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Abstract In this paper we use the topological degree and the Krein-Rutman
theorem to investigate the existence of nontrivial radial solutions for a sys-
tem of second order elliptic equations. Our results are obtained under some
conditions involving the eigenvalues of a relevant linear operator.
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1. Introduction

In this paper we investigate the existence of nontrivial radial solutions for the fol-
lowing system of second order elliptic equations

Au+g(|z]) f1(v) =0, Ry < |z] < Ry,
Av + g(|z]) f2(u) = 0, Ry < |z| < Ra,
u=0,z| = Ry;u=0,|z| = Ra,
v=0,|z] = Ry;v =0,|z| = Ra,
where the functions g, f;(i = 1, 2) satisfy the following conditions
(H1). g is the nonnegative continuous function on [Ry, Rs],
(H2). f; € C(R,R), i =1,2.
For the elliptic boundary value problem

—Au = f(|z],u), z € Q, (1.2)
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where € is the unit ball in RY, there is a large number of papers studying the
existence of radial solutions using different techniques; for example see [1-7,9-12,
16-25] and the references therein. In [17] the author used the method of lower and
upper solutions to obtain the positive radial solutions of the elliptic equation with
a nonlinear gradient term

—Au = f(|z|,u,|Vu]), z € Q,

ulyo =0,

where € is as in (1.2). In [10], the authors used the fixed point index to study the
existence of positive solutions for the following elliptic system on an annulus

Au 4+ Aky(Jz]) f(u,v) =0, in Q,
Av + Mk (|z])g(u,v) =0, in €,

0 0
Oé1u+/31£ =0, 042U+ﬁ2l =0, on |z| = Ry,
on on

0 0
MU+ G5 =0, v+ 5 =0, onle| =R,
on on

where A is a positive parameter, «;, 8;, v, 6; > 0 with p; = v;8; +a;vi+a;6; > 0, k; :
[R1, R2] — [0,00) are continuous and do not vanish identically on any subinterval
of [Ry, Ry for i = 1,2, and the nonlinearities f, g satisfy the conditions

. fu,v) . g(u,v)
= 1 =00 = 1
foo (u,vl)nl>oo u-+v ’ goo (u,vlgoo u—+v

= o0. (1.3)

Inspired by the works mentioned, in this paper we use the topological degree
and the Krein-Rutman theorem to investigate the existence of nontrivial radial
solutions for (1.1). Our nonlinearities f;(i = 1,2) grow superlinearly at infinity and
they involve the eigenvalues of a relevant linear operator, which improves condition
(1.3).

2. Basic Notions
Our aim is to find radial solutions for the system (1.1). Let |z|=r, 2=(z1, 22, ..., TN)

and then (1.1) can be transformed into the system of second order ordinary differ-
ential equations

u(r) + (554) W/ (r) + g(r) fi(v(r)) = 0, Ry <7 < Ry,
"(r) + (N;l) v'(r) + g(r) fa(u(r)) =0, Ry <r < Ry, 2.1)
U(Rl) = U(RQ) = O7
’U(Rl) = 'U(RQ) =0
If we choose p(r) = rN =1 a(r) = g(r) -7V =1, then the system (2.1) can be rewritten
(p(r) ()" + a(r) fi(v(r)) = 0, Ry <7 < Ry,
W) 0)) +al) faulr) = 0.1 < 7 < B, 09
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From [15] we obtain that the system (2.2) can be rewritten as

)= [ G sya(s) fi (o(s))ds
n (2.3)
v(r)—/R1 G(r, s)a(s) f2(u(s))ds
where
(i stydr) (K stmdr)
Rz% ST
G(r,s) = (2.4)
(Jr, styr) (" ) e

1
flp(T

Lemma 2.1 (see [15, Lemma 2.1]). The Green function G has the following prop-
erties:

(1) q(r)®(s) < G(r,s) < ®(s) forr,s € [Ry, Ra],
(i1) w(r) = f;f G(r,s)a(s)ds < ||alloco&maxq(r) for r € [R1, Ra],

where

S Gty fmpl dr

Q(T) =1m Ry 1 )
R1 P ’T) le p
stz (T)d fR (7')
O(s) = , Ry <r < Ry,
Ry p(T) dr
R R
2T — Rl 2 R2 — T
b= [ T - 47, € = max(1, &),
R, P(T) R, P(T) '

Let X = C[Ry, Ro] and ||ul| = sup,¢(p, g, [u(r)| for u € X. Note (X,[|-[|) is a
Banach space. Define the following sets as follows

P={ue X :u(r)>0,r € [R1,Ra]}, Po={uec X :ulr)>qlr)|u|,r €[R1, Rz}

Then P, Py are cones on X. Moreover, X2 = X x X is a Banach space with the
norm ||(u,v)|| = ||ul + [|v||, (u,v) € X2, and P2 =P x P is a cone on X2.

