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Abstract By using the extension of the continuous theorem of Ge and Ren,
the solvability of integral boundary value problems for Hilfer fractional differ-
ential equations with p-Laplacian is investigated. In order to get this conclu-
sion, we construct appropriate Banach spaces and define suitable operators.
At the end of the article, an example is given to illustrate our main results.
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1. Introduction
The fractional differential equations have become an important research field be-
cause of the in-depth development of fractional calculus theory and its wide ap-
plications in many sciences such as physics, engineering, biology and so on [1, 3,
5, 10, 14]. The boundary value problem of fractional differential equations with p-
Laplacian plays an indispensable role in the theory and application of mathematics
and physics, so it has been concerned by many experts and scholars [6–8,13,18,19].

There are various definitions of fractional derivatives, such as our common
Riemann-Liouville and Caputo fractional derivatives [2, 10]. On this basis, a more
generalized fractional derivative “Hilfer” has been studied [5]. The Hilfer fractional
derivative is an extension of the Riemann-Liouville and Caputo fractional deriva-
tives. Therefore, fractional differential equations with Hilfer derivative have gradu-
ally become a research hotspot [11,16,17].

Recently, the existence of solutions for the p-Laplacian boundary value problem
has been considered in [9, 20,21].

In [20], the multiple positive solutions for nonlinear high-order Riemann-Liouville
fractional differential equations boundary value problems with p-Laplacian operator
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has been studied by Leggett-Williams fixed point theorem:
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where n−1 < α ≤ n, φp(s) = |s|p−2s, p > 1, R
0 D

α
t is the standard Riemann-Liouville

fractional derivative.
Zhang et al. [21] have obtained the solvability for a fractional p-Laplacian multi-

point boundary value problem at resonance on infinite interval by Mawhin’s con-
tinuation theorem:

(ϕp(D
α
0+x(t)))

′ + f(t, x(t), Dα−1
0+ x(t), Dα

0+x(t)), t ∈ (0,∞),

x(0) = x′(0) = 0, ϕp(D
α
0+x(+∞)) =

n∑
i=1

αiϕp(D
α
0+x(ξi)),

where 1 < α < 2, 0 < ξ1 < ξ2 < · · · < ξn < +∞,
n∑

i=1

αi = 1, ϕp(s) = |s|p−2s, p > 1.

Jiang [9] have considered the solvability of fractional differential equations with
p-Laplacian:

Dβ
0+(φp(D

α
0+u))(t) + f(t, u(t), Dα−1

0+ u(t), Dα
0+u(t)) = 0,

u(0) = Dα
0+u(0) = 0, u(1) =

∫ 1

0

h(t)u(t)dt,

where 0 < β ≤ 1, 1 < α ≤ 2, φp(s) = |s|p−2s, p > 1,
∫ 1

0
h(t)tα−1dt = 1, Dα

0+ is the
Riemann-Liouville fractional derivative.

In general, we use Mawhin’s continuous theorem [15] to study the existence of
solutions of abstract equation Lx = Nx, where L is a noninvertible linear operator.
Ge and Ren generalized the Mawhin’s continuous theorem and got the existence
of solutions when L is a noninvertible nonlinear operator [4]. This is an effective
tool to solve the p-Laplacian boundary value problems at resonance. Using this
theorem, the author must define two operators P and Q, where P is a projection
operator and Q is not a projection operator, but it is difficult to construct the
operator Q in many p-Laplacian boundary value problems. In order to expand the
basic theory of boundary value problems of fractional differential equations and
obtain more generalized results, we will prove that when Q is not a projector but
satisfies certain conditions, the solution of the equation Lx = Nx exists. Next, we
consider the existence of solutions for Hilfer fractional differential equations with
p-Laplacian at resonance:

Dα1,β1

0+ φp(D
α2,β2

0+ u(t)) = f
(
t, t2−γ2u(t)

