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Abstract As a class of recurrence, almost periodicity has been studied in
stochastic differential equations (SDEs) under the framework of linear expec-
tation. However, in the framework of nonlinear expectation, there are few
literatures on Poisson stable solutions for SDEs and (pseudo) almost periodic
solutions for SDEs with exponential dichotomy. This paper is devoted to
the existence and asymptotical stability of p-distribution Poisson stable solu-
tions for nonhomogeneous linear and semi-linear SDEs driven by G-Brownian
motion satisfying exponential stability. Moreover, some existence results of
(pseudo) almost periodic solution in p-distribution are established for semi-
linear SDEs driven by G-Brownian motion satisfying exponential dichotomy.
Meanwhile, some examples are given to validate the obtained theoretical re-
sults.
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1. Introduction
Recurrence describes that a motion returns infinitely often to any small neighbor-
hood of the initial position. It characterizes the asymptotic behaviors and the
complexity of systems. By Poincaré recurrence theorem and Birkhoof recurrence
theorem, recurrence exists widely in lots of dynamical systems, such as in the fields of
physics, chemistry, biology, engineering and economics. In addition, in probability
theory, the existence of recurrence actually means the existence of invariant proba-
bility measures for Markov processes. Poisson stable motions are sometimes called
recurrent motions in dynamical systems. It includes particularly pseudo-recurrence,
pseudo-periodicity, almost recurrence, Levitan almost periodicity, Birkhoff recur-
rence, Bohr almost automorphy, Bohr almost periodicity, quasi-periodicity, peri-
odicity, stationarity. As a special case of Poisson stability, almost periodicity was
founded by Bohr [2–4] in 1924−1926 and was developed by Bochner [6] with a sim-
pler characterization. In the early stage, almost periodicity was mainly researched
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in Fourier series theory. While it was found gradually that many differential equa-
tions admit almost periodic solutions, see Fink [21], Amerio and Prouse [1] for a
survey. Based on these excellent work before, the concept of almost periodicity was
generalized to pseudo almost periodicity and µ-pseudo almost periodicity, see [5,42]
and references therein for more details.

In stochastic sense and in the framework of linear expectation, there are many
results of almost periodic solutions of SDEs, such as references [7,9,38,43]. Note that
these systems become unpractical since the volatility is a fixed constant. Consid-
ering the uncertainty of probabilities and distributions (such as uncertainty prob-
lem in statistics, measures of risk and the super-hedging in finance), Peng [29]
introduced the notion of G-normal distribution, G-expectation and G-Brownian
motion as the canonical process under such sublinear expectation, then as well as
the related calculus of Itô’s type. The study of such field was further improved by
Peng [29–34], such as the law of large numbers and central limit theorem under non-
linear expectations. From then on, many scholars have been interested in the study
of SDEs driven by G-Brownian motion from many different perspectives, see refer-
ences [22–26,39,40,44]. Particularly, Zhang et al. [44] and Gu et al. [22] respectively
showed the existence of almost periodic solutions and pseudo almost automorphic
solutions for SDEs with G-Brownian motion. Yang et al. investigated Stepanov-like
doubly weighted pseudo almost automorphic processes for Sobolev-type equations
driven by G-Brownian motion in paper [40].

The first step of studying recurrent solutions of SDEs is to discuss the existence
of solutions. To the best of our knowledge, there are three methods on this line. The
first one is the fixed point approach, see [7, 9, 38, 40, 43] and the references therein.
The second one is the Favard separation approach. Favard initially applied this
method to study almost periodic solution for linear equation. Liu and Wang [27]
further generalized Favard separation method and Amerio separation method to
linear SDEs and nonlinear SDEs, respectively. Moreover, the Favard separation
method was applicable to research almost automorphic solution of linear differential
equation in paper [10]. The third one is the subvariant functional method. Cieutat
and Ezzinbi [11] used it to show that every K-minimizing mild solution is compact
almost automorphic for nonlinear differential equation.

When consider the Poisson stable solutions, it seemly becomes more challenging
by the above methods since one can not obtain Poisson stable solutions in a unified
framework by the above methods. On this line, Shcherbakov [35, 36] established
comparability methods to study Poisson stable solutions of differential equations.
Then Caraballo and Cheban [12] investigated almost periodic and almost automor-
phic solutions of linear differential equations. For scalar differential equations, the
existence of Levitan almost periodic, Bohr almost periodic and almost automorphic
solutions has been reported in paper [13]. The existence of Levitan almost periodic
and almost automorphic solutions of V -monotone differential equations was also
proved in paper [14]. Cheban [15] further researched Bohr almost periodic, Levitan
almost periodic and almost automorphic solutions of linear SDEs. For semi-linear
SDEs, Cheban and Liu [16] researched Poisson stability of solutions on the circum-
stance of Brownian motion and L2-norm.

To our knowledge, almost all results about Poisson stable solutions are restricted
to deterministic equations or SDEs with linear expectation; and in the framework
of sublinear expectation, almost periodic solutions and almost automorphic solu-
tions are just studied in the case that SDEs satisfy exponential stability. A natural
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question is raised: does the Poisson stable solutions survive to SDEs with sublinear
expectation? This paper gives a positive response to this question. Under some suf-
ficient conditions, Poisson stable (in particular, pseudo-recurrent, pseudo-periodic,
almost recurrent, Levitan almost periodic, Birkhoff recurrent, Bohr almost auto-
morphic, Bohr almost periodic, quasi-periodic with a limited spectrum, τ -periodic,
stationary) solutions are obtained for linear and semi-linear SDEs with G-Brownian
motion.

Precisely, the following nonhomogeneous linear SDEs are considered at first:

dϖ(t) = (Aϖ(t) +G1(t))dt+G2(t)dBt +G3(t)d⟨B⟩t, (1.1)

where Bt is a standard two-sided G-Brownian motion and ⟨B⟩t is its quadratic varia-
tion. This equation is explained as its integral type and the stochastic integrals with
respect to Bt and ⟨B⟩t are given in subsection 2.1 below. By the virtue of estimates
of these integrals (Proposition 2.1), one acquires some useful estimates relative to
equations so that one obtains the asymptotic stability of Poisson stable solutions
and the existence of (pseudo) almost periodic solution. For the nonhomogeneous
linear SDE (1.1), one investigates the comparability characterizing by recurrence
on LpG(Ω), p > 2, and then obtains Poisson stable (particularly, pseudo-recurrent,
pseudo-periodic, almost recurrent, Levitan almost periodic, Birkhoff recurrent, Bohr
almost automorphic, Bohr almost periodic, quasi-periodic with a limited spectrum,
τ -periodic, stationary) solutions in p-distribution.

Moreover, one considers the following semi-linear SDEs:

dϖ(t) = (Aϖ(t) +G1(t,ϖ(t)))dt+G2(t,ϖ(t))dBt +G3(t,ϖ(t))d⟨B⟩t. (1.2)

Except for the same Poisson stable results as equation (1.1) in the case that semi-
group generated by A satisfies exponential stability, one studies (pseudo) almost pe-
riodic solution when the semigroup generated by A satisfies exponential dichotomy.
Notice that there is no valid result different from Lemma 4.3 of paper [16] up to
now so that one can not obtain Poisson stable solutions for SDEs with exponential
dichotomy. In this case this paper acquires (pseudo) almost periodic solutions in
p-distribution for (1.2) with exponential dichotomy.

The remaining part of this work is arranged as below. In Section 2, one recalls
several necessary concepts and preliminaries. In Section 3, using the comparability
method, Poisson stable solutions in p-distribution are gained for nonhomogeneous
linear and semi-linear SDEs. Moreover, sufficient criteria for the asymptotic stabil-
ity of the corresponding Poisson stable solutions of semi-linear SDEs are presented.
In Section 4, for semi-linear SDEs with exponential dichotomy, some theorems
about (pseudo) almost periodic solution in p-distributions are set up. In Section 5,
some examples are presented to validate the theoretical claims.

2. Preliminaries
2.1. G-Brownian motion
In this subsection, one introduces some notations and preliminaries of the theory
of sublinear expectation and G-stochastic analysis from Peng [34]. Throughout the
paper, our results are established in the space LpG(Ω) satisfying p > 2 except that p
is specifically specified, and the LpG(Ω) space will be introduced below. First, for a
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given set Ω, H is a linear space of real valued functions on Ω. A function E : H → R
is said to be a sublinear expectation provided that the following properties hold,
for all x, y ∈ H,

(a1) x ≥ y implies E[x] ≥ E[y];
(a2) E[c] = c, ∀c ∈ R;
(a3) E[x+ y] ≤ E[x] + E[y];
(a4) E[λx] = λE[x], ∀λ ≥ 0.

The triplet (Ω,H, E) is called sublinear expectation space.

Definition 2.1. Let (Ω,H, E) be a sublinear expectation space. For any x ∈ H
with σ2 := E[x2], σ2 := E[−x2], if for any c, d ≥ 0, cx + dy=

√
c2 + d2x, then x is

called N (0; [σ2, σ2])-distributed or G-distributed, where y is an independent copy
of x.

Let X be an Rd-valued G-distributed stochastic variable and Cb,lip(Rd,R) be
the space of bounded Lipschitz functions defined on Rd. For any φ ∈ Cb,lip(Rd,R),
define u(t, x) given by

u(t, x) = E[φ(x+
√
tX)].

Then u(t, x) is the solution of the following parabolic partial differential equation{
∂tu−G(∂2xxu) = 0,

u(0, x) = φ(x),
(2.1)

where G(r) = 1
2 (σ

2r+ − σ2r−) for r ∈ R, r+ = max{0, r} and r− = (−r)+.

Definition 2.2. The process B = {Bt, t ≥ 0} in a sublinear expectation space
(Ω,H, E) is defined as a G-Brownian motion provided that the following statements
hold:

(a1) B0 = 0;
(a2) for every t, r ≥ 0, the difference Bt+r −Bt is N (0, [σ2r, σ2r])-distributed and

is independent of (Bt1 , · · · , Btn), for all n ∈ N and 0 ≤ t1 ≤ · · · ≤ tn ≤ t.

Now, one considers that Bt is a Rd-valued G-Brownian motion on (Ω,H, E).
Let

Lip(ΩT ) :=
{
φ(Bt1 , · · · , Btn), n ∈ N, tj ∈ [0, T ], j = 1, 2, · · · , n, φ ∈ Cb,lip(Rd×n)

}
.

It is clear that Lip(Ωt) ⊂ Lip(ΩT ) for t ≤ T . Set

Lip(Ω) =

∞⋃
n=1

Lip(Ωn).

Denote LpG(ΩT ) and LpG(Ω) by the completion of Lip(ΩT ) and Lip(Ω) respectively
under the norm ∥ · ∥p := (E| · |p)

1
p . For t > 0, a partition of [0, t] is a finite-ordered

subset {πt} satisfying

πt : 0 = t0 < t1 < · · · < tN−1 = t
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with max {ti − ti−1, i = 1, · · · , N} → 0 as N → ∞. Then one further sets

Mp,0
G ([0, T ]) :=

{
ξt :=

N−1∑
j=0

ξjI[tj ,tj+1)(t); ξj ∈ LpG(Ωtj ), N ∈ N,

0 = t0 < t1 < · · · < tN = T

}
,

and denotes Mp
G([0, T ]) by the completion of Mp,0

G ([0, T ]) under the norm

∥ξ∥Mp
G([0,T ]) =

(∫ T

0

|ξt|pdt

) 1
p

.

The Itô integral is given by∫ T

0

ξtdBt :=

N−1∑
j=0

ξj(Btj+1
−Btj ), ξt(ω) =

N−1∑
j=0

ξtj (ω)I[tj ,tj+1) ∈Mp,0
G ([0, T ]).

Definition 2.3. The quadratic variation process ⟨B⟩t, t ≥ 0 of Bt is defined by

⟨B⟩t := lim
N→∞

N−1∑
j=0

(Btj+1 −Btj )
2 = B2

t − 2

∫ t

0

BsdBs.

The integral with respect to ⟨B⟩t is given by∫ T

0

ξtd⟨B⟩t :=
N−1∑
j=0

ξj(⟨B⟩tj+1 − ⟨B⟩tj ), ξt ∈M0
G(0, T ).

Remark 2.1. Because integrals
∫ T
0
ξtdBt and

∫ T
0
ξtd⟨B⟩t are continuous linear

mappings from Mp,0
G (0, T ) to LpG(ΩT ), they can be extended to maps from Mp

G(0, T )
to LpG(ΩT ) continuously.

Proposition 2.1. For 0 ≤ t ≤ T < +∞, p ≥ 1,

(a1) ∀ ξt ∈M2
G([0, T ]), E

[∣∣∣∫ T0 ξ2t d⟨B⟩t
∣∣∣] ≤ σ2E

[∣∣∣∫ T0 ξ2t dt
∣∣∣];

(a2) ∀ ξt ∈Mp
G([0, T ]), E

[∣∣∣∫ T0 ξtdBt

∣∣∣p] ≤ CpE

[∣∣∣∫ T0 ξ2t d⟨B⟩t
∣∣∣ p2 ].

2.2. Poisson stability
In this subsection, one recalls the types of Poisson stability. One refers the readers
to [13,14,16] and the references therein for more details.

Note that (LpG(Ω), ∥·∥p) is a Banach space. Let C(R, LpG(Ω)) be the space con-
sisting of continuous functions ψ : R → LpG(Ω) endowed with the distance

d(ψ, ϕ) := sup
L1>0

min

{
max
|t|≤L1

(E |ψ(t)− ϕ(t)|p)
1
p , L−1

1

}
.

Then (C(R, LpG(Ω)), d) is a complete Banach space.
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Definition 2.4. A function ψ ∈ C(R, LpG(Ω)) is said to be stationary (τ -periodic)
provided that for all t ∈ R ψ(t) = ψ(0) (ψ(t+ τ) = ψ(t) for some τ > 0).

Definition 2.5. A function ψ ∈ C(R, LpG(Ω)) is defined as quasi-periodic with
limited spectrum of frequencies µ1, µ2, · · · , µk provided that the following conditions
are fulfilled:
(a1) the numbers µ1, µ2, · · · , µk are rationally independent;
(a2) there is a continuous function for all (t1, t2, · · · , tk) ∈ Rk F : Rk → LpG(Ω)
fulfilling

F (t1 + 2π, t2 + 2π, · · · , tk + 2π) = F (t1, t2, · · · , tk);

(a3) for t ∈ R, ψ(t) = F (µ1t, µ2t, · · · , µkt).

Definition 2.6. For ε > 0, a number τ ∈ R is defined as ε-almost period of the
continuous function h : R → LpG(Ω) provided that

(E |h(t+ τ)− h(t)|p)
1
p < ε

for all t ∈ R. Denote by T (ε, h) is the set of ε-almost periods of h. If the set of
ε-almost periods of h is relatively dense on R, i.e. for each ε > 0 there is a number
l′ = l′(ε) > 0 satisfying (b, b+ l′)∩T (ε, h) ̸= ∅ for any b ∈ R, then it is called almost
periodic. Thereafter, T (ε, h) is the set of ε-almost periods of h.