Lemma 2.2. Let ( fR a(s)u(s)ds. Then L(P) C Py.
Proof. If u € P, then from Lemma 2.1(1) we have
Ro Ra
(Lu)(r) = G(r, s)a(s)u(s)ds < / ®(s)a(s)u(s)ds,Vr € [R1, Rs).

R1 Rl

Therefore, we obtain

Ro
ILul < / (s)a(s)u(s)ds.

Ry
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From Lemma 2.1(i) again, we find

R2

Ro
(Lu)(r) = / G(r,s)a(s)u(s)ds > q(r)/ D(s)a(s)u(s)ds.

Rl Rl
Thus
(Lu)(r) > q(r)||Lull,Vr € [R1, Ra].
O]

Lemma 2.3 (Krein-Rutman, see [14], [8, Theorem 19.3], [26, Theorem 7.C]). Let
P be a reproducing cone in a real Banach space E and let L : E — E be a compact
linear operator with L(P) C P. Let r(L) be the spectral radius of L. If r(L) > 0,
then there exists ¢ € P\{0} such that Ly = r(L)ep.

Lemma 2.4 (see [13, Theorem A.3.3]). Let Q be a bounded open set in a Banach
space X, and T : Q@ — X be a continuous compact operator. If there erists xg €
X\{0} such that

x—Tx # pxy, Ve € 00, u >0,

then the topological degree deg(I —T,,0) = 0.

Lemma 2.5 (see [13, Lemma 2.5.1]). Let Q be a bounded open set in a Banach
space X with 0 € Q, and T : Q@ — X be a continuous compact operator. If

Tx # px, Ve € 09, p>1,

then the topological degree deg(I —T,,0) = 1.

3. Main Results

From (2.3) we can define operators T;(i = 1,2) : X — X, and T : X? — X? as
follows:

Ry

(Thv) (r) = ; G(r,s)a(s)f1(v(s))ds,
Ro

(Tou) (r) = ; G(r, s)a(s)f2(u(s))ds,

and
T(u,v)(r) = ((Thv), (Tow)) (r),r € [R1, Ra],u,v € X,

where G is as in (2.4). We note that T;(: = 1,2) and T are completely continuous
operators, and (u,v) solves (1.1) if and only if (u,v) is a fixed point of the operator
T.

Theorem 3.1. r(L) > 0, where r(L) is the spectral radius of L in Lemma 2.2.

Proof. From the definition of the norm, we have

Rz RQ
L|= ma G(r, ds> ma : ) ds.
= g [ G at)s = max a0)- [ a(s)a(e)ds
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Similarly, for all n € N, we obtain

IL"]|= max / G (r, s1)a(s1)G (51, 52)a(s2) - - G(Sn—1, $n)a(sp)ds1 - - - dsn
r€[R1,Rs]

> max q(r) / / Ja(s1)®(s2)alss)

r€[R1,Ra]

. -q(sn_l)é(sn)a(sn)dsl - dsy,
Ry Ro "
= max ]q(r) / D(s)a(s)ds - (/ q(s)@(s)a(s)ds) ,

T€[R1,R2 Ry

and from Gelfand’s theorem we have

Ry
r(L) = hm \"/||L"|>/ a(s)ds > 0.