)
, t ∈ (0, 1],

Dα2,β2

0+ u(0) = Dγ2−1
0+ u(0) = 0, u(1) =

∫ 1

0

h(t)u(t)dt,
(1.1)

where Dαi,βi

0+ is Hilfer fractional derivative of order αi and type βi, i− 1 < αi < i,
0 ≤ βi ≤ 1, γi = αi + iβi − αiβi, i = 1, 2, φp(s) = |s|p−2s, p > 1, q > 1, 1

p + 1
q = 1,
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f ∈ C
(
(0, 1] × R,R

)
with the resonant condition

∫ 1

0
h(t)tγ2−2dt = 1, under this

resonant condition the associated linear operator is uninvertible.
As far as we know, this is the first paper that uses the extension of the continuous

theorem of Ge and Ren to investigate the boundary value problem of Hilfer fractional
differential equations with p-Laplacian at resonance.

2. Preliminaries
Definition 2.1 ( [4]). Let X and Y be two Banach spaces with norms ∥ · ∥X , ∥ · ∥Y ,
respectively. A continuous operator L: X ∩ domL → Y is said to be quasi-linear, if

(i) ImL := L(X ∩ domL) is a closed subset of Y ,
(ii) KerL := {x ∈ X ∩ domL : Lx = 0} is linearly homeomorphic to Rn, n < ∞,

where domL denotes the domain of the operator L.

Let X1 = KerL and X2 be the complement space of X1 in X, then X = X1

⊕
X2.

Let P : X → X1 be projector and Ω ⊂ X be an open and bounded set with the
origin θ ∈ Ω.

Definition 2.2 ( [4]). Suppose that Nλ : Ω → Y, λ ∈ [0, 1], is a continuous and
bounded operator. Denote N1 by N . Let Σλ = {x ∈ Ω : Lx = Nλx}. Nλ is
said to be L-quasi-compact in Ω if there exists a vector subspace Y1 of Y satisfying
dimY1 = dimX1 and two operators Q and R such that for λ ∈ [0, 1],

(a) KerQ = ImL,
(b) QNλx = θ, λ ∈ (0, 1) ⇔ QNx = θ,
(c) R(·, 0) is the zero operator and R(·, λ) |Σλ

= (I − P ) |Σλ
,

(d) L[P +R(·, λ)] = (I −Q)Nλ,

where Q : Y → Y1, QY = Y1 is continuous, bounded and satisfies Q(I−Q) = 0 and
R : Ω× [0, 1] → X2 is continuous and compact.

Lemma 2.1 (Theorem 2.1, [9]). Let X and Y be two Banach spaces with the
norms ∥ · ∥X , ∥ · ∥Y , respectively, and Ω ⊂ X be an open and bounded nonempty
set. Suppose L : domL ∩X → Y is a quasi-linear operator and that Nλ : Ω → Y ,
λ ∈ [0, 1] is L-quasi-compact. In addition, if the following conditions hold:

(a) Lx ̸= Nλx, ∀x ∈ ∂Ω ∩ domL, λ ∈ (0, 1),
(b) deg{JQN,Ω ∩KerL, 0} ̸= 0,

then the abstract equation Lx = Nx has at least one solution in domL ∩ Ω, where
N = N1, J : ImQ → KerL is a homeomorphism with J(θ) = θ.

Definition 2.3 ( [10]). The left-sided Riemann-Liouville fractional integral of order
α > 0 of a function y : (0,+∞) → R is given by

Iα0+y(t) =
1

Γ(α)

∫ t

0

(t− s)α−1y(s)ds.
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Definition 2.4 ( [10]). The left-sided Riemann-Liouville fractional derivative of
order α > 0 of a function y : (0,+∞) → R is given by

Dα
0+y(t) =

dn

dtn
(In−α

0+ y)(t),

where n− 1 < α < n.

Definition 2.5 ( [5]). The left-sided Hilfer fractional derivative of order α and type
β for a function y : (0,+∞) → R is given by

Dα,β
a+ y(t) = I

β(n−α)
a+

dn

dtn
(I

(1−β)(n−α)
a+ y)(t), n− 1 < α < n, 0 ≤ β ≤ 1.

Remark 2.1. (1) The operator Dα,β
a+ can also be written as Dα,β

a+ = I
β(n−α)
a+ Dγ

a+,
γ = α+ nβ − αβ.