Definition 2.7. A function ψ ∈ C(R, LpG(Ω)) is called Levitan almost periodic
provided that there is a Bohr almost periodic function ϕ ∈ C(R, LpG(Ω)) so that for
each ε > 0 there is a δ = δ(ε) > 0 such that d(ψσ, ψ) < ε for all σ ∈ T (ϕ, δ).

Definition 2.8. A function ψ ∈ C(R, LpG(Ω)) is said to be Lagrange stable provided
that {ψσ : σ ∈ R} is a relatively compact subset of C(R, LpG(Ω)). If it also is Levitan
almost periodic, then it is called Bohr almost automorphic.

Definition 2.9. A function ψ ∈ C(R, LpG(Ω)) is defined as almost recurrent (Be-
butov sense) provided that for each ε > 0 the set {σ : d(ψσ, ψ) < ε} is relatively
dense. If it is Lagrange stable, then it is called Birkhoff recurrent.

Definition 2.10. A function ψ ∈ C(R, LpG(Ω)) is defined as positive (negative)
pseudo-periodic provided that for every ε > 0 and l0 > 0 it has a ε-almost periodic
σ > l0 (σ < −l0) corresponding to the function ψ. The function ψ is said to be
pseudo-periodic provided that this is both positive pseudo-periodic and negative
pseudo-periodic.

Definition 2.11. A function ψ ∈ C(R, LpG(Ω)) is defined as pseudo-recurrent if for
any ε > 0 and l1 ∈ R it has L1 ≥ l1 so that for any τ1 ∈ R one finds a number
τ2 ∈ [l1, L1] fulfilling

sup
|t|≤ 1

ε

(E |ψ(t+ τ1 + τ2)− ψ(t+ τ1)|p)
1
p ≤ ε.

Definition 2.12. A function ψ ∈ C(R, LpG(Ω)) is defined as positive (negative)
Poisson stable provided that for each ε > 0 and l1 > 0, it has σ > l1(σ < −l1)
satisfying d(ψσ, ψ) < ε. The function ψ is said to be Poisson stable provided that
it is Poisson stable in both positive direction and negative direction.

Remark 2.2. In general, except for Lagrange stable function, other functions in-
troduced above are all Poisson stable.
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Let BC(R, LpG(Ω)) be the Banach space of all bounded continuous functions
ϕ : R → LpG(Ω) endowed with the supremum norm ∥ϕ∥∞ := sup

t∈R
(E |ϕ(t)|p)

1
p .

Definition 2.13. For given ψ ∈ C(R, LpG(Ω)), denote by ψσ the σ-translation of
ψ, i.e. ψσ(t) = ψ(t + σ) for t ∈ R. H(ψ) is called the hull of ψ provided that the
set of all the limits of ψσn exists in C(R, LpG(Ω)), i.e.

H(ψ) := {ϕ ∈ C(R, LpG(Ω)) : ϕ = lim
n→∞

ψσn for some sequence {σn} ⊂ R}.

Remark 2.3. If ψ in BC(R, LpG(Ω)), then for any ψ̃ ∈ H(ψ) one has
∥∥∥ψ̃∥∥∥

p
≤ ∥ψ∥∞

for each t ∈ R.

There are various notations about almost periodicity when they apply to stochas-
tic process, such as almost periodicity in p-mean and almost periodicity in distri-
bution. One refers the readers to Tudor [37] for more details.

2.3. p-distribution (pseudo) almost periodic stochastic process
From now on, let L(Z(t)) be the distribution of the random variable Z(t). M
represents the set of all positive measures µ on B satisfying both µ(R) = +∞ and
µ([a, b]) < +∞ for all a, b ∈ R(a ≤ b), where B is the Lebesgue σ-field of R. Denote
that L(LpG(Ω)) is the space of Borel probability measures on LpG(Ω) equipped with
the metric

dBL(ν1, ν2) := sup

{∣∣∣∣∫ ψdν1 −
∫
ψdν2

∣∣∣∣ : ∥ψ∥BL ≤ 1

}
,

ν1, ν2 ∈ L(LpG(Ω)), where ψ are Lipschitz continuous real-valued functions on LpG(Ω)
and

∥ψ∥BL = max {|ψ|L , |ψ|∞}

with
|ψ|L = sup

x̸=y

|ψ(x)− ψ(y)|
|x− y|

, |ψ|∞ = sup
x∈Lp

G(Ω)

|ψ(x)| .

A sequence {νn}n∈N ⊂ L(LpG(Ω)) is called weakly convergent to ν provided that
there is a ψ ∈ BC(LpG(Ω)) such that

∫
ψdνn →

∫
ψdν.

Definition 2.14 (Bedouhene et al. [7]). An Lp-continuous stochastic process Z is
known as almost periodicity in p-distribution:
(i) If the mapping t→ L(Z(t+ ·)) from R to L(C(R, LpG(Ω))) is almost periodic.
(ii) If p > 0, the family {|Z(t)|p : t ∈ R} is uniformly integrable.

Definition 2.15 (Bezandry et al. [8]). A continuous function h : R → LpG(Ω) is
called p-mean almost periodic for t ∈ R, if for any ε > 0, there is an l = lε > 0 such
that any interval of length l contains at least a number τ satisfying

sup
t∈R

E |h(t+ τ)− h(t)|p < ϵ.

Denote by AP (R, LpG(Ω)) the set of p-mean almost periodic functions, it is easy to
check that AP (R, LpG(Ω)) is a Banach space endowed with supremum norm.
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Definition 2.16 (Yoshizawa et al. [41]). A continuous function h : R × LpG(Ω) →
LpG(Ω) is called almost periodic in t uniformly with respect to x in LpG(Ω) provided
that for each compact set K in LpG(Ω), for any ε > 0, there is an l = lε > 0 such
that any interval of length l contains at least a number τ with

sup
t∈R

sup
x∈K

E |h(t+ τ, x)− h(t, x)|p < ε.

Let AP (R× LpG(Ω), L
p
G(Ω)) be the set of all such functions.

Definition 2.17 (Diop et al. [18]). For µ ∈ M, a stochastic process Y is defined as
p-th µ-ergodic provided that Y ∈ BC(R, LpG(Ω)) and fulfills

lim
M→∞

1

µ([−M,M ])

∫ M

−M
E |Y (t)|p dµ(t) = 0.

Let ε(R, LpG(Ω), µ) represent the set formed by such stochastic processes. One can
immediately verify that it forms a Banach space equipped with supremum norm.

Definition 2.18 (Diop et al. [18]). A continuous function h : R×LpG(Ω) → LpG(Ω)
is called µ-ergodic in t uniformly with respect to x in LpG(Ω) provided the following
conditions hold:

(a1) for all x ∈ X, h(·, x) ∈ ε(R, LpG(Ω), µ);
(a2) h is uniformly continuous with respect to x on each compact set K of LpG(Ω).

Denote that ε(R× LpG(Ω), L
p
G(Ω), µ) is the set of all such functions.

Definition 2.19 (Blot et al. [5]). Let µ ∈ M. The continuous function g : R →
LpG(Ω) (g : R× LpG(Ω) → LpG(Ω)) is said to be µ-pseudo almost periodic in p-mean
sense if it can be expressed as: g = g1 + g2, where g1 ∈ AP (R, LpG(Ω)) (g1 ∈
AP (R × LpG(Ω), L

p
G(Ω))) and g2 ∈ ε(R, LpG(Ω), µ) (g2 ∈ ε(R × LpG(Ω), L

p
G(Ω), µ)).

Denote PAP (R, LpG(Ω), µ) (PAP (R×LpG(Ω), L
p
G(Ω), µ)) by the set formed by such

functions, one can easily verify that PAP (R, LpG(Ω), µ) is a Banach space given the
supremum norm.

2.4. Shcherbakov’s comparability method, exponential dichot-
omy

Let BUC be the set consisting of all functions h : R × LpG(Ω) → LpG(Ω) that is
continuous in t uniformly continuous concerning for ϖ on each bounded subset
Q ⊆ LpG(Ω) and also bounded on each bounded subset of R × LpG(Ω). For given
h ∈ BUC(R × LpG(Ω), L

p
G(Ω)) and σ ∈ R, let hσ be the translation of h, i.e.

hσ(t, x) := h(t + σ, x). For the more details of the space BUC and the properties
of functions on space BUC, one can refer to paper [16]. Denote that Nψ (Mψ)
represents the family of all sequences {τn} ⊂ R ({τn} ⊂ Nψ) satisfying ψτn → ψ
(ψτn converges) in C(R, LpG(Ω)) as n → ∞ and Nuψ (Mu

ψ) represents the family of
all sequences {τn} ⊂ R ({τn} ⊂ Nψ) such that ψτn converges ψ (ψτn converges)
uniformly in t ∈ R as n→ ∞.

Definition 2.20 (Shcherbakov [35]). A function φ ∈ C(R, LpG(Ω)) is called com-
parable (respectively, strongly comparable) by the character of recurrence with
ψ ∈ C(R, LpG(Ω)) provided that Nψ ⊆ Nφ (respectively, Mψ ⊆ Mφ).
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Definition 2.21. Letϖ(t) be a mild solution of equation (1.2). Thenϖ is said to be
compatible (strongly compatible) in p-distribution provided that NG1

∩NG2
∩NG3

⊆
Ñϖ (MG1

∩MG2
∩MG3

⊆ M̃ϖ), where Ñϖ (M̃ϖ) represents the set of all sequences
{tn} ⊂ R such that the sequence ϖ(·+ tn) converges to ϖ(·) (ϖ(·+ tn) converges)
in p-distribution uniformly on any compact interval.

Remark 2.4. The results of Definition 2.21 also hold for equation (1.1).

Lemma 2.1 (Engel and Nagel [20]). A linear operator A : D(A) → LpG(Ω) is called
ω-sectorial of angle θ provided that there are constant M̂ > 0, ω ∈ R and θ ∈ (π2 , π)
such that

ρ(A) ⊇ Sθ,ω := {λ ∈ C : µ0 ̸= ω, |arg(µ0 − ω)| < θ},∥∥(λI −A)−1
∥∥ ≤ M̂

|µ0 − ω|
for each µ0 ∈ Sθ,ω.

Provided that A is ω-sectorial of angle θ (see [28]), then it generates an analytic
semigroup {S(t)}t≥0 in the sector Sθ−π

2 ,0
, and there are two positive constants M̃ ,

M satisfying

∥S(t)∥ ≤ M̃eωt, and ∥t(A− ω)S(t)∥ ≤Meωt, t > 0.

Definition 2.22. The semigroup {S(t) : t ≥ 0} on LpG(Ω) is called exponential
stable provided that there exist k, δ > 0 satisfying ∥S(t)∥ ≤ ke−δt for any t ≥ 0.

Definition 2.23 (Cao et al. [17]). The semigroup {S(t) : t ∈ R} is said to have an
exponential dichotomy, provided that there exists projection P, ker(P) is invariant
with respect to S(t), and two positive constants k̂, δ′ satisfying

(a1) PS(t) = S(t)P;
(a2) the restriction S(t) : QLpG(Ω) → QLpG(Ω) of S(t) is invertible;

(a3) ∥S(t)P∥ ≤ k̂e−δ
′t for t ≥ 0, and ∥S(t)Q∥ ≤ k̂eδ

′t, for t < 0, where Q = I −P.

3. Asymptotic stability of Poisson stable solutions
Throughout this section, assume that the semigroup {S(t)}t≥0 generated by A of

equations (1.1) and (1.2) satisfies exponential stability, and let ι0 =
(
p−2
pδ

) p
2−1

and

ι1 =
(

2(p−1)
pδ

)p−1

.

3.1. The existence of Poisson stable solutions
In this subsection, one considers the Poisson stable solutions for linear SDE (1.1)
and semi-linear SDE (1.2) by the comparability method. One first investigates the
nonhomogeneous linear equation (1.1).

Theorem 3.1. Let coefficients G1, G2, G3 ∈ BC(R, LpG(Ω)). Then for the linear
SDE (1.1), one obtains the following four statements:
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(i) there is a unique mild solution ϖ ∈ BC(R, LpG(Ω)) of the linear SDE (1.1)
given by

ϖ(t)=

∫ t

−∞
S(t−ϱ)G1(ϱ)dϱ+

∫ t

−∞
S(t−ϱ)G2(ϱ)dBϱ+

∫ t

−∞
S(t−ϱ)G3(ϱ)d⟨B⟩ϱ (3.1)

with

∥ϖ∥∞≤31−
1
p k

(
2

δp

) 1
p (
ι1 ∥G1∥p∞+Cpσ

pι0 ∥G2∥p∞+σ2pι1 ∥G3∥p∞
) 1

p ; (3.2)

(ii) for any given constants l, L0 satisfying l > L0 > 0 and t ∈ [−L0, L0], one has

max
|t|≤L0

E|ϖ(t)|p ≤2 · 3p−1kp

δp

{
ι1

(
sup
|ϱ|≤l

E|G1(ϱ)|p + σ2p sup
|ϱ|≤l

E|G3(ϱ)|p
)

+ ι0Cpσ
p sup
|ϱ|≤l

E|G2(ϱ)|p

+ e−
δp(l−L0)

2 [ι1 ∥G1∥p∞ + Cpι0σ
p ∥G2∥p∞ + σ2pι1∥G3∥p∞]

}
;

(3.3)

(iii) if MG1
∩ MG2

∩ MG3
̸= ∅, then the solution ϖ is strongly compatible in p-

distribution;
(iv) if Mu

G1
∩ Mu

G2
∩ Mu

G3
̸= ∅, then Mu

G1
∩ Mu

G2
∩ Mu

G3
⊆ M̃u

ϖ, where M̃u
ϖ is

the set of all sequences {tn} satisfying {ϖ(t+ tn)} uniform convergence in
p-distribution for t ∈ R.

Proof. (i) From semigroup {S(t)}t≥0 satisfying exponential stability and coeffi-
cients G1, G2, G3 ∈ BC(R, LpG(Ω)), it follows that

w1(t) :=

∫ t

−∞
S(t− ϱ)G1(ϱ)dϱ, w2(t) :=

∫ t

−∞
S(t− ϱ)G2(ϱ)dBϱ,

w3(t) :=

∫ t

−∞
S(t− ϱ)G3(ϱ)d⟨B⟩ϱ (3.4)

exist for t ∈ R. Moreover, it is easy to see that solution of the linear SDE (1.1)
satisfies

ϖ(t) =S(t− t0)ϖ(t0) +

∫ t

t0

S(t− ϱ)G1(ϱ)dϱ+

∫ t

t0

S(t− ϱ)G2(ϱ)dBϱ

+

∫ t

t0

S(t− ϱ)G3(ϱ)d⟨B⟩ϱ (3.5)

for all t ≥ t0 and t0 ∈ R. As t0 → −∞, it follows from S(t−t0) satisfying exponential
stability that S(t − t0) → 0. By using (3.4) and (3.5), the equation (3.1) holds as
t0 → −∞. Therefore, the mapping ϖ defined as (3.1) in BC(R, LpG(Ω)) is a mild
solution of (1.1).