O
Now from Theorem 3.1 we have (L) > 0, and thus from the Krein-Rutman
theorem, there exists ¢ € P\{0} such that

(L)(r) = r(L)p(r),r € [Ry, R, (3.1)

R2
/ G(r,s)a(s)p(s)ds =r(L)p(r),r € [R1, Rs], (3.2)

Ry

and this means that ¢ is a positive solution for the boundary value problem

D)) + Malr)ulr) = 0, By < v < B, (3.3
u(Ry) = u(R2) =0, )
where A\; = ( 5- Moreover, from Lemma 2.2 and (3.2) we obtain
p € Po. (3.4)

Theorem 3.2. Suppose that (H1)-(H2) and the following conditions hold:
(H3). There exist bj,c; >0 and K;(v), K2(u) € C[R,RY] such that

fl(u) > _bl - ClKl(v)v f2(u) > _b2 - CQKQ('LL),VU,U € Ral = 1727

K K
(HY). 1) _ g gy KW
oo |v] lul=+oo |y
(H5). liminf h(v) > A1, liminf () > Aq,
[v] =400 |v] [u| =400 |ul
(H6). lim sup 1(0) < A1, lim sup [f2(w)] < A1
|v]|—0 |v] |u|—0 |ul

Then the system (1.1) has at least one nontrivial radial solutions.
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Proof. From (H6) there exist €1 € (0, A1) and r; > 0 such that
1) < (A —e)fol, [f2(u)] < (A —e1)lul, Vu,v € R with [ul, jv] <.

This gives us

Ro Ro2
| (Thv) (r)] < ; G(r,s)a(s)|f1(v(s))|ds < (A —e1) ; G(r,s)a(s)|v(s)ds,
and
Ro R>
(o) ()] < [ Glrale)la(uls)lds < (s =e1) [ Glrs)ae)lu)lds.
Now we prove that
(u,v) # pT(u,v) for all u,v € OB,, and p € [0,1]. (3.5)

Suppose that there exist u,v € 0B,, and u € [0, 1] such that
(4,v) = 1T (u,0).

Then,
u = pTyv, and v = pThu.

This implies that

Ro
lu(r)| = p|(Trv) (r)] < (A1 — 1) ; G(r,s)a(s)lv(s)|ds,r € [R1, Ro],
and
R2
[w(r)| = p|(Tou) (r)] < (A —e1) ; G(r,s)a(s)|u(s)|ds,r € [R1, Ry].
Consequently, we have
Ro
[u(r)] + v(r)] < (A —e1) G(r,s)a(s)(Ju(s)| + [v(s)|)ds.

Ry
Let z(r) = |u(r)| + |v(r)|. Then z € P and
R2
z(r) < (A1 —e1) ; G(r, s)a(s)z(s)ds = (M —e1)(Lz)(r),r € [R1, Ra].

The nth iteration of this inequality shows that
2(r) < (M —e)" (L"2) (r)(n=1,2,...),

and then
2] < (A —e)" [IL7]] - Iz, ie., 1< (A —e1)” [|L7]].
This yields
N )\1 — &1

1< (—ey) lim /YL = (M —e)r(l) = —— <1



2214 H. Zhang, J. Xu & D. O’Regan

This is a contradiction. Hence, (3.5) holds, and Lemma 2.5 guarantees that
deg(I - T, B,,,0) =1. (3.6)
On the other hand, from (H5) there exist €5 > 0 and ry > 0 such that
A1) = Oa +e2) Jol, folw) = O +e2) Jul, for [u], o] > 7.

Let My = max|y|<p, [|f1(v)] + (A1 + &2) [v]], M2 = maxjy<p, [| f2(w)] + (A1 + €2) |ul].
Then

fl(’l)) 2 ()\1 + 62) |’U| — Mlv fQ(U) 2 ()\1 + 52) "LL| — MQ,VU,U € R. (37)

For any given €,€ with €5 — c1e > 0, €2 — c2€ > 0, by (H4) there exists r3 > r9
such that
Ki(v) <€, Ka(u) <Eul, Y|ul,|v] > rs.
v

Let Ki = max|y|<,, K1(v), and K3 = maxj,|<,, K2(u). Then we obtain
Ki(v) < €|+ K7, Ko(u) <€u|+ K3, Yu,v € R. (3.8)

Note €, € can be chosen arbitrarily small, so we can let A1 > max{r;, N1, Na, N3, Ny},
and let

2(202 + 22 K5 + Mp) [ (s)a(s)ds
_ R
1 — 2€cy [* ®(s)a(s)ds
v, _ 20b1 20K+ M) o ®(s)a(s)ds
2 = R )
1 —2ecy [? ®(s)a(s)ds
Ns [(22 = e16) [ @(s)a(s)ds + (A1 + 22 = e16) lallooimas |
5T Nelea — cr6) — (A1 + 22 — c16) (cre + ) [|a]|omax
Ns [(22 = e28) [ D(s)a(s)ds + (At + 22 — €20) [|allocmas