(2) If β = 0, then the left-sided Riemann-Liouville fractional derivative can be
presented as Dα

a+ = Dα,0
a+ .

(3) If β = 1, then the left-sided Caputo fractional derivative can be presented as
CDα

a+ = Dα,1
a+ .

Definition 2.6 ( [10]). For 0 ≤ γ < 1, the weighted space of continuous functions
y is defined by

Cγ(0, 1] := {y | tγy(t) ∈ C[0, 1]},
and the norm is ∥ y ∥cγ=∥ tγy ∥c. Then, Cγ(0, 1] is the Banach space.

Lemma 2.2 ( [10]). If α > 0, β > 0, and y ∈ L1[0, 1] for t ∈ [0, 1], then

Iα0+I
β
0+y(t) = Iα+β

0+ y(t), Dα
0+I

α
0+y(t) = y(t).

Lemma 2.3 ( [10]). Let 0 < α < 1, 0 ≤ γ < 1. If y ∈ Cγ(0, 1] and I1−α
0+ y ∈ C1

γ(0, 1],
then the following holds

Iα0+D
α
0+y(t) = y(t)−

I1−α
0+ y(0)

Γ(α)
tα−1, t ∈ (0, 1].

Lemma 2.4 ( [10]). For n− 1 < α ≤ n, n ∈ N , the general solution of the
fractional differential equation Dα

0+u(t) = 0 is given by

u(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

where ci ∈ R, i = 1, 2, · · · , n, n = [α] + 1.

Lemma 2.5 ( [10]). If α > 0, β > −1, and β ̸= α− i, i = 1, 2, · · · , [α] + 1, then

Dα
0+t

β =
Γ(β + 1)

Γ(β − α+ 1)
tβ−α, Dα

0+t
α−i = 0.

Lemma 2.6 ( [10]). If α > β > 0, and y ∈ L1(R+), then

Dβ
0+I

α
0+y(t) = Iα−β

0+ f(t).

In particular, when β = k ∈ N and α > k, then

dk

dtk
Iα0+y(t) = Iα−k

0+ f(t).
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Lemma 2.7 ( [12]). For any u, v ≥ 0, then

(1) φp(u+ v) ≤ φp(u) + φp(v), 1 < p ≤ 2,
(2) φp(u+ v) ≤ 2p−2(φp(u) + φp(v)), p ≥ 2,

where φp(s) = |s|p−2s = sp−1, s ≥ 0.

Remark 2.2. I2−γ2

0+ u(0) = lim
t→0+

I2−γ2

0+ u(t).

3. Main results
Take X = C2−γ2(0, 1], Y = C[0, 1], with norms ∥ u ∥X= max

t∈[0,1]
|t2−γ2u(t)|, ∥ y ∥Y =

max
t∈[0,1]

|y(t)|. We can easily get that (X, ∥ · ∥) and (Y, ∥ · ∥) are Banach spaces.

In order to obtain our main results, we always suppose that the following con-
ditions holds:

(H1) h(t) ≥ 0, t ∈ (0, 1].

Define operators L : domL ∩X → Y and Nλ : X → Y as follows

Lu(t) = Dα1,β1

0+ φp(D
α2,β2

0+ u(t)), Nλu(t) = λf
(
t, t2−γ2u(t)

)
, t ∈ (0, 1], λ ∈ [0, 1],

where

domL =
{
u(t)|u(t) ∈ X,Dα1,β1

0+ φp(D
α2,β2

0+ u(t)) ∈ Y,Dα2,β2

0+ u(0) = Dγ2−1
0+ u(0) = 0,

u(1) =

∫ 1

0

h(t)u(t)dt
}
.

Lemma 3.1. Assuming the resonance condition holds, then L is a quasi-linear
operator.