Suppose that ϖ and ϖ are two mild solutions to (1.1) satisfying ϖ(t0) = ϖ(t0)
for some t0 ≤ t. Letting ω(t) = ϖ(t)−ϖ(t), one obtains by (1.1)

dω(t) = d[ϖ(t)−ϖ(t)] = Aω(t)dt, ω(t0) = 0,
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which implies

ω(t) = ω(t0) exp

{∫ t

t0

Ads

}
= ω(t0)S(t− t0) = 0.

Thus ϖ = ϖ.
Now, one shows that (3.2) holds. According to (3.4), the solution ϖ(t) of (1.1)

can rewrite as
ϖ(t) = w1(t) + w2(t) + w3(t).

Using the exponential stability of semigroup S(t) and Hölder inequality with expo-
nents (p, p

p−1 ), one has

E|w1(t)|p =E
∣∣∣∣∫ t

−∞
S(t− ϱ)G1(ϱ)dϱ

∣∣∣∣p ≤ E

(∫ t

−∞
ke−δ(t−ϱ)G1(ϱ)dϱ

)p
≤kpι1

∫ t

−∞
e−

pδ(t−ϱ)
2 E|G1(ϱ)|pdϱ ≤ 2kpι1

δp
∥G1∥p∞ . (3.6)

According to Proposition 2.1 and Hölder inequality with exponents (p2 ,
p
p−2 ), it

yields that

E|w2(t)|p = E

∣∣∣∣∫ t

−∞
S(t− ϱ)G2(ϱ)dBϱ

∣∣∣∣p ≤ E

(∫ t

−∞
ke−δ(t−ϱ)G2(ϱ)dBϱ

)p
≤ kpCpσ

pι0

∫ t

−∞
e−

pδ(t−ϱ)
2 E|G2(ϱ)|pdϱ ≤ 2kpCpσ

pι0
pδ

∥G2∥p∞ . (3.7)

By Proposition 2.1 and Hölder inequality with exponents (p, p
p−1 ), one obtains

E|w3(t)|p = E

∣∣∣∣∫ t

−∞
S(t− ϱ)G3(ϱ)d⟨B⟩ϱ

∣∣∣∣p ≤ E

(∫ t

−∞
ke−δ(t−ϱ)G3(ϱ)d⟨B⟩ϱ

)p
≤ kpσ2pι1

∫ t

−∞
e−

pδ(t−ϱ)
2 E|G3(ϱ)|pdϱ ≤ 2kpσ2pι1

δp
∥G3∥p∞ . (3.8)

From (3.6)-(3.8), it follows that

E|ϖ(t)|p

≤ 3p−1(E|w1(t)|p + E|w2(t)|p + E|w3(t)|p)

≤ 3p−1kp
(∫ t

−∞
e−

pδ(t−ϱ)
2 (ι1E |G1(ϱ)|p+Cpσpι0E |G2(ϱ)|p+σ2pι1E |G3(ϱ)|p)dϱ

)
≤ 3p−1 2k

p

δp
(ι1 ∥G1∥p∞ + Cpσ

pι0 ∥G2∥p∞ + σ2pι1 ∥G3∥p∞), (3.9)

which implies that the inequality (3.2) holds.
(ii) Since coefficient G1 ∈ BC(R, LpG(Ω)), it calculates that∫ t

−∞
e−

δp(t−ϱ)
2 E|G1(ϱ)|pdϱ =

∫ −l

−∞
e−

δp(t−ϱ)
2 E|G1(ϱ)|pdϱ+

∫ t

−l

e−
δp(t−ϱ)

2 E|G1(ϱ)|pdϱ

≤ 2

δp

(
e−

δp(t+l)
2 ∥G1∥p∞ +max

|ϱ|≤l
E|G1(ϱ)|p

)
,

(3.10)
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for any l > 0 and |t| ≤ l. Similar to (3.10),∫ t

−∞
e−

δp(t−ϱ)
2 E|G2(ϱ)|pdϱ ≤ 2

δp
e−

δp(t+l)
2 ∥G2∥p∞ +

2

δp
max
|ϱ|≤l

E|G2(ϱ)|p, (3.11)

and∫ t

−∞
e−

δp(t−ϱ)
2 E|G3(ϱ)|pdϱ ≤ 2

δp
e−

δp(t+l)
2 ∥G3∥p∞ +

2

δp
max
|ϱ|≤l

E|G3(ϱ)|p. (3.12)

By using inequalities (3.9)-(3.12), one has

max
|t|≤L0

E|ϖ(t)|p

≤3p−1kpι1 max
|t|≤L0

∫ t

−∞
e−

pδ(t−ϱ)
2 E |G1(ϱ)|p dϱ

+ 3p−1kpCpσ
pι0 max

|t|≤L0

∫ t

−∞
e−

pδ(t−ϱ)
2 E |G2(ϱ)|p dϱ

+ 3p−1kpι1σ
2p max

|t|≤L0

∫ t

−∞
e−

pδ(t−ϱ)
2 E |G3(ϱ)|p dϱ

≤3p−1kp
(

2

δp

)[
max
|ϱ|≤l

(
ι1E|G1(ϱ)|p + σ2pι1E|G3(ϱ)|p + Cpσ

pι0E|G2(ϱ)|p
)

+e−
δp(−L0+l)

2 (ι1 ∥G1∥p∞ + Cpσ
pι0 ∥G2∥p∞ + σ2pι1 ∥G3∥p∞)

]
for any l > L0 > 0. Hence the inequality (3.3) holds.

(iii) Since MG1
∩ MG2

∩ MG3
̸= ∅, by Definition 2.13 and the norm of space

C(R, LpG(Ω)), there is G̃j ∈ H(Gj) such that for tn ∈ MG1 ∩MG2 ∩MG3 and any
L0 > 0

sup
|t|≤L0

E|Gj(t+ tn)− G̃j(t)|p → 0, j = 1, 2, 3 (3.13)

as n→ ∞ in C(R, LpG(Ω)).
Let ϖn and ϖ̃ be solutions to equations

dϖ(t) = (Aϖ(t) +G1(t+ tn))dt+G2(t+ tn)dBt +G3(t+ tn)d⟨B⟩t

and
dϖ(t) = (Aϖ(t) + G̃1(t))dt+ G̃2(t)dBt + G̃3(t)d⟨B⟩t

respectively. It follows from Remark 2.3 that

sup
t∈R

(E|Gj(t+ tn)− G̃j(t)|p)
1
p ≤ 2 ∥Gj∥∞ , j = 1, 2, 3. (3.14)

It is easy to verify that ϖn(t)− ϖ̃(t) is the mild solution of the equation

dϖ(t) =(Aϖ(t) +G1(t+ tn)− G̃1(t))dt+ (G2(t+ tn)− G̃2(t))dBt

+ (G3(t+ tn)− G̃3(t))d⟨B⟩t.
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Note that one can find a common sufficiently large integer N such that ln → ∞
and sup

|ϱ|≤ιn
E|Gj(ϱ+ tn)−G̃j(ϱ)|p → 0, j = 1, 2, 3 simultaneously as n > N . Then by

replacing l with ln in the inequality (3.3), one obtains from (3.13) and (3.14) that
max
|t|≤L0

E|ϖn(t)− ϖ̃(t)|p

≤2 · 3p−1kp

δp

[
sup

|ϱ|≤ln

(
ι1E

∣∣∣G1(ϱ+ tn)− G̃1(ϱ)
∣∣∣p + σ2pι1E

∣∣∣G3(ϱ+ tn)− G̃3(ϱ)
∣∣∣p

+Cpσ
pι0E

∣∣∣G2(ϱ+tn)−G̃2(ϱ)
∣∣∣p)+e− δp(−L0+ln)

2

(
ι1

(
sup
ϱ∈R

(E|G1(ϱ+tn)−G̃1(ϱ)|p)
1
p

)p
+ Cpσ

pι0

(
sup
ϱ∈R

(E|G2(ϱ+ tn)− G̃2(ϱ)|p)
1
p

)p
+ σ2pι1

(
sup
ϱ∈R

(E|G3(ϱ+ tn)− G̃3(ϱ)|p)
1
p

)p)]

≤2 · 3p−1kp

δp

[
sup

|ϱ|≤ln

(
ι1E

∣∣∣G1(ϱ+ tn)− G̃1(ϱ)
∣∣∣p + σ2pι1E

∣∣∣G3(ϱ+ tn)− G̃3(ϱ)
∣∣∣p

+ Cpσ
pι0E

∣∣∣G2(ϱ+ tn)− G̃2(ϱ)
∣∣∣p)+ e−

δp(−L0+ln)
2 (ι12

p ∥G1∥p∞

+ Cpσ
pι02

p ∥G2∥p∞ + σ2pι12
p ∥G3∥p∞)

]
for any L0 > 0. Then for any L0 > 0, lim

n→∞
max
|t|≤L0

E|ϖn(t) − ϖ̃(t)|p = 0, which

indicates that {tn} ∈ M̃ϖ and ϖn(t) → ϖ̃(t) in distribution uniformly for t ∈
[−L0, L0] for all L0 > 0.

By the transformation s = ϱ− tn, the solution ϖ(t) of (3.1) becomes

ϖ(t+ tn) =

∫ t

−∞
S(t− s)G1(s+ tn)ds+

∫ t

−∞
S(t− s)G2(s+ tn)dB̃s

+

∫ t

−∞
S(t− s)G3(s+ tn)d⟨B̃⟩s,

where B̃s = Bs+ϱn − Bϱn is a shifted G-Brownian motion and ⟨B̃⟩s = ⟨B⟩s+ϱn −
⟨B⟩ϱn is a shifted second variance. Then ϖ(t + tn) and ϖn(t) have the same dis-
tribution on LpG(Ω), which derives that ϖ(t+ tn) → ϖ̃(t) in distribution uniformly
for t ∈ [−L0, L0] for all L0 > 0. On the other hand, it follows from conclusion (i)
that the sequence {|ϖn(t)|p : n ∈ N, t ∈ R} is uniformly integrable, which implies
that {|ϖ(t + tn)|p : n ∈ N, t ∈ R} is also uniformly integrable. Then the result
ϖ(t + tn) → ϖ̃(t) holds in p-distribution uniformly for t ∈ [−L0 L0], L0 > 0.
Therefore, by Remark 2.4, one can conclude that ϖ is strongly compatible in p-
distribution.

(iv) Since Mu
G1

∩Mu
G2

∩Mu
G3

is non-empty, letting tn ∈ Mu
G1

∩Mu
G2

∩Mu
G3

, then
by Definition 2.13 there is a G̃j ∈ H(Gj) such that Gj(t + tn) → G̃j(t) uniformly
in t ∈ R as n→ ∞, that is,

sup
t∈R

E|Gj(t+ tn)− G̃j(t)|p → 0 as n→ ∞, j = 1, 2, 3 (3.15)
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in the space C(R, LpG(Ω)). According to inequality (3.9), one has

sup
t∈R

E|ϖn(t)− ϖ̃(t)|p

≤3p−1kp
2

pδ

(
ι1 sup
ϱ∈R

E|G1(ϱ+ tn)− G̃1(ϱ)|p + Cpσ
pι0 sup

ϱ∈R
E|G2(ϱ+ tn)− G̃2(ϱ)|p

+σ2pι1 sup
ϱ∈R

E|G3(ϱ+ tn)− G̃3(ϱ)|p
)
.

Moreover, it follows from (3.15) that ϖn → ϖ̃ uniformly on R in Lp-norm as
n → ∞. Hence, {tn} ∈ M̃u

ϖ. In conclusion, by the same to the proof of (iii), one
can derive {tn} ∈ M̃u

ϖ in p-distribution sense with respect to t ∈ R. This completes
the proof.

Now, one investigates Poisson stable solutions for the semi-linear SDE (1.2).

Theorem 3.2. Suppose that there are two positive constants l, A0 such that coeffi-
cients G1, G2 and G3 satisfy

|G1(t, 0)| ∨ |G2(t, 0)| ∨ |G3(t, 0)| ≤ A0, (3.16)
|G1(t,ϖ1)−G1(t,ϖ2)|∨|G2(t,ϖ1)−G2(t,ϖ2)|∨|G3(t,ϖ1)−G3(t,ϖ2)|≤ l |ϖ1−ϖ2|

(3.17)

for G1, G2, G3 ∈ C(R × LpG(Ω), L
p
G(Ω)), ϖ1, ϖ2 ∈ LpG(Ω) and t ∈ R. Then for the

semi-linear SDE (1.2), the following statements hold:

(i) if l < l0 = (δp)
1
p

2
1
p 3

1− 1
p k(ι1+Cpσpι0+σ2pι1)

1
p

, then equation (1.2) possesses a unique

mild solution ϖ ∈ C(R, BLp
G(Ω)(0, r)), where

BLp
G(Ω)(0, r) = {ϖ ∈ LpG(Ω) : ∥ϖ∥p ≤ r}

with

r =
2

1
p 31−

1
p k(ι1 + Cpσ

pι0 + σ2pι1)
1
pA0

(pδ)
1
p − 2

1
p 31−

1
p k(ι1 + Cpσ

pι0 + σ2pι1)
1
p l
.

(ii) if l < 2
1
p−1l0 and the coefficient Gj, j = 1, 2, 3 is continuous in t uniformly

for ϖ on every bounded collection Q ⊂ LpG(Ω), then
(b1) Mu

G1
∩Mu

G2
∩Mu

G3
⊆ M̃u

ϖ provided that Mu
G1

∩Mu
G2

∩Mu
G3

̸= ∅;
(b2) the solution ϖ is strongly compatible in p-distribution provided that MG1

∩
MG2

∩MG3
̸= ∅.

Proof. (i) It is easy to check that (C(R, BLp
G(Ω)(0, r)), d) is a complete metric space.

Since S(t − ϱ) satisfies exponential stability and coefficient Gj(t,ϖ(t)), j = 1, 2, 3
fulfills the conditions (3.16) and (3.17), it follows that∫ t

−∞
S(t−ϱ)G1(ϱ,ϖ(ϱ))dϱ,

∫ t

−∞
S(t−ϱ)G2(ϱ,ϖ(ϱ))dBϱ,

∫ t

−∞
S(t−ϱ)G3(ϱ,ϖ(ϱ))d⟨B⟩ϱ

exist for t ∈ R. Moreover, one can verify that the solution of the semi-linear SDE
(1.2) satisfies

ϖ(t) =S(t− t0)ϖ(t0) +

∫ t

t0

S(t− ϱ)G1(ϱ,ϖ(ϱ))dϱ+

∫ t

t0

S(t− ϱ)G2(ϱ,ϖ(ϱ))dBϱ
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+

∫ t

t0

S(t− ϱ)G3(ϱ,ϖ(ϱ))d⟨B⟩ϱ

for all t ≥ t0 with each t0 ∈ R. As t0 → −∞, according to S(t − t0) satisfying
exponential stability that S(t − t0) → 0. Then one can define an operator Φ̂ :
C(R, BLp

G(Ω)(0, r)) → C(R, BLp
G(Ω)(0, r)) by

Φ̂(ϖ)(t) :=

∫ t

−∞
S(t− ϱ)G1(ϱ,ϖ(ϱ))dϱ+

∫ t

−∞
S(t− ϱ)G2(ϱ,ϖ(ϱ))dBϱ

+

∫ t

−∞
S(t− ϱ)G3(ϱ,ϖ(ϱ))d⟨B⟩ϱ.