T Nelea — c28) — (M + 22 — c26) (cre + 26)[|a]oomax

1=

i

4 =

)

where

N5 = 2by + 2by + My + Mo + 21 K7 4 2¢2 K3,
Ra

Ne =1—(cre+ CQE)/ D(s)a(s)ds.
Ry
Now we claim that
(uﬂ U) - T('LL, ’U) 7é 2 (Sov 90) >vu7 v € aBAl y > Oa (39)

where ¢ is as in (3.1). Suppose that there exist u,v € 9By, and g > 0 such that

(u,v) = T(u,v) = p(p, ).
This means that
u="Tiv+ up, v="Tou+ up. (3.10)
Let

Ro
u(r) = ; G(r,s)a(s)[2ba + caKa(u(s)) + M + coK3]ds,
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R>
o(r) = ; G(r,s)a(s)[2by + c1 K1 (v(s)) + My + ¢1 K7]ds.

(i) Note [Ju|| = ||v]| = A1, and from (3.8) we have

R>

1

Ilz]| < / D(s)a(s)ds - [2ba + co(€|lul| + K3) + Ma + 2 K3] < §A17
Ry

and
Ro 1
7] < / D(s)a(s)ds - [2b1 + cr1(e||v]| + KT) + My + e1 K] < §A1.
Ry
(ii) From Lemma 2.2, u,7 € P.
(111) u+ve P07’U+H€P0.
Indeed, from (3.10) we have
u(r) +v(r)
= (Tw)(r) +(r) + pe(r)
Ro
= / G(r,s)a(s)[f1(v(s)) + 201 + c1 K1 (v(s)) + M1 + er K7 lds + pep(r),
Ry
and
o(r) +u(r)

= (Tou)(r) +u(r) + pe(r)
Ro

= ; G(r,s)a(s)[f2(u(s)) + 2b2 + caKa(u(s)) + Mz + coK3]ds + pp(r).

Note Lemma 2.2 and (3.4), so (iii) is true.
Note ||u|]| = ||v|| = A1, u+ T+ 7T € Py,v+u+7T € Py. Hence, we obtain

u(r) +a(r) +9(r) = q(r)llu + 7+ 2] = q(r)(Ar = [[u] - [7]),

and
o(r) +u(r) +o(r) = q(r)|lv+ T +2]| = q(r)(AL — [[u]l - []),
for r € [Ry, Rz]. Therefore

(2 — cre)(Ar — [[al] — [IPl]) = (A1 + €2 — c1€) [|alloobmax N5 + crel|v]| + col|ull]
R>
>(eg — c1€) <A1 - / O(s)a(s)ds - [Ns + c1eA; + 626A1]>
Ry
— (M +e2 = c1€) [|al|cobmax[N5 + creA + co€l]
>0

and
(2 — c2€) (A1 — [[ul| = [[V[) — (A1 + €2 — 28) [|allocmax[N5 + cre[v]| + coe[ull]
Rs
> (62 — CQE) (Al — / @(s)a(s)ds . [N5 + cr1eA1 + 626A1]>
Ry
— (M1 + 2 — 26) ||a|so€max[N5 + c1eAq + co€Aq]
>0.
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Therefore, from Lemma 2.1(ii) we find

R
(€2 — c1e) ; G(r, s)a(s)[v(s) +u(s) +v(s)]ds
1 .
— (A + &2 — cr6) / G(r, s)a(s)[u(s) +v(s)]ds
Ry
R
>(e2 — cr€) ; G(r,s)a(s)q(s)(Ar — [u] — [[7])ds
Ro R
— (A1 +ez—cre) ; G(r, s)a(s) ; G(s,7)a(T)[N5+c1 K1 (v(7))+ca Ko (u(r))]drds
R2 1 1
>(e2 — cre) /R G(r,s)a(s)q(s)(Ar — |ul| — [[v]))ds
R>
— (M1 +e2 —cie) ; G(r,5)a(s)q(s)]|all so€max[Ns + cre||v]| 4 co€l|ul[]ds
207
and