Proof. It is easy to get that KerL = {u ∈ domL|u(t) = ctγ2−2, c ∈ R}.
For y ∈ ImL, there exists u ∈ domL such that Dα1,β1

0+ φp(D
α2,β2

0+ u(t)) = y(t). Ac-
cording to Remark 2.1, we get

I
β1(1−α1)
0+ Dγ1

0+φp(D
α2,β2

0+ u(t)) = y(t). (3.1)

Thus, applying D
β1(1−α1)
0+ to the both sides of (3.1), and by Lemma 2.4, we have

Dα2,β2

0+ u(t) = φq(I
α1
0+y(t) + c1t

γ1−1).

Since Dα2,β2

0+ u(0) = 0, we can get

Dα2,β2

0+ u(t) = φq(I
α1
0+y(t)). (3.2)

Applying D
β2(2−α2)
0+ to the both sides of (3.2), and by Lemma 2.4, we obtain

u(t) = Iα2
0+φq(I

α1
0+y(t)) + c2t

γ2−1 + c3t
γ2−2.
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Since Dγ2−1
0+ u(0) = 0, and u(1) =

∫ 1

0
h(t)u(t)dt, we can get

Iα2
0+φq(I

α1
0+y(t))|t=1 −

∫ 1

0

h(t)Iα2
0+φq(I

α1
0+y(t))dt = 0. (3.3)

Consequently,

ImL ⊆
{
y ∈ Y |Iα2

0+φq(I
α1
0+y(t))|t=1 −

∫ 1

0

h(t)Iα2
0+φq(I

α1
0+y(t))dt = 0

}
.

On the other hand, if y ∈ Y satisfies (3.3), take u(t) = Iα2
0+φq(I

α1
0+y(t)) + ctγ2−2.

It is easy to prove that u satisfies the boundary conditions of the problem (1.1),
and we have

Lu(t) = I
β1(1−α1)
0+ Dγ1

0+φp

(
I
β2(2−α2)
0+ Dγ2

0+I
α2
0+φq(I

α1
0+y(t)) + cI

β2(2−α2)
0+ Dγ2

0+t
γ2−2

)
= I

β1(1−α1)
0+ D

β1(1−α1)
0+ y(t)

= y(t).

Therefore,

ImL ⊇
{
y ∈ Y |Iα2

0+φq(I
α1
0+y(t))|t=1 −

∫ 1

0

h(t)Iα2
0+φq(I

α1
0+y(t))dt = 0

}
.

In summary, we get

ImL =
{
y ∈ Y |Iα2

0+φq(I
α1
0+y(t))|t=1 −

∫ 1

0

h(t)Iα2
0+φq(I

α1
0+y(t))dt = 0

}
.

Obviously, ImL ⊂ Y is closed. So, L is quasi-linear. The proof is completed.

Define the operator P : X → KerL by

Pu(t) =
I2−γ2

0+ u(0)

Γ(γ2 − 1)
tγ2−2.

It is clear that P 2u = Pu and ImP = KerL, X = KerL⊕KerP . So, P : X →
KerL is a projector.

Define the operator Q : Y → R by

Qy(t) = c,

where c satisfies∫ 1

0

(1− s)α2−1φq

(∫ s

0

(s− u)α1−1(y(u)− c)du
)
ds

−
∫ 1

0

h(t)

∫ t

0

(t− s)α2−1φq

(∫ s

0

(s− u)α1−1(y(u)− c)du
)
dsdt = 0. (3.4)

We will prove that c is the unique constant satisfying (3.4).
For y ∈ Y , let

F (c) =

∫ 1

0

(1− s)α2−1φq

(∫ s

0

(s− u)α1−1(y(u)− c)du
)
ds
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−
∫ 1

0

h(t)

∫ t

0

(t− s)α2−1φq

(∫ s

0

(s− u)α1−1(y(u)− c)du
)
dsdt.