For any ϖ ∈ C(R, BLp
G(Ω)(0, r)), because of the conditions (3.16) and (3.17), one

has

∥Gj(t,ϖ(t))∥p ≤ ∥Gj(t, 0)∥p + l ∥ϖ(t)∥p ≤ A0 + lr, t ∈ R, (3.18)

where A0 and r are independent of ϖ. Moreover, it follows from (3.2) and (3.18)
that ∥∥∥Φ̂(ϖ)

∥∥∥
∞

≤31−
1
p k

(
2

δp

) 1
p (
ι1 + Cpσ

pι0 + σ2pι1
) 1

p (A0 + lr) ≤ r.

Therefore, the self-mapping operator Φ̂(ϖ) is well-defined on C(R, BLp
G(Ω)(0, r)).

Next one shows that Φ̂(ϖ) is a contraction. Since each fixed point of Φ̂ gives a
mild solution of (1.2), the function Φ̂(ϖ1)− Φ̂(ϖ2) is the mild solution on BC(R×
LpG(Ω), L

p
G(Ω)) of the equation

dϖ(t) =(Aϖ(t) +G1(t,ϖ1(t))−G1(t,ϖ2(t)))dt+ (G2(t,ϖ1(t))−G2(t,ϖ2(t)))dBt

+ (G3(t,ϖ1(t))−G3(t,ϖ2(t)))d⟨B⟩t.

By condition (3.17), it derives from (3.9) that∥∥∥Φ̂(ϖ1)− Φ̂(ϖ2)
∥∥∥p
∞

≤2 · 3p−1kp

δp

(
ι1 sup
t∈R

E |G1(t,ϖ1(t))−G1(t,ϖ2(t))|p

+Cpσ
pι0 sup

t∈R
E|G2(t,ϖ1(t))−G2(t,ϖ2(t))|p

+σ2pι1 sup
t∈R

E |G3(t,ϖ1(t))−G3(t,ϖ2(t))|p
)

≤2 · 3p−1kp

δp

(
ι1 + Cpσ

pι0 + σ2pι1
)
lp ∥ϖ1 −ϖ2∥p∞ ,

which indicates that Φ̂ is a contraction due to l < l0. Then by the Banach fixed point
theorem, there is a unique fixed point ϖ ∈ C(R, BLp

G(Ω)(0, r)) satisfying Φ̂(ϖ) = ϖ,
which means that (1.2) has a unique solution ϖ in C(R, BLp

G(Ω)(0, r)).
Now, one proves the conclusions in (ii).
(b1) Since Mu

G1
∩Mu

G2
∩Mu

G3
is non-empty, setting tn ∈ Mu

G1
∩Mu

G2
∩Mu

G3
, then

combining with Definition 2.13, it follows that there exist G̃j ∈ H(Gj), j = 1, 2, 3
such that for any r > 0,

sup
ϱ∈R,∥ϖ∥p≤r

Aj,ϱ,ϖ → 0 as n→ ∞, j = 1, 2, 3, (3.19)
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where Aj,ϱ,ϖ = |Gj(ϱ+ tn, ϖ(ϱ))− G̃j(ϱ,ϖ(ϱ))|p with

Aj,ϱ,ϖ ≤ 2p−1|Gj(ϱ+ tn, ϖ(ϱ))|p + 2p−1|G̃j(ϱ,ϖ(ϱ))|p

≤ 22p−1lp|ϖ(ϱ)|p + 22p−1Ap0, j = 1, 2, 3. (3.20)

It is easy to check that Gj(t+tn, ϖ(t)), j = 1, 2, 3, n ∈ N has Lipschitz continuity
and boundedness, then G̃j(t,ϖ(t)), j = 1, 2, 3 also has the these two properties with
same constants l, A0. Therefore, the following two equations

dϖ(t)=(Aϖ(t)+G1(t+tn, ϖ(t)))dt+G2(t+tn, ϖ(t))dBt+G3(t+tn, ϖ(t))d⟨B⟩t,
(3.21)

dϖ(t)=(Aϖ(t) + G̃1(t,ϖ(t)))dt+ G̃2(t,ϖ(t))dBt + G̃3(t,ϖ(t))d⟨B⟩t (3.22)

possess unique solutions ϖn, ϖ̃ in C(R, BLp
G(Ω)(0, r)), respectively, which imply that

ζn = ϖn − ϖ̃ is the unique solution to equation

dζn(t) =(Aζn(t) + (G1(t+ tn, ϖn(t))− G̃1(t, ϖ̃(t))))dt

+ (G2(t+ tn, ϖn(t))− G̃2(t, ϖ̃(t)))dBt

+ (G3(t+ tn, ϖn(t))− G̃3(t, ϖ̃(t)))d⟨B⟩t (3.23)

in C(R, BLp
G(Ω)(0, 2r)) withGj(t+tn, ϖn(t))−G̃j(t, ϖ̃(t)) ∈ BC(R×LpG(Ω), L

p
G(Ω)),

j = 1, 2, 3.
One now shows that {ϖn(t)} converges to ϖ̃(t) uniformly for t ∈ R with Lp-

norm. From (3.9) and (3.23), it follows that

sup
t∈R

E|ζn(t)|p ≤3p−1 2k
p

δp
sup

ϱ∈R,max{∥ϖn∥p,∥ϖ̃∥p}≤r

(
ι1E|G1(ϱ+ tn, ϖn(ϱ))

− G̃1(ϱ, ϖ̃(ϱ))|p + Cpσ
pι0E|G2(ϱ+ tn, ϖn(ϱ))− G̃2(ϱ, ϖ̃(ϱ))|p

+ σ2pι1E|G3(ϱ+ tn, ϖn(ϱ))− G̃3(ϱ, ϖ̃(ϱ))|p
)
. (3.24)

By the Lipschitz continuity of Gj(ϱ,ϖ), one has

E|Gj(ϱ+ tn, ϖn(ϱ))− G̃j(ϱ, ϖ̃(ϱ))|p

≤2p−1E |Gj(ϱ+ tn, ϖn(ϱ))−Gj(ϱ+ tn, ϖ̃(ϱ))|p

+ 2p−1E
∣∣∣Gj(ϱ+ tn, ϖ̃(ϱ))− G̃(ϱ, ϖ̃(ϱ))

∣∣∣p
≤2p−1

(
lpE|ζn|p + sup

ϱ∈R,∥ϖ̃∥p≤r
EAj,ϱ,ϖ̃

)
, j = 1, 2, 3. (3.25)

Since sup
ϱ∈R

E|ζn(ϱ)|p = sup
t∈R

E|ζn(t)|p as ϱ ∈ (−∞, t], then substituting (3.25) into

(3.24), one has

sup
ϱ∈R

E|ζn(ϱ)|p ≤
2 · 6p−1kp

δp

(
ι1

(
lp sup
ϱ∈R

E|ζn(ϱ)|p + sup
ϱ∈R,∥ϖ̃∥p≤r

EA1,ϱ,ϖ̃

)

+ Cpσ
pι0

(
lp sup
ϱ∈R

E|ζn(ϱ)|p + sup
ϱ∈R,∥ϖ̃∥p≤r

EA2,ϱ,ϖ̃

)
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+ σ2pι1

(
lp sup
ϱ∈R

E|ζn(ϱ)|p + sup
ϱ∈R,∥ϖ̃∥p≤r

EA3,ϱ,ϖ̃

))
,

which together with l < 2
1
p−1l0 deduces that

sup
ϱ∈R

|ζn(ϱ)|p

≤
2kp
(
ι1 sup
ϱ∈R,∥ϖ̃∥p≤r

EA1,ϱ,ϖ̃+Cpσ
pι0 sup

ϱ∈R,∥ϖ̃∥p≤r
EA2,ϱ,ϖ̃+σ2pι1 sup

ϱ∈R,∥ϖ̃∥p≤r
EA3,ϱ,ϖ̃

)
δp61−p − 2kplp(ι1 + Cpσ

pι0 + σ2pι1)
.

(3.26)

From conclusion (i), one knows that ϖ̃(t) is Lp-bounded solution of equation (3.22),
and then the families {|ϖ̃(t)|p : t ∈ R} and {Aj,ϱ,ϖ̃ : ϱ ∈ R, ∥ϖ̃∥p ≤ r}, j = 1, 2, 3
are uniformly integrable by (3.20). Therefore, by taking the limit in (3.26) and
(3.19), one obtains ϖn(t) → ϖ̃(t) uniformly in t ∈ R with Lp norm.

Since Lp convergence means convergence in distribution, one thus has ϖn(t) →
ϖ̃(t) in distribution with respect to R uniformly. By transformation s = ϱ− tn, the
solution ϖ(t) of equation (1.2) becomes

ϖ(t+ tn) =

∫ t

−∞
S(t−s)G1(s+tn, ϖ(s+tn))ds+

∫ t

−∞
S(t−s)G2(s+tn, ϖ(s+tn))dB̃s

+

∫ t

−∞
S(t− s)G3(s+ tn, ϖ(s+ tn))d⟨B̃⟩s,

where B̃s = Bs+ϱn −Bϱn is also a G-Brownian motion with the same distribution as
Bs and ⟨B̃⟩s = ⟨B⟩s+ϱn−⟨B⟩ϱn is also a second variation with the same distribution
as ⟨B⟩s, which imply that ϖn(t) and ϖ(t + tn) share the same distributions on
LpG(Ω). Note that {|ϖ(t + tn)|p : n ∈ N, t ∈ R} is uniformly integrable. This
manifests ϖ(t+ tn) → ϖ̃(t) in p-distribution uniformly with respect to t ∈ R. Then
according to Definition 2.21, ϖ is strongly compatible in p-distribution with respect
to t ∈ R.

(b2) Because MG1
∩MG2

∩MG3
is non-empty, letting tn ∈ MG1

∩MG2
∩MG3

,
then it follows from Definition 2.13 that there is a G̃j ∈ H(Gj) such that for any
r, l > 0,

sup
|ϱ|≤l,∥ϖ∥p≤r

Aj,ϱ,ϖ → 0 as n→ ∞, j = 1, 2, 3, (3.27)

where Aj,ϱ,ϖ = |Gj(ϱ+ tn, ϖ)− G̃j(ϱ,ϖ)|p, j = 1, 2, 3.
Let ϖn and ϖ̃ be the unique bounded solutions corresponding to equation (3.21)

and equation (3.22), respectively. Then ζn = ϖn− ϖ̃, n ∈ N is the unique bounded
solution corresponding to equation (3.23). From (3.9), one gains

E|ζn(t)|p ≤3p−1kp
[ ∫ t

−∞
e−

δp(t−ϱ)
2

(
ι1E|G1(ϱ+ tn, ϖn(ϱ))− G̃1(ϱ, ϖ̃(ϱ))|p

+ Cpσ
pι0E|G2(ϱ+ tn, ϖn(ϱ))− G̃2(ϱ, ϖ̃(ϱ))|p

+ σ2pι1E|G3(ϱ+ tn, ϖn(ϱ))− G̃3(ϱ, ϖ̃(ϱ))|p
)
dϱ

]
, (3.28)
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and similar to (3.25), one has

E|Gj(ϱ+ tn, ϖn(ϱ))− G̃j(ϱ, ϖ̃(ϱ))|p ≤ 2p−1 (lpE |ζn|p + EAj,ϱ,ϖ̃) , j = 1, 2, 3.
(3.29)

Proceeding like (3.18), for any ϱ ∈ R, it yields

E|Gj(ϱ+ tn, ϖn(ϱ))− G̃j(ϱ, ϖ̃(ϱ))|p ≤ 2p(A0 + lr)p, j = 1, 2, 3,

which implies that

sup
ϱ∈R,max{∥ϖn∥p,∥ϖ̃∥p}≤r

E|Gj(ϱ+tn, ϖn(ϱ))−G̃j(ϱ, ϖ̃(ϱ))|p≤2p(A0 + lr)p, j = 1, 2, 3.

(3.30)
Therefore, combining inequalities (3.28) and (3.29), one has

E |ζn(t)|p ≤
∫ t

−∞
e−

δp(t−ϱ)
2 (a0E |ζn(ϱ)|p + kp6p−1(ι1EA1,ϱ,ϖ̃

+ Cpσ
pι0EA2,ϱ,ϖ̃ + σ2pι1EA3,ϱ,ϖ̃))dϱ, (3.31)

where a0 = kp6p−1ι1l
p + kpCpσ

p6p−1ι0l
p + kpσ2p6p−1ι1l

p. By l < 2
1
p−1l0 and [16,

Lemma 4.3], one further gains

max
|t|≤L0

E|ζn(t)|p

≤B11

(
ι1 sup
ϱ∈R,∥ϖ̃∥p≤r

EA1,ϱ,ϖ̃+Cpσ
pι0 sup

ϱ∈R,∥ϖ̃∥p≤r
EA2,ϱ,ϖ̃+σ2pι1 sup

ϱ∈R,∥ϖ̃∥p≤r
EA3,ϱ,ϖ̃

)
+B12

(
1−e−k0(L0+l)

)
sup

|ϱ|≤l,∥ϖ̃∥p≤r

(
ι1EA1,ϱ,ϖ̃+Cpσ

pι0EA2,ϱ,ϖ̃+σ2pι1EA3,ϱ,ϖ̃

)
(3.32)

for any l > L0 > 0 and t ∈ [−L0, L0], where

B11 =
6p−1kp

k0
e−k0(−L0+l), B12 =

kp · 6p−1

k0
, k0 =

pδ

2
− a0.

By the definition of the limit, one can find a common sufficiently large integer N
such that ln → ∞ and sup

|ϱ|≤ln,∥ϖ̃∥p≤r
Aj,ϱ,ϖ̃ → 0, j = 1, 2, 3 simultaneously as n > N .

Then by (3.30) and replacing l with ln in the inequality (3.32), one has

max
|t|≤L0

E|ζn(t)|p

≤6p−1

k0
(2k)pe−k0(−L0+ln)(ι1+Cpσ

pι0+σ
2pι1)(A0+lr)

p+
kp · 6p−1

k0

(
1−e−k0(L0+ln)

)
× sup

|ϱ|≤ln,∥ϖ̃∥p≤r

(
ι1EA1,ϱ,ϖ̃+Cpσ

pι0EA2,ϱ,ϖ̃+σ2pι1EA3,ϱ,ϖ̃

)
. (3.33)

Due to [16, Remark 2.2-(iii)] and (3.27), it yields from (3.33) that

lim
n→∞

max
|t|≤L0

E|ζn(t)|p = 0.
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This indicates that ϖn(t) → ϖ̃(t) in distribution uniformly for t ∈ [−L0, L0] for all
L0 > 0. Since ϖn(t) and ϖ(t + tn) have the same distribution, ϖ(t + tn) → ϖ̃(t)
in distribution uniformly for t ∈ [−L0, L0] for all L0 > 0. On the other hand, the
uniform integral of {|ϖ(t + tn)|p : n ∈ N, t ∈ R} is similar to the proof of (b1)
in the conclusion (ii). Hence, one can conclude that ϖ is strongly compatible in
p-distribution. This completes the proof.