R>
(€2 — c9€) / G(r, s)a(s)[u(s) +u(s) +v(s)]ds

Ry
Ra
e -an) [ Gl +o(s)ds
R2
> (g9 — c2€) ; G(r,s)a(s)q(s)(Ar — [[u] — [[7])ds
R> R2
—(/\1—|—52—02€)/ G(r, s)a(s)/ G(s,7)a(T)[Ns+c1 K1 (v(7))+ca Ko (u(r))]drds
Ry Ry
R>
> (€2 — c9€) . G(r,s)a(s)q(s)(Ar — |u] — |[v]))ds
R2
— (A1 + &2 — c2¥) ; G(r,s)a(s)q(s)]|allcobmax[Ns + crel[v]| + coél|ul[]ds

>0.

As a result, from the above two inequalities we obtain

1:2 G(r,s)a(s)[1(v(5)) + 2b1 + 1K1 (v(s)) + My + e K ]ds
> 1:2 G(r,s)a(s)[(M +22) [o(s)] = My = b = 1K (v(s)) + by + M + e K]ds
> R?Gu,s)a(s)[mm)|v<s>|—Ml—bl—c1<e|v<s>|+Kf>+b1+M1+°‘1Kﬁds
Ot er— ) 1:2 G(r, $)a(s)lo(s)|ds
s

> (A +e2—cre) ; G(r,s)a(s)v(s)ds
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S VS 1:2 G(r,5)a(s)[v(s) + (s) + B(s)]ds
(Mt es— 1) RR G(r, s)a(s)[a(s) + 5(s)|ds

> 1:2 G(r, s)a(s)[v(s) + T(s) + 5(s)|ds

>h 1:2 G(r,5)a(s)[v(s) + (s))ds

—ML(v+)(r),

and

R2
; G(r, s)a(s)[fa(u(s)) + 2b2 + c2aKa(u(s)) + Mz + c2 K3 ]ds
R>
> ; G(r, s)a(s)[(A1+e2) |u(s)|—Ma—ba —ca(€|u(s)|+ K35 )+ba+ Ma+ca K3]ds
R2
= (A1 + €2 — 9€) G(r,s)a(s)|u(s)|ds
Ry
R2
> (A1 +e2 — 2€) i G(r, s)a(s)[u(s) +u(s) +v(s)]ds
R2
— (A1 + &2 — 2€) ; G(r, s)a(s)[u(s) +v(s)]ds
>ML(u+a+7)(r)

>\ L(u+7)(r).
Consequently, we have
Tw+v>MLw+7a), Tou+a > A\ L(u+7).
Thus from (3.10) we have
utv+Ta+T=T1wv+Tou+T+T+2up > MLlu+v+T+7)+2up > 2up.

Define p* = sup S, :=sup{p>0:u+v+T+7>2up}. Then S, # &, p* > p
and u+v+u+v > 2u*p. From ¢ = A\ Ly, we obtain
ML(u+v+u+70) > MLQ2u"e) =2u" A\ Lo = 2u"p.
Hence
u+v4+u+T>ML(u+v+T+0) +2up > 2(n+ 1)@,

which contradicts the definition of p*. Therefore, (3.9) holds, and from Lemma 2.4
we obtain
deg (I — T, By,,0) = 0. (3.11)

Now (3.6) and (3.11) together imply that
deg (I - T, BAl\Eh,O) =deg(I —T,Bp,,0) —deg(I — T, B,,,0) = —1.

Therefore the operator T has at least one fixed point in B, \B,,. Equivalently,
(1.1) has at least one nontrivial solution. O
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Example 3.1. Let

n .

S (=1)ia; — ol In(fe] + 1) + 102, v € (—o0,—1),
fi(v) =5

> a’, v € [—1,+00),

i=1

. . 1 1

S (=1)'a; — |u|3 In (\u|§ + 1) +In2, we(—oo0,—1),
fo(u) = ¢ 7

> aul, u € [—1,+00),

i=1

where 0 < a1 < Aj,a; > 0 and a; # 0(i = 2,3,--- ,n). Then f;(i = 1,2) are
n

unbounded from below. Choose ¢; = 1,b; = > a; + In2(j = 1,2), Ki(v) =
i=1

[v]3 In(|v] + 1), Ka(u) = |u|3 In (|u|% + 1), and we see that (H1)-(H6) hold. There-

fore, (1.1) has at least one nontrivial solution.
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