Therefore,

F (c) =

∫ 1

0

h(t)tγ2−2

∫ 1

0

(1− s)α2−1φq

(∫ s

0

(s− u)α1−1(y(u)− c)du
)
dsdt

−
∫ 1

0

h(t)

∫ t

0

(t− s)α2−1φq

(∫ s

0

(s− u)α1−1(y(u)− c)du
)
dsdt

=

∫ 1

0

h(t)

∫ t

0

[tγ2−2(1−s)α2−1−(t−s)α2−1]φq

(∫ s

0

(s−u)α1−1(y(u)−c)du
)
dsdt

+

∫ 1

0

h(t)tγ2−2

∫ 1

t

(1− s)α2−1φq

(∫ s

0

(s− u)α1−1(y(u)− c)du
)
dsdt. (3.5)

Obviously, F (c) is continuous and strictly decreasing in R. We make c1 = min
t∈(0,1]

y(t),

c2 = max
t∈(0,1]

y(t). It is easy to see that F (c1) ≥ 0, F (c2) ≤ 0, then, there exists a

unique constant c ∈ [c1, c2] such that F (c) = 0. Furthermore, Q(Ω) is bounded if
Ω ⊂ Y is bounded, i.e. Q is bounded.

By the definition of Q, we can easily know that Q is not a projector but satisfies
Q(I −Q)Y = Q(Y −QY ) = 0, y ∈ Y .

Lemma 3.2. Q is continuous in Y .

Proof. For y1, y2 ∈ Y , assume Qy1 = c1, Qy2 = c2. Noticing h(t) ≥ 0 and that
φq is strictly increasing. If c2 − c1 > max

t∈(0,1]
(y2(t)− y1(t)), then

0 =

∫ 1

0

h(t)

∫ t

0

[tγ2−2(1−s)α2−1−(t−s)α2−1]φq

(∫ s

0

(s−u)α1−1(y2(u)−c2)du
)
dsdt

+

∫ 1

0

h(t)tγ2−2

∫ 1

t

(1− s)α2−1φq

(∫ s

0

(s− u)α1−1(y2(u)− c2)du
)
dsdt

=

∫ 1

0

h(t)

∫ t

0

[tγ2−2(1− s)α2−1 − (t− s)α2−1]φq

(∫ s

0

(s− u)α1−1(y1(u)− c1

+ (y2(u)− y1(u))− (c2 − c1))du
)
dsdt

+

∫ 1

0

h(t)tγ2−2

∫ 1

t

(1− s)α2−1φq

(∫ s

0

(s− u)α1−1(y1(u)− c1

+ (y2(u)− y1(u))− (c2 − c1))du
)
dsdt

<

∫ 1

0

h(t)

∫ t

0

[tγ2−2(1−s)α2−1−(t−s)α2−1]φq

(∫ s

0

(s−u)α1−1(y1(u)−c1)du
)
dsdt

+

∫ 1

0

h(t)tγ2−2

∫ 1

t

(1− s)α2−1φq

(∫ s

0

(s− u)α1−1(y1(u)− c1)du
)
dsdt = 0.

A contradiction. On the other hand, if c2 − c1 < min
t∈(0,1]

(y2(t)− y1(t)), then

0 =

∫ 1

0

h(t)

∫ t

0

[tγ2−2(1−s)α2−1−(t−s)α2−1]φq

(∫ s

0

(s− u)α1−1(y2(u)−c2)du
)
dsdt
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+

∫ 1

0

h(t)tγ2−2

∫ 1

t

(1− s)α2−1φq

(∫ s

0

(s− u)α1−1(y2(u)− c2)du
)
dsdt

=

∫ 1

0

h(t)

∫ t

0

[tγ2−2(1− s)α2−1 − (t− s)α2−1]φq

(∫ s

0

(s− u)α1−1(y1(u)− c1

+ (y2(u)− y1(u))− (c2 − c1))du
)
dsdt

+

∫ 1

0

h(t)tγ2−2

∫ 1

t

(1− s)α2−1φq

(∫ s

0

(s− u)α1−1(y1(u)− c1

+ (y2(u)− y1(u))− (c2 − c1))du
)
dsdt

>

∫ 1

0

h(t)

∫ t

0

[tγ2−2(1−s)α2−1−(t−s)α2−1]φq

(∫ s

0

(s−u)α1−1(y1(u)−c1)du
)
dsdt

+

∫ 1

0

h(t)tγ2−2

∫ 1

t

(1− s)α2−1φq

(∫ s

0

(s− u)α1−1(y1(u)− c1)du
)
dsdt = 0.

