99 196 600
4.6 101 101 101 101 101 101 101 101 101 100 100 99 99 101 197 600
4.8 200 200 200 201 201 200 199 198 197 196 195 196 196 197 197 600
5 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600 600

with a temperature dependent electric conductivity, ρ(u), under the assumption
ρ(s) > 0 for all s ∈ R, the search of weak solutions is not well-suited in our setting
and we need to introduce the concept of capacity solution (Definition 2.1). The
main result of this work is the existence of a capacity solution to the problem (1.1)
in the setting of anisotropic Sobolev spaces (Theorem 3.1). This kind of solution
is obtained by approximation so that the capacity solution is, in fact, the limit of
solutions to certain regularized problems.

We have implemented an algorithm for the numerical resolution of system (1.1)
for different values of the exponents p1 and p2. This algorithm has shown numer-
ically to be convergent for any values of the exponents in the interval (2, 5) and
certain values of the parameter δ (tables 1–3) which may depend on the applied
potential difference V0 as well. These numerical simulations may yield a valuable
information in the design of thermistors inside electric circuits.
Acknowledgements. The authors would like to thank an anonymous reviewer for
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paper.
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