Theorem 3.3. Provided that all conditions of Theorem 3.2 hold, then

(i) if the functions G1, G2, G3 are jointly Poisson stable (respectively, almost re-
current, Levitan almost periodic, Lagrange stable, Birkhoff recurrent, Bohr
almost automorphic, Bohr almost periodic, quasi-periodic with a limited spec-
trum, τ -periodic, stationary) for t ∈ R uniformly for the second argument
on each bounded set Q ⊂ LpG(Ω), then the unique bounded solution ϖ cor-
responding to (1.2) heritages the same property as functions G1, G2, G3 in
p-distribution sense.

(ii) if G1, G2, G3 are jointly pseudo-recurrent (respectively, pseudo-periodic) and
are jointly Lagrange stable for t ∈ R uniformly for the second argument on
each bounded set Q, then the unique bounded solution ϖ of (1.2) is pseudo-
recurrent (respectively, pseudo-periodic) in p-distribution.

Proof. It is a straightforward result of Theorem 3.2 and [16, Theorem 2.26, Re-
mark 2.30].

Remark 3.1. The results for Theorem 3.3 also hold for equation (1.1) provided
that all conditions of Theorem 3.1 hold.

3.2. Asymptotic stability of bounded solutions to (1.2)
In this subsection, one begins to establish the theorem of asymptotically stable
solution in global for the semi-linear SDE (1.2) with coefficient Gj ∈ C(R ×
LpG(Ω), L

p
G(Ω)) for j = 1, 2, 3.

Theorem 3.4. Suppose that coefficients G1, G2 and G3 satisfy the conditions
(3.16) and (3.17) with l < ( 34 )

1− 1
p l0, where l0 are given by Theorem 3.2 (i). Then

the unique solution ϖ(t; t0, ϖ0) of equation (1.2) is asymptotically stable in global,
i.e.

lim
t→∞

E|ϖ(t; t0, ϖ1)−ϖ(t; t0, ϖ0)|p = 0,

where ϖ(t, t0, ϖ1) is the solution of the semi-linear SDE (1.2) with initial point
ϖ1 ∈ LpG(Ω) at t0.

Proof. From Theorem 3.2 (i), the semi-linear SDE (1.2) has a unique global
solution ϖ(t; t0, ϖ0) with initial point ϖ0 at t0 given by

ϖ(t; t0, ϖ0) =S(t− t0)ϖ0 +

∫ t

t0

S(t− ϱ)G1(ϱ,ϖ(ϱ; t0, ϖ0))dϱ

+

∫ t

t0

S(t− ϱ)G2(ϱ,ϖ(ϱ; t0, ϖ0))dBϱ

+

∫ t

t0

S(t− ϱ)G3(ϱ,ϖ(ϱ; t0, ϖ0))d⟨B⟩ϱ, t ≥ t0.
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Then, one has

ϖ(t; t0, ϖ1)−ϖ(t; t0, ϖ0)

=S(t− t0)(ϖ1 −ϖ0) +

∫ t

t0

S(t− ϱ)(G1(ϱ,ϖ(ϱ; t0, ϖ1))−G1(ϱ,ϖ(ϱ; t0, ϖ0)))dϱ

+

∫ t

t0

S(t− ϱ)(G2(ϱ,ϖ(ϱ; t0, ϖ1))−G2(ϱ,ϖ(ϱ; t0, ϖ0)))dBϱ

+

∫ t

t0

S(t− ϱ)(G3(ϱ,ϖ(ϱ; t0, ϖ1))−G3(ϱ,ϖ(ϱ; t0, ϖ0)))d⟨B⟩ϱ.

Further, by condition (3.17), it yields

E|ϖ(t; t0, ϖ1)−ϖ(t; t0, ϖ0)|p

≤4p−1E |S(t− t0)(ϖ1 −ϖ0)|p

+ 4p−1E

∣∣∣∣∫ t

t0

S(t− ϱ)(G1(ϱ,ϖ(ϱ, t0, ϖ1))−G1(ϱ,ϖ(ϱ, t0, ϖ0)))dϱ

∣∣∣∣p
+ 4p−1E

∣∣∣∣∫ t

t0

S(t− ϱ)(G2(ϱ,ϖ(ϱ, t0, ϖ1))−G2(ϱ,ϖ(ϱ, t0, ϖ0)))dBϱ

∣∣∣∣p
+ 4p−1E

∣∣∣∣∫ t

t0

S(t− ϱ)(G3(ϱ,ϖ(ϱ, t0, ϖ1))−G3(ϱ,ϖ(ϱ, t0, ϖ0)))d⟨B⟩ϱ
∣∣∣∣p

≤4p−1kpe−δp(t−t0)E |ϖ1 −ϖ0|p + 4p−1kp
(∫ t

t0

e−
pδ(t−ϱ)
2(p−1) dϱ

)p−1

×
∫ t

t0

e−
pδ(t−ϱ)

2 E |G1(ϱ,ϖ(ϱ, t0, ϖ1))−G1(ϱ,ϖ(ϱ, t0, ϖ0))|p dϱ

+ 4p−1kpCpσ
p

(∫ t

t0

e−
pδ(t−ϱ)

p−2 dϱ

) p
2−1

×
∫ t

t0

e−
pδ(t−ϱ)

2 E |G2(ρ,ϖ(ϱ, t0, ϖ1))−G2(ϱ,ϖ(ρ, t0, ϖ0))|p dρ

+ 4p−1kpσ2p

(∫ t

t0

e−
pδ(t−ϱ)
2(p−1) dϱ

)p−1

×
∫ t

t0

e−
pδ(t−ρ)

2 E |G3(ϱ,ϖ(ϱ, t0, ϖ1))−G3(ϱ,ϖ(ϱ, t0, ϖ0))|p dϱ

≤4p−1kpe−
pδ(t−t0)

2 E|ϖ1 −ϖ0|p + k0

∫ t

t0

e−
pδ(t−ϱ)

2 E|ϖ(t; t0, ϖ1)−ϖ(t; t0, ϖ0)|pdϱ,

where k0 = 4p−1kplp(ι1 +Cpσ
pι0 + σ2pι1). Then the Gronwall inequality gives that

E|ϖ(t; t0, ϖ1)−ϖ(t; t0, ϖ0)|p ≤ 4p−1kpe−( pδ
2 −k0)(t−t0)E|ϖ1 −ϖ0|p, t ≥ t0,

which implies that

lim
t→∞

E|ϖ(t; t0, ϖ1)−ϖ(t; t0, ϖ0)|p = 0. (3.34)

Hence ϖ(t; t0, ϖ0) is asymptotically stable. This completes the proof.
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Corollary 3.1. Suppose that the conditions of Theorem 3.4 hold, then equation (1.2)
admits a unique Lp-bounded solution ϖ(t; t0, ϖ0) ∈ C(R, BLp

G(Ω)(0, r)). Moreover,
for any ϖ0 ∈ LpG(Ω),

lim sup
t→∞

E|ϖ(t; t0, ϖ0)|p<rp+1,

where r is given by Theorem 3.2 (i).

4. (Pseudo) almost periodic solutions of (1.2) with
exponential dichotomy

In paper [44], almost periodic solutions were investigated for SDEs driven by G-
Brownian motion satisfying exponential stability. However, it seems that no litera-
tures on p-distribution (pseudo) almost periodic solutions for (1.2) satisfying expo-
nential dichotomy. This section will solve these questions. In addition, throughout
this section, one denotes ι0 =

(
p−2

pδ′

) p
2−1

, ι1 =
(

2(p−1)

pδ′

)p−1

.

4.1. The existence of p-distribution almost periodic solutions
In this subsection, the existence of p-distribution almost periodic solutions to the
semi-linear SDE (1.2) with exponential dichotomy will be discussed. Some necessary
assumptions are:

(H1) for every ϖ ∈ LpG(Ω), S(h)ϖ → ϖ as h→ 0+ uniformly for t ∈ R. Moreover,
S(t) is compact for t ≥ 0;

(H2) S(t) is exponential dichotomy on LpG(Ω), i.e., there are positive numbers k̂
and δ′ satisfying

∥S(t)P∥ ≤ k̂e−δ
′t, t ≥ 0, ∥S(t)Q∥ ≤ k̂eδ

′t, t ≤ 0,

where Q = I − P;
(H3) there exists Lj > 0, j = 1, 2, 3 such that

E|Gj(t,ϖ1)−Gj(t,ϖ2)|p≤LjE |ϖ1−ϖ2|p and sup
t∈R

E |Gj(t,ϖ)|p≤Mj(∥ϖ∥∞)

for any t ∈ R, ϖ1, ϖ2 ∈ LpG(Ω), where nondecreasing continuous function
Mj : R+ → R+ satisfies

lim
ς→∞

Mj(ς)

ς
= 0;

(H4) the coefficient Gj(t,ϖ) : R × LpG(Ω) → LpG(Ω), j = 1, 2, 3 is p-mean almost
periodic on t ∈ R, uniformly for ϖ on any bounded subset of LpG(Ω).

Theorem 4.1. Let assumptions (H1)-(H3) hold. If

6p−1k̂p
4

pδ′
(
ι1L1 + σ2pι1L3 + Cpσ

pL2ι0
)
< 1, (4.1)

then the semi-linear SDE (1.2) has a unique Lp-bounded solution.
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Proof. Note that one can check that ϖ(t) is a mild solution of the semi-linear
SDE (1.2) since it fulfills integral equation below

ϖ(t) =

∫ t

−∞
S(t− ϱ)PG1(ϱ,ϖ(ϱ))dϱ−

∫ +∞

t

S(t− ϱ)QG1(ϱ,ϖ(ϱ))dϱ

+

∫ t

−∞
S(t− ϱ)PG2(ϱ,ϖ(ϱ))dBϱ −

∫ +∞

t

S(t− ϱ)QG2(ϱ,ϖ(ϱ))dBϱ

+

∫ t

−∞
S(t− ϱ)PG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ −

∫ +∞

t

S(t− ϱ)QG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ.

Consider the operator T given by

T (ϖ(t)) :=

∫ t

−∞
S(t− ϱ)PG1(ϱ,ϖ(ϱ))dϱ−

∫ +∞

t

S(t− ϱ)QG1(ϱ,ϖ(ϱ))dϱ

+

∫ t

−∞
S(t− ϱ)PG2(ϱ,ϖ(ϱ))dBϱ −

∫ +∞

t

S(t− ϱ)QG2(ϱ,ϖ(ϱ))dBϱ

+

∫ t

−∞
S(t−ϱ)PG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ−

∫ +∞

t

S(t−ϱ)QG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ.

(4.2)

To show the existence of the solution of (1.2), one divides it into two steps.
Step 1. The operator T : BUC(R, LpG(Ω)) → BUC(R, LpG(Ω)) is well defined.

In fact, T ϖ is Lp-bounded. It follows from (H2) and (H3) that

E |T ϖ(t)|p

≤3p−1E

∣∣∣∣∫ t

−∞
S(t−ϱ)PG1(ϱ,ϖ(ϱ))dϱ−

∫ +∞

t

S(t−ϱ)QG1(ϱ,ϖ(ϱ))dϱ

∣∣∣∣p
+3p−1E

∣∣∣∣∫ t

−∞
S(t−ϱ)PG2(ϱ,ϖ(ϱ))dBϱ−

∫ +∞

t

S(t−ϱ)QG2(ϱ,ϖ(ϱ))dBϱ

∣∣∣∣p
+ 3p−1E

∣∣∣∣ ∫ t

−∞
S(t−ϱ)PG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ−

∫ +∞

t

S(t−ϱ)QG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ
∣∣∣∣p

≤6p−1E

∣∣∣∣∫ t

−∞
S(t−ϱ)PG1(ϱ,ϖ(ϱ))dϱ

∣∣∣∣p+6p−1E

∣∣∣∣∫ +∞

t

S(t−ϱ)QG1(ϱ,ϖ(ϱ))dϱ

∣∣∣∣p
+6p−1E

∣∣∣∣∫ t

−∞
S(t−ϱ)PG2(ϱ,ϖ(ϱ))dBϱ

∣∣∣∣p+6p−1E

∣∣∣∣∫ +∞

t

S(t−ϱ)QG2(ϱ,ϖ(ϱ))dBϱ

∣∣∣∣p
+6p−1E

∣∣∣∣∫ t

−∞
S(t−ϱ)PG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ

∣∣∣∣p+6p−1E

∣∣∣∣∫ +∞

t

S(t−ϱ)QG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ
∣∣∣∣p

≤6p−1k̂p
(∫ t

−∞
e−

pδ′(t−ϱ)
2(p−1) dϱ

)p−1(∫ t

−∞
e−

pδ′(t−ϱ)
2 E |G1(ϱ,ϖ(ϱ))|p dϱ

)
+ 6p−1k̂p

(∫ +∞

t

e
pδ′(t−ϱ)
2(p−1) dϱ

)p−1(∫ +∞

t

e
pδ′(t−ϱ)

2 E |G1(ϱ,ϖ(ϱ))|p dϱ
)

+ 6p−1k̂pCpσ
p

(∫ t

−∞
e−

pδ′(t−ϱ)
p−2 dϱ

) p
2−1(∫ t

−∞
e−

pδ′(t−ϱ)
2 E |G2(ϱ,ϖ(ϱ))|p dϱ

)
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+ 6p−1k̂pCpσ
p

(∫ +∞

t

e
pδ′(t−ϱ)

p−2 dϱ

) p
2−1(∫ +∞

t

e
pδ′(t−ϱ)

2 E |G2(ϱ,ϖ(ϱ))|p dϱ
)

+ 6p−1k̂pσ2p

(∫ t

−∞
e−

pδ′(t−ϱ)
2(p−1) dϱ

)p−1(∫ t

−∞
e−

pδ′(t−ϱ)
2 E |G3(ϱ,ϖ(ϱ))|p dϱ

)
+ 6p−1k̂pσ2p

(∫ +∞

t

e
pδ′(t−ϱ)
2(p−1) dϱ

)p−1(∫ +∞

t

e
pδ′(t−ϱ)

2 E |G3(ϱ,ϖ(ϱ))|p dϱ
)

≤4 · 6p−1

pδ′
k̂pι1M1(∥ϖ∥∞) +

4 · 6p−1

pδ′
Cpσ

pk̂pι0M2(∥ϖ∥∞)

+ σ2p 4 · 6p−1

pδ′
k̂pι1M3(∥ϖ∥∞).