A contradiction, too. So, we can get

min
t∈(0,1]

(y2(t)− y1(t)) ≤ c2 − c1 ≤ max
t∈(0,1]

(y2(t)− y1(t)), i.e. |c2 − c1| ≤∥ y2 − y1 ∥c .

Therefore, Q is continuous in Y . The proof is completed.

Lemma 3.3. Define an operator R : X × [0, 1] → X2 as

R(u, λ)(t) =
1

Γ(α2)

∫ t

0

(t−s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s−r)α1−1(Nλu(r)−QNλu(r))dr
)
ds,

where KerL
⊕

X2 = X.
Then R : Ω × [0, 1] → X2 is continuous and compact, where Ω ⊂ X is an open

bounded set.

Proof. Obviously, R is continuous. Let A be any bounded set in X, for ∀u ∈ A,
λ ∈ [0, 1], by the continuity of f and the boundedness of Q, we can get that there
exist constants k1 > 0, k2 > 0 such that |f(t, t2−γ2u(t))| ≤ k1, |Qf | ≤ k2.

For u ∈ Ω,∣∣∣t2−γ2R(u, λ)(t)
∣∣∣

=
∣∣∣ t2−γ2

Γ(α2)

∫ t

0

(t− s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1(Nλu(r)−QNλu(r))dr
)
ds
∣∣∣

≤ 1

Γ(α2)

∫ t

0

(t− s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1|Nλu(r)−QNλu(r)|dr
)
ds

≤ 1

Γ(α2)

∫ t

0

(t− s)α2−1φq

(λ(k1 + k2)

Γ(α1)

∫ s

0

(s− r)α1−1dr
)
ds

≤ 1

Γ(α2)

∫ t

0

(t− s)α2−1φq

( k1 + k2
Γ(α1 + 1)

)
ds

≤ 1

Γ(α2 + 1)
φq

( k1 + k2
Γ(α1 + 1)

)
.

So, R is bounded in Ω× [0, 1].
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For (u, λ) ∈ Ω× [0, 1], 0 < t1 < t2 ≤ 1, we have

∣∣∣t2−γ2

2 R(u, λ)(t2)− t2−γ2

1 R(u, λ)(t1)
∣∣∣

=
∣∣∣ t2−γ2

2

Γ(α2)

∫ t2

0

(t2 − s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1(Nλu(r)−QNλu(r))dr
)
ds

− t2−γ2

1

Γ(α2)

∫ t1

0

(t1 − s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1(Nλu(r)−QNλu(r))dr
)
ds
∣∣∣

≤ t2−γ2

2

Γ(α2)

∫ t2

0

(t2 − s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1|Nλu(r)−QNλu(r)|dr
)
ds

+
t2−γ2

1

Γ(α2)

∫ t1

0

(t1 − s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1|Nλu(r)−QNλu(r)|dr
)
ds

≤ 1

Γ(α2)

∫ t1

0

[t2−γ2

2 (t2 − s)α2−1 − t2−γ2

1 (t1 − s)α2−1]φq

( k1 + k2
Γ(α1 + 1)

)
ds

+
1

Γ(α2)

∫ t2

t1

t2−γ2

2 (t2 − s)α2−1φq

( k1 + k2
Γ(α1 + 1)

)
ds

≤
φq

(
k1+k2

Γ(α1+1)

)
Γ(α2)

∫ t1

0

[
t2−γ2

2 (t2 − s)α2−1 − t2−γ2

1 (t2 − s)α2−1 + t2−γ2

1 (t2 − s)α2−1

− t2−γ2

1 (t1 − s)α2−1
]
ds+

φq

(
k1+k2

Γ(α1+1)

)
Γ(α2)

∫ t2

t1

(t2 − s)α2−1ds

≤
φq

(
k1+k2

Γ(α1+1)

)
Γ(α2)

[
(t2−γ2

2 − t2−γ2

1 )

∫ t1

0

(t2 − s)α2−1ds

+ t2−γ2

1

∫ t1

0

(t2 − s)α2−1 − (t1 − s)α2−1ds+

∫ t2

t1

(t2 − s)α2−1ds
]

≤
φq

(
k1+k2

Γ(α1+1)

)
Γ(α2 + 1)

[
tα2
2 (t2−γ2

2 − t2−γ2

1 )− (t2 − t1)
α2(t2−γ2

2 − t2−γ2

1 ) + tα2
2 − (t2 − t1)

α2

− tα2
1 + (t2 − t1)

α2

]
≤
φq

(
k1+k2

Γ(α1+1)

)
Γ(α2 + 1)

[
(t2−γ2

2 − t2−γ2

1 ) + (tα2
2 − tα2

1 )
]
.

So, {R(u, λ) | (u, λ) ∈ Ω× [0, 1]} is equicontinuous. By Arzela-Ascoli Theorem, we
get that R : Ω× [0, 1] → X2 is compact. The proof is completed.

Lemma 3.4. Assume that Ω ⊂ X is an open and bounded set. Then Nλ is L-quasi-
compact in Ω.

Proof. It is clear that ImP = KerL, dimKerL = dimImQ, Q(I − Q) = 0,
KerQ = ImL, R(·, 0) = 0 and that Definition 2.2(b) holds.

For u ∈ Σλ = {u ∈ Ω | Lu = Nλu}, we can get Nλu ∈ ImL = KerQ. Thus,
we have QNλu = 0 and Nλu = Dα1,β1

0+ φp

(
Dα2,β2

0+ u
)

. It follows from Dα2,β2

0+ u(0) =
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Dγ2−1
0+ u(0) = Dα2,β2

0+ R(u, λ)(0) = R(u, λ)(0) = 0 that

R(u, λ) = Iα2
0+φq

(
Iα1
0+(Nλu(t)−QNλu(t))

)
= Iα2

0+φq

(
Iα1
0+I

β1(1−α1)
0+ Dγ1

0+φp(I
β2(2−α2)
0+ Dγ2

0+u(t))
)

= Iγ2

0+D
γ2

0+u(t) =
d

dt
{ 1

Γ(γ2 + 1)

∫ t

0

(t− s)γ2(
d

ds
)2I2−γ2

0+ u(s)ds}

=
d

dt
{ 1

Γ(γ2)

∫ t

0

(t− s)γ2−1(
d

ds
)I2−γ2

0+ u(s)ds−
Dγ2−1

0+ u(0)

Γ(γ2 + 1)
tγ2}

=
d

dt
{ 1

Γ(γ2 − 1)

∫ t

0

(t− s)γ2−2I2−γ2

0+ u(s)ds−
I2−γ2

0+ u(0)

Γ(γ2)
tγ2−1}

= u(t)−
I2−γ2

0+ u(0)

Γ(γ2 − 1)
tγ2−2

= (I − P )u,

i.e. Definition 2.2(c) holds.
For u ∈ Ω, we have

L[Pu(t) +R(u, λ)(t)]

=Dα1,β1

0+ φp

(
I
β2(2−α2)
0+ Dγ2

0+

I2−γ2

0+ u(0)

Γ(γ2 − 1)
tγ2−2

)
+ I

β1(1−α1)
0+ Dγ1

0+φp

(
I
β2(2−α2)
0+ Dγ2

0+I
α2
0+φq

(
Iα1
0+(Nλu(t)−QNλu(t))

))
=I

β1(1−α1)
0+ Dγ1

0+I
α1
0+(Nλu(t)−QNλu(t))

=Nλu(t)−QNλu(t) = (I −Q)Nλu(t),

i.e. Definition 2.2(d) holds. Therefore, Nλ is L-quasi-compact in Ω. The proof is
completed.

Theorem 3.1. Suppose (H1) and the following conditions hold:

(H2) There exists a constant M > 0 such that one of the following inequalities
holds:
(1) (t2−γ2u(t))f(t, t2−γ2u(t)) > 0, t ∈ (0, 1], | t2−γ2u(t) |> M ,
(2) (t2−γ2u(t))f(t, t2−γ2u(t)) < 0, t ∈ (0, 1], | t2−γ2u(t) |> M .