One now proves that T ϖ is continuous in t. By (H1), for any ε > 0, there exists
a ξ̃ > 0 satisfying

ξ̃ < min {h1, h2, h3}

such that when 0 < t′ − t′′ < ξ̃, one has

∥S(t′ − t′′)− I∥p ≤ min{r1, r2, r3},

where

h1 =
ε

1
p

12k̂ ∥G1∥∞
, h2 =

ε
2
p

144C
2
p
p σ

2k̂2 ∥G2∥2∞
, h3 =

h1 ∥G1∥∞
σ2 ∥G3∥∞

,

and

r1 =
εpδ′

2 · 12pk̂pι1 ∥G1∥p∞
, r2 =

εpδ′

2 · 12pCpσpk̂pι0 ∥G2∥p∞
, r3 =

r1 ∥G1∥p∞
σ2p ∥G3∥p∞

.

Then, it follows that

E |(T ϖ)(t′)− (T ϖ)(t′′)|p

≤12p−1E

∣∣∣∣∣
∫ t′′

−∞
[S(t′ − t′′)− I]S(t′′ − ϱ)PG1(ϱ,ϖ(ϱ))dϱ

∣∣∣∣∣
p

+ 12p−1E

∣∣∣∣∣
∫ t′

t′′
S(t′ − ϱ)PG1(ϱ,ϖ(ϱ))dϱ

∣∣∣∣∣
p

+ 12p−1E

∣∣∣∣∣
∫ t′′

−∞
[S(t′ − t′′)− I]S(t′′ − ϱ)PG2(ϱ,ϖ(ϱ))dBϱ

∣∣∣∣∣
p

+ 12p−1E

∣∣∣∣∣
∫ t′

t′′
S(t′ − ϱ)PG2(ϱ,ϖ(ϱ))dBϱ

∣∣∣∣∣
p

+ 12p−1E

∣∣∣∣∣
∫ t′′

−∞
[S(t′ − t′′)− I]S(t′′ − ϱ)PG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ

∣∣∣∣∣
p

+ 12p−1E

∣∣∣∣∣
∫ t′

t′′
S(t′ − ϱ)PG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ

∣∣∣∣∣
p
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+ 12p−1E

∣∣∣∣∫ +∞

t′′
[S(t′ − t′′)− I]S(t′′ − ϱ)QG1(ϱ,ϖ(ϱ))dϱ

∣∣∣∣p
+ 12p−1E

∣∣∣∣∣
∫ t′′

t′
S(t′′ − ϱ)QG1(ϱ,ϖ(ϱ))dϱ

∣∣∣∣∣
p

+ 12p−1E

∣∣∣∣∫ +∞

t′′
[S(t′ − t′′)− I]S(t′′ − ϱ)QG2(ϱ,ϖ(ϱ))dBϱ

∣∣∣∣p
+ 12p−1E

∣∣∣∣∣
∫ t′′

t′
S(t′′ − ϱ)QG2(ϱ,ϖ(ϱ))dBϱ

∣∣∣∣∣
p

+ 12p−1E

∣∣∣∣∫ +∞

t′′
[S(t′ − t′′)− I]S(t′′ − ϱ)QG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ

∣∣∣∣p
+ 12p−1E

∣∣∣∣∣
∫ t′′

t′
S(t′′ − ϱ)QG3(ϱ,ϖ(ϱ))d⟨B⟩ϱ

∣∣∣∣∣
p

=Υ11 +Υ12 +Υ21 +Υ22 +Υ31 +Υ32 +Υ41 +Υ42 +Υ51 +Υ52 +Υ61 +Υ62.

By applying the Hölder inequality and (H2), one obtains that

Υ11 +Υ12

≤12p−1k̂p ∥S(t′ − t′′)− I∥p
[∫ t′′

−∞
e−

pδ′
2(p−1)

(t′′−ϱ)dϱ

]p−1

×

[∫ t′′

−∞
e−

δ′p
2 (t′′−ϱ)E |G1(ϱ,ϖ(ϱ))|p dϱ

]

+ 12p−1k̂p

[∫ t′

t′′
e−

pδ′
2(p−1)

(t′−ϱ)dϱ

]p−1 [∫ t′

t′′
e−

pδ′
2 (t′−ϱ)E |G1(ϱ,ϖ(ϱ))|p dϱ

]

≤2 · 12p−1k̂p

δ′p
∥S(t′ − t′′)− I∥p ι1 ∥G1∥p∞ + 12p−1k̂p(t′ − t′′)p ∥G1∥p∞

≤2 · 12p−1k̂p

δ′p
ι1 ∥G1∥p∞ r1 + 12p−1k̂php1 ∥G1∥p∞ <

ε

6
.

By Proposition 2.1, Hölder inequality and (H2), it yields that

Υ21 +Υ22

≤12p−1k̂pCpE

[∫ t′′

−∞
e−2δ′(t′′−ϱ) ∥S(t′ − t′′)− I∥2 |G2(ϱ,ϖ(ϱ))|2 d⟨B⟩ϱ

] p
2

+ 12p−1k̂pCpE

[∫ t′

t′′
e−2δ′(t′−ϱ) |G2(ϱ,ϖ(ϱ))|2 d⟨B⟩ϱ

] p
2

≤12p−1k̂pCpσ
pE

[∫ t′′

−∞
e−2δ′(t′′−ϱ) ∥S(t′, t′′)− I∥2 |G2(ϱ,ϖ(ϱ))|2 dϱ

] p
2

+ 12p−1k̂pCpσ
pE

[∫ t′

t′′
e−2δ′(t′−ϱ) |G2(ϱ,ϖ(ϱ))|2 dϱ

] p
2
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≤12p−1k̂pCpσ
p ∥S(t′ − t′′)− I∥p

[∫ t′′

−∞
e−

pδ′(t′′−ϱ)
p−2 dϱ

] p
2−1

×

[∫ t′′

−∞
e−

pδ′
2 (t′′−ϱ)E |G2(ϱ,ϖ(ϱ))|p dϱ

]

+ 12p−1k̂pCpσ
p

[∫ t′

t′′
e−

pδ′(t′−ϱ)
p−2

] p
2−1 ∫ t′

t′′
e−

pδ′
2 (t′−ϱ) ∥G2∥p∞ dϱ

≤2 · 12p−1k̂pCpσ
p

pδ′
∥S(t′ − t′′)− I∥p ι0 ∥G2∥p∞ + 12p−1k̂pCpσ

p ∥G2∥p∞ (t
′
− t

′′
)

p
2

≤2 · 12p−1k̂pCpσ
p

pδ′
ι0 ∥G2∥p∞ r2 + 12p−1k̂pCpσ

p ∥G2∥p∞ h
p
2
2 <

ε

6
.

Similarly, from Proposition 2.1, Hölder inequality and (H2), one obtains some results
for Υ31 +Υ32, Υ41 +Υ42, Υ51 +Υ52 and Υ61 +Υ62 as follows:

Υ31 +Υ32≤
2 · 12p−1σ2pk̂p

δ′p
∥S(t′ − t′′)− I∥p ι1 ∥G3∥p∞ + 12p−1k̂pσ2p(t′ − t′′)p ∥G3∥p∞<

ε

6
,

Υ41+Υ42 ≤ 2 · 12p−1k̂p

pδ′
∥S(t′ − t′′)− I∥p ι1 ∥G1∥p∞ + 12p−1k̂p(t′ − t′′)p ∥G1∥p∞ <

ε

6
,

Υ51 +Υ52 ≤ 2 · 12p−1Cpσ
pk̂p

pδ′
∥S(t′ − t′′)− I∥p ι0 ∥G2∥p∞ + 12p−1Cpσ

pk̂p(t′ − t′′)
p
2 ∥G2∥p∞ <

ε

6
,

Υ61 +Υ62 ≤ 2 · 12p−1σ2pk̂p

pδ′
∥S(t′ − t′′)− I∥p ι1 ∥G3∥p∞ + 12p−1k̂pσ2p(t′ − t′′)p ∥G3∥p∞ <

ε

6
.

Hence T ϖ is continuous in t.
Step 2. One shows that T is a contraction mapping.

E |(T ϖ1)(t)− (T ϖ2)(t)|p

=E

∣∣∣∣ ∫ t

−∞
S(t− ϱ)P(G1(ϱ,ϖ1(ϱ))−G1(ϱ,ϖ2(ϱ)))dϱ

−
∫ +∞

t

S(t− ϱ)Q(G1(ϱ,ϖ1(ϱ))−G1(ϱ,ϖ2(ϱ)))dϱ

+

∫ t

−∞
S(t− ϱ)P(G2(ϱ,ϖ1(ϱ))−G2(ϱ,ϖ2(ϱ)))dBϱ

−
∫ +∞

t

S(t− ϱ)Q(G2(ϱ,ϖ1(ϱ))−G2(ϱ,ϖ2(ϱ)))dBϱ

+

∫ t

−∞
S(t− ϱ)P(G3(ϱ,ϖ1(ϱ))−G3(ϱ,ϖ2(ϱ)))d⟨B⟩ϱ

−
∫ +∞

t

S(t− ϱ)Q(G3(ϱ,ϖ1(ϱ))−G3(ϱ,ϖ2(ϱ)))d⟨B⟩ϱ
∣∣∣∣p

≤6p−1k̂p
[
E

(∫ t

−∞
e−δ

′(t−ϱ)(G1(ϱ,ϖ1(ϱ))−G1(ϱ,ϖ2(ϱ)))dϱ

)p
+ E

(∫ +∞

t

eδ
′(t−ϱ)(G1(ϱ,ϖ1(ϱ))−G1(ϱ,ϖ2(ϱ)))dϱ

)p
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+ E

(∫ t

−∞
e−δ

′(t−ϱ)(G2(ϱ,ϖ1(ϱ))−G2(ϱ,ϖ2(ϱ)))dBϱ

)p
+ E

(∫ +∞

t

eδ
′(t−ϱ)(G2(ϱ,ϖ1(ϱ))−G2(ϱ,ϖ2(ϱ)))dBϱ

)p
+ E

(∫ t

−∞
e−δ

′(t−ϱ)(G3(ϱ,ϖ1(ϱ))−G3(ϱ,ϖ2(ϱ)))d⟨B⟩ϱ
)p

+ E

(∫ +∞

t

eδ
′(t−ϱ)(G3(ϱ,ϖ1(ϱ))−G3(ϱ,ϖ2(ϱ)))d⟨B⟩ϱ

)p ]
≤6p−1k̂p

4

pδ′
(
ι1L1 + σ2pι1L3 + Cpσ

pL2ι0
)
E|ϖ1(s)−ϖ2(s)|p

≤θ sup
s∈R

E|ϖ1(s)−ϖ2(s)|p.

This implies that T ϖ is a contraction mapping. Therefore, the semi-linear SDE
(1.2) has a unique Lp-bounded solution by (4.1). This completes the proof.

Theorem 4.2. Let assumptions (H1)-(H4) hold. Then the unique Lp-bounded
solution of the semi-linear SDE (1.2) is almost periodic in p-distribution provided
that

ι1(L1 + σ2pL3) + ι0Cpσ
pL2 <

pδ′

6 · 12p−1k̂p
. (4.3)

Proof. Let ϖ∞(t) and ϖn(t), n ∈ N satisfy the the following integral equations

ϖ∞(t) =

∫ t

−∞
S(t− ϱ)PG∞

1 (ϱ,ϖ∞(ϱ))dϱ−
∫ +∞

t

S(t− ϱ)QG∞
1 (ϱ,ϖ∞(ϱ))dϱ

+

∫ t

−∞
S(t− ϱ)PG∞

2 (ϱ,ϖ∞(ϱ))dBϱ −
∫ +∞

t

S(t− ϱ)QG∞
2 (ϱ,ϖ∞(ϱ))dBϱ

+

∫ t

−∞
S(t−ϱ)PG∞

3 (ϱ,ϖ∞(ϱ))d⟨B⟩ϱ−
∫ +∞

t

S(t−ϱ)QG∞
3 (ϱ,ϖ∞(ϱ))d⟨B⟩ϱ

and

ϖn(t)=

∫ t

−∞
S(t−ϱ)PG1(ϱ+ σn, ϖn(ϱ))dϱ−

∫ +∞

t

S(t−ϱ)QG1(ϱ+ σn, ϖn(ϱ))dϱ

+

∫ t

−∞
S(t−ϱ)PG2(ϱ+ σn, ϖn(ϱ))dBϱ−

∫ +∞

t

S(t−ϱ)QG2(ϱ+ σn, ϖn(ϱ))dBϱ

+

∫ t

−∞
S(t−ϱ)PG3(ϱ+σn, ϖn(ϱ))d⟨B⟩ϱ−

∫ +∞

t

S(t−ϱ)QG3(ϱ+σn, ϖn(ϱ))d⟨B⟩ϱ,

respectively. Notice that (4.3) can infer (4.1), then like ϖ∞(t), such ϖn(t) is unique
and Lp-bounded by Theorem 4.1. Taking the transformation of s+σn = ϱ, one can
derive that

ϖ(t+ σn) =

∫ t

−∞
S(t− ϱ)PG∞

1 (ϱ+ σn, ϖ(ϱ+ σn))dϱ

−
∫ +∞

t

S(t− ϱ)QG∞
1 (ϱ+ σn, ϖ(ϱ+ σn))dϱ
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+

∫ t

−∞
S(t− ϱ)PG∞

2 (ϱ+ σn, ϖ(ϱ+ σn))dB̂ϱ

−
∫ +∞

t

S(t− ϱ)QG∞
2 (ϱ+ σn, ϖ(ϱ+ σn))dB̂ϱ

+

∫ t

−∞
S(t− ϱ)PG∞

3 (ϱ+ σn, ϖ(ϱ+ σn))d⟨B̂⟩ϱ

−
∫ +∞

t

S(t− ϱ)QG∞
3 (ϱ+ σn, ϖ(ϱ+ σn))d⟨B̂⟩ϱ,

where B̂ϱ = Bϱ+ϱn − Bϱn is a G-Brownian motion with the same distribution as
Bϱ, and ⟨B̂⟩ϱ has the same distributions as ⟨B⟩ϱ.

Now let us show that ϖn(t) converges in p-distribution to ϖ∞(t) for every fixed
t ∈ R. It is easy to see that

E |ϖn(t)−ϖ∞(t)|p

= E

∣∣∣∣∫ t

−∞
S(t− ϱ)PG1(ϱ+ σn, ϖ(ϱ+ σn))dϱ−

∫ t

−∞
S(t− ϱ)PG∞

1 (ϱ,ϖ∞(ϱ))dϱ

−
∫ +∞

t

S(t− ϱ)QG1(ϱ+ σn, ϖ(ϱ+ σn))dϱ+

∫ +∞

t

S(t− ϱ)QG∞
1 (ϱ,ϖ∞(ϱ))dϱ

+

∫ t

−∞
S(t− ϱ)PG2(ϱ+ σn, ϖ(ϱ+ σn))dBϱ −

∫ t

−∞
S(t− ϱ)PG∞

2 (ϱ,ϖ∞(ϱ))dBϱ

−
∫ +∞

t

S(t−ϱ)QG2(ϱ+σn, ϖ(ϱ+σn))dBϱ+

∫ +∞

t

S(t−ϱ)QG∞
2 (ϱ,ϖ∞(ϱ))dBϱ

+

∫ t

−∞
S(t−ϱ)PG3(ϱ+ σn, ϖ(ϱ+σn))d⟨B⟩ϱ−

∫ t

−∞
S(t−ϱ)PG∞

3 (ϱ,ϖ∞(ϱ))d⟨B⟩ϱ

−
∫ +∞

t

S(t−ϱ)QG3(ϱ+σn, ϖ(ϱ+σn))d⟨B⟩ϱ+
∫ +∞

t

S(t−ϱ)QG∞
3 (ϱ,ϖ∞(ϱ))d⟨B⟩ϱ

∣∣∣∣p
≤ Σ11 +Σ12 +Σ21 +Σ22 +Σ31 +Σ32,

where

Σ11=6p−1E

∣∣∣∣∫ t

−∞
S(t−ϱ)PG1(ϱ+σn, ϖ(ϱ+σn))dϱ−

∫ t

−∞
S(t− ϱ)PG∞

1 (ϱ,ϖ∞(ϱ))dϱ

∣∣∣∣p ,
Σ12=6p−1E

∣∣∣∣∫ +∞

t

S(t−ϱ)QG1(ϱ+σn, ϖ(ϱ+σn))dϱ−
∫ +∞

t

S(t−ϱ)QG∞
1 (ϱ,ϖ∞(ϱ))dϱ

∣∣∣∣p ,
Σ21=6p−1E

∣∣∣∣∫ t

−∞
S(t−ϱ)PG2(ϱ+σn, ϖ(ϱ+σn))dBϱ−

∫ t

−∞
S(t−ϱ)PG∞

2 (ϱ,ϖ∞(ϱ))dBϱ

∣∣∣∣p ,
Σ22=6p−1E

∣∣∣∣∫ +∞

t

S(t−ϱ)QG2(ϱ+σn, ϖ(ϱ+σn))dBϱ−
∫ +∞

t

S(t−ϱ)QG∞
2 (ϱ,ϖ∞(ϱ))dBϱ

∣∣∣∣p ,
Σ31=6p−1E

∣∣∣∣∫ t

−∞
S(t−ϱ)PG3(ϱ+σn, ϖ(ϱ+σn))d⟨B⟩ϱ−

∫ t

−∞
S(t− ϱ)PG∞

3 (ϱ,ϖ∞(ϱ))d⟨B⟩ϱ
∣∣∣∣p ,

Σ32=6p−1E

∣∣∣∣∫ +∞

t

S(t−ϱ)QG3(ϱ+σn, ϖ(ϱ+σn))d⟨B⟩ϱ−
∫ +∞

t

S(t−ϱ)QG∞
3 (ϱ,ϖ∞(ϱ))d⟨B⟩ϱ

∣∣∣∣p .



p-distribution almost periodic solution 2257

Herein, the calculation of Σ11 is given by

Σ11 ≤ 12p−1E

∣∣∣∣∫ t

−∞
S(t− ϱ)P[G1(ϱ+ σn, ϖ(ϱ+ σn))−G1(ϱ+ σn, ϖ

∞(ϱ))]dϱ

∣∣∣∣p
+ 12p−1E

∣∣∣∣∫ t

−∞
S(t− ϱ)P[G1(ϱ+ σn, ϖ

∞(ϱ))−G∞
1 (ϱ,ϖ∞(ϱ))]dϱ

∣∣∣∣p
≤ 12p−1k̂p

(∫ t

−∞
e−

pδ′(t−ϱ)
2(p−1) dϱ

)p−1

×
(∫ t

−∞
e−

δ′p(t−ϱ)
2 E|G1(ϱ+ σn, ϖ(ϱ+ σn))−G1(ϱ+ σn, ϖ

∞(ϱ))|pdϱ
)

+ 12p−1k̂p
(∫ t

−∞
e−

pδ′(t−ϱ)
2(p−1) dϱ

)p−1

×
∫ t

−∞
e−

pδ′(t−ϱ)
2 E |G1(ϱ+ σn, ϖ

∞(ϱ))−G∞
1 (ϱ,ϖ∞(ϱ))|p dϱ

≤ 12p−1k̂pL1ι1

∫ t

−∞
e−

pδ′(t−ϱ)
2 E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p dϱ+ In11

with

In11 = 12p−1k̂pι1

∫ t

−∞
e−

pδ′(t−ϱ)
2 E |G1(ϱ+ σn, ϖ

∞(ϱ))−G∞
1 (ϱ,ϖ∞(ϱ))|p dϱ.

Note that ∥G1(ϱ+ σn, ϖ
∞(ϱ))−G1(ϱ+ σn, ϖ

∞(0))∥p ≤ L
1
p

1 ∥ϖ∞(ϱ)−ϖ∞(0))∥p
and ϖ∞(ϱ) is Lp-bounded, it yields that

sup
ϱ∈R

∥G1(ϱ+ σn, ϖ
∞(ϱ))∥p

≤ sup
ϱ∈R

∥G1(ϱ+ σn, ϖ
∞(ϱ))−G1(ϱ+ σn, 0)∥p + sup

ϱ∈R
∥G1(ϱ+ σn, 0)∥p

≤L
1
p

1 sup
ϱ∈R

∥ϖ∞(ϱ)∥p + sup
ϱ∈R

∥G1(ϱ+ σn, 0)∥p <∞,

and hence
sup
ϱ∈R

∥G∞
1 (ϱ,ϖ∞(ϱ))∥p <∞.

Since G1 is p-mean almost periodic in t by (H4) and ϖ∞(·) is bounded in LpG(Ω),
one gains In11 → 0 as n→ ∞ by the Lebesgue dominated convergence theorem and
the arbitrary of ε.

In the light of (H3) and almost periodicity of G1, one has

Σ12 ≤12p−1E

∣∣∣∣∫ +∞

t

S(t− ϱ)Q(G1(ϱ+ σn, ϖ(ϱ+ σn))−G1(ϱ+ σn, ϖ
∞(ϱ)))dϱ

∣∣∣∣p
+ 12p−1E

∣∣∣∣∫ +∞

t

S(t− ϱ)Q(G1(ϱ+ σn, ϖ
∞(ϱ))−G∞

1 (ϱ,ϖ∞(ϱ)))dϱ

∣∣∣∣p
≤12p−1E

(∫ +∞

t

k̂eδ
′(t−ϱ) |G1(ϱ+ σn, ϖ(ϱ+ σn))−G1(ϱ+ σn, ϖ

∞(ϱ))| dϱ
)p
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+ 12p−1E

(∫ +∞

t

k̂eδ
′(t−ϱ) |G1(ϱ+ σn, ϖ

∞(ϱ))−G∞
1 (ϱ,ϖ∞(ϱ))| dϱ

)p
≤12p−1k̂pL1ι1

∫ +∞

t

e
pδ′(t−ϱ)

2 E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p dϱ+ In12

with

In12 = 12p−1k̂pι1

∫ +∞

t

e
pδ′(t−ϱ)

2 E |G1(ϱ+ σn, ϖ
∞(ϱ))−G∞

1 (ϱ,ϖ∞(ϱ))|p dϱ.

Similar to In11, one obtains that In12 → 0 as n→ ∞.
By the same way, one derives

Σ21 ≤ 12p−1Cpσ
pk̂pL2ι0

∫ t

−∞
e−

pδ′(t−ϱ)
2 E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p dϱ+ In21,

Σ22 ≤ 12p−1k̂pCpσ
pL2ι0

∫ +∞

t

e
pδ′(t−ϱ)

2 E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p dϱ+ In22

Σ31 ≤ 12p−1k̂pL3σ
2pι1

∫ t

−∞
e−

pδ′(t−ϱ)
2 E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p dϱ+ In31,

Σ32 ≤ 12p−1k̂pL3σ
2pι1

∫ +∞

t

e
pδ′(t−ϱ)

2 E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p dϱ+ In32,

with

In21 = 12p−1Cpσ
pk̂pι0

∫ t

−∞
e−

pδ′(t−ϱ)
2 E |G2(ϱ+ σn, ϖ

∞(ϱ))−G∞
2 (ϱ,ϖ∞(ϱ))|p dϱ,

In22 = 12p−1k̂pCpσ
pι0

∫ +∞

t

e
pδ′(t−ϱ)

2 E |G2(ϱ+ σn, ϖ
∞(ϱ))−G∞

2 (ϱ,ϖ∞(ϱ))|p dϱ,

In31 = 12p−1k̂pσ2pι1

∫ t

−∞
e−

pδ′(t−ϱ)
2 E |G3(ϱ+ σn, ϖ

∞(ϱ))−G∞
3 (ϱ,ϖ∞(ϱ))|p dϱ,

In32 = 12p−1k̂pσ2pι1

∫ +∞

t

e
pδ′(t−ϱ)

2 E |G3(ϱ+ σn, ϖ
∞(ϱ))−G∞

3 (ϱ,ϖ∞(ϱ))|p dϱ.

Similar to the processes of In11 and In12, one has In21 → 0, In22 → 0, In31 → 0 and
In32 → 0.

Based on above estimations, one obtains that

E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p

≤In + 12p−1k̂pCpσ
pι0L2

∫ t

−∞
e

−pδ′(t−ϱ)
2 E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p dϱ

+ 12p−1k̂pCpσ
pι0L2

∫ +∞

t

e
pδ′(t−ϱ)

2 E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p dϱ

+ 12p−1k̂p(L1 + σ2pL3)ι1

∫ t

−∞
e−

pδ′(t−ϱ)
2 E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p dϱ

+ 12p−1k̂p(L1 + σ2pL3)ι1

∫ +∞

t

e
pδ′(t−ϱ)

2 E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p dϱ
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with In = In11 + In12 + In21 + In22 + In31 + In32 → 0 as n→ ∞. By [19, Lemma 2.5], one
concludes that

E |ϖ(ϱ+ σn)−ϖ∞(ϱ)|p → 0 as n→ ∞, for every t ∈ R.

Since ϖ(ϱ + σn) share the same distribution as ϖn(ϱ), it could be easily checked
that ϖ(ϱ + σn) → ϖ∞(ϱ) as n → ∞. Hence, ϖ is almost periodic in distribution.
On the other hand, the sequence {|ϖn(ϱ)|p, t ∈ R, n ∈ N} is uniformly integrable,
so {|ϖ(ϱ+ σn)|p, ϱ ∈ R, n ∈ N} is also uniformly integrable. Thus, it is immediate
to obtain that ϖ(t) is almost periodic in p-distribution.

4.2. The existence of p-distribution pseudo almost periodic
solutions

In this subsection, one investigates the p-distribution pseudo almost periodic solu-
tions of the semi-linear SDE (1.2) and gives the following assumptions:

(H5) the coefficient Gj(t,ϖ) : R × LpG(Ω) → LpG(Ω), j = 1, 2, 3 is p-mean pseudo
almost periodic on t ∈ R and uniformly for ϖ on any bounded subset of
LpG(Ω);

(H6) let µ ∈ M. For every τ ∈ R, there exist a bounded interval D and a positive
constant β satisfying µ(J + τ) ≤ βµ(J) whenever J is a Borel subset of R
satisfying J ∩D = ∅.

From (H5), Gj can be decomposed asGj = Gj,1+Gj,2 ∈ PAP (R×LpG(Ω), L
p
G(Ω), µ),

where Gj,1 ∈ AP (R × LpG(Ω), L
p
G(Ω)), Gj,2 ∈ ε(R × LpG(Ω), L

p
G(Ω), µ), j = 1, 2, 3

with µ satisfying (H6).

Theorem 4.3. Let (H1)-(H3), (H5)-(H6) hold, and Gj,1, j = 1, 2, 3 satisfy (H3).
Then there is a p-distribution pseudo almost periodic solution of the semi-linear
SDE (1.2) provided that (4.3) holds.

Proof. According to Theorem 4.2, one can see that the equation

dϖ(t) = (Aϖ(t) +G1,1(t,ϖ(t)))dt+G2,1(t,ϖ(t))dBt +G3,1(t,ϖ(t))d⟨B⟩t

possesses a unique p-distribution almost periodic solution ϖ ∈ BUC(R, LpG(Ω)).
Thus K := {ϖ(t)|t ∈ R} is a compact set in LpG(Ω), which means that for any
ε > 0, there are ϖ1, ϖ2, · · · , ϖm satisfying

K ⊂
m⋃
i=1

{
ϖ ∈ K : E |ϖ −ϖi|p ≤

ε

2p−1

}
.

On the other hand, by the proof Theorem 4.2, the operator T given in (4.2) has
a unique fixed point ξ ∈ BUC(R, LpG(Ω)), which is the solution to the semi-linear
SDE (1.2). Since the operator T is contractive, ξ is just the limit of sequence
(ξn)n∈N satisfying ξn+1 = T (ξn) with arbitrary ξ0.

Now one chooses a special sequence to show that ξ is pseudo almost periodic in
p-distribution sense. Let

ξ0 = ϖ, ξn+1 = T (ξn), θn = ξn −ϖ.
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Before proving ξ being pseudo almost periodic, one needs to show θn+1(t)∈
ε(R, Lp

G(Ω), µ) by the induction method. For n = 0, θ0 = 0 ∈ ε(R, LpG(Ω), µ). Now
assume that θn(t) ∈ ε(R, LpG(Ω), µ). In fact, for each n ∈ N and t ∈ R,

θn+1(t) =T ξn(t)−ϖ(t)

=

∫ t

−∞
S(t− ϱ)P(G1(ϱ, ξn(ϱ))−G1(ϱ,ϖ(ϱ)))dϱ

−
∫ +∞

t

S(t− ϱ)Q(G1(ϱ, ξn(ϱ))−G1(ϱ,ϖ(ϱ)))dϱ

+

∫ t

−∞
S(t− ϱ)PG1,2(ϱ,ϖ(ϱ))dϱ−

∫ +∞

t

S(t− ϱ)QG1,2(ϱ,ϖ(ϱ))dϱ

+

∫ t

−∞
S(t− ϱ)P(G2(ϱ, ξn(ϱ))−G2(ϱ,ϖ(ϱ)))dBϱ

−
∫ +∞

t

S(t− ϱ)Q(G2(ϱ, ξn(ϱ))−G2(ϱ,ϖ(ϱ)))dBϱ

+

∫ t

−∞
S(t− ϱ)PG2,2(ϱ,ϖ(ϱ))dBϱ −

∫ +∞

t

S(t− ϱ)QG2,2(ϱ,ϖ(ϱ))dBϱ

+

∫ t

−∞
S(t− ϱ)P(G3(ϱ, ξn(ϱ))−G3(ϱ,ϖ(ϱ)))d⟨B⟩ϱ

−
∫ +∞

t

S(t− ϱ)Q(G3(ϱ, ξn(ϱ))−G3(ϱ,ϖ(ϱ)))d⟨B⟩ϱ

+

∫ t

−∞
S(t−ϱ)PG3,2(ϱ,ϖ(ϱ))d⟨B⟩ϱ−

∫ +∞

t

S(t−ϱ)QG3,2(ϱ,ϖ(ϱ))d⟨B⟩ϱ

=Θ11+Θ12+Θ13+Θ14+Θ21+Θ22+Θ23+Θ24+Θ31+Θ32+Θ33+Θ34.

It follows from (H3) that

E |Gj(t, ξn(t))−Gj(t,ϖ(t))|p ≤ LjE |θn(t)|p , j = 1, 2, 3. (4.4)

By Hölder inequality and (H2), one has

1

µ([−M,M ])

∫
[−M,M ]

E|Θ11(t)|pdµ(t)

=
1

µ([−M,M ])

∫
[−M,M ]

E

∣∣∣∣∫ t

−∞
S(t− ϱ)P(G1(ϱ, ξn(ϱ))−G1(ϱ,ϖ(ϱ)))dϱ

∣∣∣∣p dµ(t)
≤ k̂pι1
µ([−M,M ])

∫
[−M,M ]

∫ t

−∞
e−

δ′p(t−ϱ)
2 E |G1(ϱ, ξn(ϱ))−G1(ϱ,ϖ(ϱ))|p dϱdµ(t).

(4.5)

Due to Lebesgue dominated convergence theorem and (4.4), further together with
θn ∈ ε(R, LpG(Ω), µ), it follows that (4.5) converges to 0 as M → ∞. With the
similar method, one can derive that

1

µ([−M,M ])

∫
[−M,M ]

E|Θ12(t)|pdµ(t) → 0, as M → ∞.
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By the compactness of K, one can gain

1

µ([−M,M ])

∫
[−M,M ]

E|Θ13(t)|pdµ(t)

=
1

µ([−M,M ])

∫
[−M,M ]

E

∣∣∣∣∫ t

−∞
S(t− ϱ)PG1,2(ϱ,ϖ(ϱ))dϱ

∣∣∣∣p dµ(t)
≤ 2p−1

µ([−M,M ])

∫
[−M,M ]

E

∣∣∣∣∫ t

−∞
S(t− ϱ)P(G1,2(ϱ,ϖ(ϱ))−G1,2(ϱ,ϖi))dϱ

∣∣∣∣p dµ(t)
+

2p−1

µ([−M,M ])

∫
[−M,M ]

E

∣∣∣∣∫ t

−∞
S(t− ϱ)PG1,2(ϱ,ϖi)dϱ

∣∣∣∣p dµ(t)
≤2pL1k̂

pι1ε

pδ′
+2p−1k̂pι1Σ

m
i=1

∫ +∞

0

e−
pδ′ϱ

2
1

µ([−M,M ])

∫
[−M,M ]

E |G1,2(ϱ,ϖi)|p dϱdµ(t).

Since G1,2 ∈ ε(R × LpG(Ω), L
p
G(Ω), µ) from (H5) and ε(R × LpG(Ω), L

p
G(Ω), µ) is

translation invariant from (H6) and [5, Section 3], one achieves the consequence

1

µ([−M,M ])

∫
[−M,M ]

E|Θ13(t)|pdµ(t) → 0, as M → ∞

by the arbitrariness of ε and the Lebesgue dominated convergence theorem. Simi-
larly, one can deduce that

1

µ([−M,M ])

∫
[−M,M ]

E|Θ14(t)|pdµ(t) → 0, as M → ∞.

Additionally, by Proposition 2.1, θn ∈ ε(R, LpG(Ω), µ) and (4.4), it holds that

1

µ([−M,M ])

∫
[−M,M ]

E|Θ21(t)|pdµ(t)

=
1

µ([−M,M ])

∫
[−M,M ]

E

∣∣∣∣∫ t

−∞
S(t− ϱ)P(G2(ϱ, ξn(ϱ))−G2(ϱ,ϖ(ϱ)))dBϱ

∣∣∣∣p dµ(t)
≤Cpσpk̂pι0

∫ +∞

0

e−
pδ′ϱ

2
1

µ([−M,M ])

∫
[−M,M ]

E |G2(ϱ, ξn(ϱ))−G2(ϱ,ϖ(ϱ))|p dµ(t)dϱ→0,

as M → ∞.

Similarly,

1

µ([−M,M ])

∫
[−M,M ]

E|Θ22(t)|pdµ(t) → 0, as M → ∞.

Again by the compactness of K, G2,2 ∈ ε(R×LpG(Ω), L
p
G(Ω), µ) and the translation

invariance of ε(R× LpG(Ω), L
p
G(Ω), µ), one obtains that

1

µ([−M,M ])

∫
[−M,M ]

E|Θ23(t)|pdµ(t)

=
1

µ([−M,M ])

∫
[−M,M ]

E

∣∣∣∣∫ t

−∞
S(t− ϱ)PG2,2(ϱ,ϖ(ϱ))dBϱ

∣∣∣∣p dµ(t)
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≤2p−1Cpσ
pk̂pι0

µ([−M,M ])

∫
[−M,M ]

(∫ t

−∞
e−

pδ′(t−ϱ)
2 E |G2,2(ϱ,ϖ(ϱ))−G2,2(ϱ,ϖi)|p dϱ

)
dµ(t)

+
2p−1Cpσ

pk̂pι0
µ([−M,M ])

∫
[−M,M ]

(∫ t

−∞
e−

pδ′(t−ϱ)
2 E |G2,2(ϱ,ϖi)|p dϱ

)
dµ(t),

≤2pCpσ
pk̂pι0

pδ′
ε+

2p−1Cpσ
pk̂pι0

µ([−M,M ])

∫ t

−∞
e−

pδ′(t−ϱ)
2

∫
[−M,M ]

E |G2,2(ϱ,ϖi)|p dϱdµ(t)→0,

as M → ∞.

Similarly, one can deduce

1

µ([−M,M ])

∫
[−M,M ]

E
∣∣Θ24(t)

∣∣p dµ(t) → 0 as M → ∞.

Processing like Θ21,Θ22,Θ23,Θ24, the results

1

µ([−M,M ])

∫
[−M,M ]

E
∣∣Θ3j(t)

∣∣p dµ(t) → 0 as M → ∞, j = 1, 2, 3, 4

can be easily deduced, so we omit it here for simplicity.
Note that the sequence {ξn}n∈N converges to ξ in BUC(R, LpG(Ω)). Set θ =

ξ −ϖ. Then θn → θ. As a consequence, for any ε > 0, there is a positive integer
n0 such that

sup
t∈R

E |θ(t)− θn(t)|p < ε, for n ≥ n0.

Therefore, one can conclude that

1

µ([−M,M ])

∫
[−M,M ]

E |θ(t)|p dµ(t)<2p−1ε+
2p−1

µ([−M,M ])

∫
[−M,M ]

E |θn(t)|p dµ(t),

n ≥ n0,

which means that θ ∈ ε(R, LpG(Ω), µ). Hence ξ = ϖ+θ is the pseudo almost periodic
solution in distribution sense. Further, similar to the proof of p-distribution almost
periodic solution in Theorem 4.2, one obtains that the distribution pseudo almost
periodic solution ξ is p-distribution pseudo almost periodic. So one completes the
proof.

5. Examples
In this section, some examples are provided to illustrate obtained results.

Example 5.1. Consider the following SDE:

dϕ =

(
−3ϕ+

cos τ + cos
√
3τ

5
.

ϕ

ϕ2 + 3

)
dτ +

1

3
ϕ sin(sin

√
2τ + cos τ)dBτ

+
1

2
ϕ cos

(
sin τ + sin

√
2τ

2

)
d⟨B⟩τ

=(Aϕ+Q1(τ, ϕ))dτ +Q2(τ, ϕ)dBτ +Q3(τ, ϕ)d⟨B⟩τ , (5.1)
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where Bτ is a one-dimensional G-Browian motion, and ⟨B⟩τ is a second variation.
Then system (5.1) admits a globally asymptotically stable quasi-periodic solution
in p-distribution sense.

Actually, the semigroup generated by A is exponentially stable on LpG(Ω) with
k = 1 and δ = 3. Q1, Q2, Q3 are also quasi-periodic in τ uniformly for ϕ on
each bounded subset of LpG(Ω), hence they are jointly quasi-periodic. Additionally,
max{Lip(Q1), Lip(Q2), Lip(Q3)} ≤ 1

2 . In conclusion, all conditions of Theorem 3.2
and Theorem 3.4 are met. Hence (5.1) has a unique global Lp-bounded solution by
Theorem 3.2. Furthermore, this solution is quasi-periodic in p-distribution sense by
Corollary 3.3, and is globally asymptotically stable by Theorem 3.4.

Example 5.2. Consider the following system on the interval [0, 1]:

dZ(τ, φ)

=F (τ, φ)Z(τ, φ)dτ +
sin τ + sin

√
2τ

4
dτ +

φ

φ2 + 3
. sin

(
1

2 + cosτ + cos
√
3τ

)
dBτ

+
φ

φ2 + 1
cos

(
1

2 + sin τ + sin
√
3τ

)
d⟨B⟩τ

=F (τ, φ)Z(τ, φ)dτ +Σ1(τ, Z(τ, φ))dτ +Σ2(τ, Z(τ, φ))dBτ +Σ3(τ, Z(τ, φ))d⟨B⟩τ ,
(5.2)

Z(τ, 0) = Z(τ, 1) = 0, τ > 0, where Bτ is a one-dimensional G-Brownian motion.
Set F the Laplace operator, so F : D(F ) = H2(0, 1) ∩H1

0 (0, 1) → L2(0, 1). Denote
H = L2(0, 1) and by ∥·∥ the norm on H. Then in global sense, system (5.2) admits
a asymptotically stable p-distribution Levitan almost periodic solution.

In fact, the system (5.2) can be expressed as follows:

dβ(τ) = (Fβ(τ) + Ξ1(τ, β(τ)))dτ + Ξ2(τ, β(τ))dBτ + Ξ3(τ, β(τ))d⟨B⟩τ (5.3)

on the Hilbert space LpG(Ω), where β(τ) := Z(τ, ·), Ξ1(τ, β(τ)) := Σ1(τ, Z(τ, ·)),
Ξ2(τ, β(τ)) := Σ2(τ, Z(τ, ·)), Ξ3(τ, β(τ)) := Σ3(τ, Z(τ, .)). The operator F pos-
sesses eigenvalues {−n2π2}∞n=1 and produces a semigroup S(τ) on LpG(Ω) fulfilling
∥S(τ)∥ ≤ e−π

2τ for τ ≥ 0. Since

max {Lip(Ξ1), Lip(Ξ2), Lip(Ξ3)} ≤ 1,

it is immediate to check that Ξj , j = 1, 2, 3 satisfy linear growth condition and Lip-
schtiz condition. Besides, one needs to verify that Ξ2 is continuous for τ uniformly
on φ in every bounded subset of LpG(Ω). Indeed, because Ξ2 is bounded, for given
α > 0 one obtains

sup
τ∈R,∥Z∥≤M

∫
[0,1]

|Ξ2(τ, Z(φ))|p+αdφ <∞

for each M > 0. Hence the family {|Ξ2(τ, Z(φ))|p : τ ∈ R, ∥Z∥ ≤ M} of functions
is uniformly integrable for φ on [0, 1], that is for τn → τ ,∫

[0,1]

|Ξ2(τn, Z(φ))− Ξ2(τ, Z(φ))|pdφ
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≤2p−1

∫
[0,1]∩Nk

|Ξ2(τn, Z(φ))−Ξ2(τ, Z(φ))|pdφ

+ 2p−1

∫
[0,1]\Nk

|Ξ2(τn, Z(φ))−Ξ2(τ, Z(φ))|pdφ

is small enough for large enough k > 0, where Nk := {φ ∈ [0, 1] : ∥Z(φ)∥ ≤ k}. Ξ1

is quasi periodic, Ξ2 and Ξ3 are Levitan almost periodic for τ uniformly concerning
for φ. Thus by Theorem 3.2 and Corollary 3.3, the system (5.3) possesses a unique
p-distribution Levitan periodic; By Theorem 3.4, this p-distribution solution is is
globally asymptotical stable and bounded globally.

Example 5.3. Take into account the evolution equation with G-Brownian motion:

dψ = (Dψ + Λ1(τ, ψ))dτ + Λ2(τ, ψ)dBτ + Λ3(τ, ψ)d⟨B⟩τ , (5.4)

where Bτ is a two-dimensional G-Browian motion, ⟨B⟩τ is a second variation, and

D =

8 0

0 −6

 , Λ1(τ, ψ) =

 0

sin 2πτ+sin
√
2τ

4 ψ + 1
2e

−|τ | sinψ

 ,
Λ2(τ, ψ) =

 0

(sin τ + sin 2
√
2πτ)ψ + e−|τ | cosψ

 ,
Λ3(τ, ψ) =

 0

α2(cos τ + cosπτ)ψ + ν2e
−|τ | cosψ2

 .
It is easy to see that sin 2πτ+sin

√
2τ

4 ψ is almost periodic. Note that

lim
M→∞

1

µ([−M,M ])

∫ 0

−M
E

∣∣∣∣12e−|τ | sinψ

∣∣∣∣p dµ(τ)≤ lim
M→∞

1− e−(p+1)M

2p(1+p)(1−e−M+M)
=0

and

lim
M→∞

1

µ([−M,M ])

∫ M

0

E

∣∣∣∣12e−|τ | sinψ

∣∣∣∣p dµ(τ) ≤ lim
M→∞

1− e−Mp

2pp(1− e−M +M)
= 0.

Hence 1
2e

−|τ | sinψ ∈ ε(R, LpG(Ω), µ). As a result, Λ1 ∈ PAP (R×LpG(Ω), L
p
G(Ω), µ).

Similarly, Λ2,Λ3 ∈ PAP (R × LpG(Ω), L
p
G(Ω), µ). By Theorem 4.3, system (5.4)

possesses a p-distribution pseudo almost periodic solution belonging to LpG(Ω).

6. Conclusion and discussion
As we know, almost all results about Poisson stable solutions in distribution are
restricted to deterministic equations or SDEs with linear expectation; and in the
framework of sublinear expectation, the almost periodic solutions and almost au-
tomorphic solutions are just studied in the case that SDEs satisfy exponential sta-
bility. However, in the framework of sublinear expectation, few results on the
Poisson stable solutions for SDEs and (pseudo) almost periodic solutions for SDEs



p-distribution almost periodic solution 2265

with exponential dichotomy. This paper is devoted to Poisson stable (in particu-
lar, pseudo-recurrent, pseudo-periodic, almost recurrent, Levitan almost periodic,
Birkhoff recurrent, Bohr almost automorphic, Bohr almost periodic, quasi-periodic
with a limited spectrum, τ -periodic, stationary) solutions in p-distribution for SDEs
with G-Brownian motion. Further, some sufficient criteria for the asymptotic stabil-
ity of the corresponding Poisson stable solutions are obtained. When the semi-linear
SDEs satisfy exponential dichotomy, some existence theorems of (pseudo) almost
periodic solutions in p-distribution are set up. All results obtained above generalize
the consequences of paper [16, 44] in some sense. In the future, a lemma different
from [19, Lemma 2.5] is expected to achieve so that Poisson stable solutions can be
discussed in the case that SDEs satisfy exponential dichotomy.
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