(H3) There exist nonnegative functions a(t), b(t) ∈ Y , such that∣∣∣f(t, t2−γ2u(t))
∣∣∣ ≤ a(t)φp(|t2−γ2u(t)|) + b(t), t ∈ (0, 1],

where Γ(α2 + 1) > max
q∈(0,+∞)

{2q−1φq(
∥a∥c

Γ(α1+1) ), 2φq(
∥a∥c

Γ(α1+1) )}.

Then the problem (1.1) has at least one solution in X.

Before we prove theorem 3.1, we show two Lemmas.

Lemma 3.5. Let Ω1 = {u|u ∈ domL\KerL,Lu = Nλu, λ ∈ (0, 1)}. Assume (H1)−
(H3) hold. Then Ω1 is bounded in X.
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Proof. Let u ∈ Ω1, we have Lu=Nλu, Nλu∈ImL=KerQ, we get QNλu(t)=0.
It follows from (H2) that there exists a constant t0∈(0, 1], such that

∣∣∣t2−γ2

0 u(t0)
∣∣∣≤

M .
By Lu(t) = λNu(t) and boundary condition Dα2,β2

0+ u(0) = Dγ2−1
0+ u(0) = 0, we

have
u(t) = Iα2

0+φq

(
λIα1

0+Nu(t)
)
+ ctγ2−2. (3.6)

Taking t = t0 into equation (3.6), we have

u(t0) =
1

Γ(α2)

∫ to

0

(t0−s)α2−1φq

( λ

Γ(α1)

∫ s

0

(s−r)α1−1f(r, r2−γ2u(r))dr
)
ds+ctγ2−2

0 .

That means

| c |≤ t2−γ2

0

Γ(α2)

∫ to

0

(t0 − s)α2−1φq

( λ

Γ(α1)

∫ s

0

(s− r)α1−1 | f(r, r2−γ2u(r)) | dr
)
ds

+ | t2−γ2

0 u(t0) |

≤ 1

Γ(α2)

∫ to

0

(t0−s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s−r)α1−1[a(r)φp(| r2−γ2u(r) |)+b(r)]dr
)
ds

+K

≤K +
1

Γ(α2 + 1)
φq

(∥ a ∥c φp(∥ u ∥X)

Γ(α1 + 1)
+

∥ b ∥c
Γ(α1 + 1)

)
.

So, we have

| t2−γ2u(t) |

≤ 1

Γ(α2)

∫ t

0

(t− s)α2−1φq

( λ

Γ(α1)

∫ s

0

(s− r)α1−1 | f(r, r2−γ2u(r)) | dr
)
ds+ | c |

≤ 1

Γ(α2)

∫ t

0

(t− s)α2−1φq

( 1

Γ(α1)

∫ s

0

(s− r)α1−1[a(r)φp(| r2−γ2u(r) |) + b(r)]dr
)
ds

+K +
1

Γ(α2 + 1)
φq

(∥ a ∥c φp(∥ u ∥X)

Γ(α1 + 1)
+

∥ b ∥c
Γ(α1 + 1)

)
≤K +

2

Γ(α2 + 1)
φq

(∥ a ∥c φp(∥ u ∥X)

Γ(α1 + 1)
+

∥ b ∥c
Γ(α1 + 1)

)
.

If 1 < p ≤ 2, then

∥ u ∥X≤K +
2

Γ(α2 + 1)
φq

(∥ a ∥c φp(∥ u ∥X)

Γ(α1 + 1)
+

∥ b ∥c
Γ(α1 + 1)

)
≤K +

2q−1

Γ(α2 + 1)
φq

( ∥ a ∥c
Γ(α1 + 1)

)
∥ u ∥X +

2q−1

Γ(α2 + 1)
φq

( ∥ b ∥c
Γ(α1 + 1)

)
.

By sorting out the above formula, we get

∥ u ∥X≤
KΓ(α2 + 1) + 2q−1φq(

∥b∥c

Γ(α1+1) )

Γ(α2 + 1)− 2q−1φq(
∥a∥c

Γ(α1+1) )
.
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If p ≥ 2, then

∥ u ∥X ≤ K +
2

Γ(α2 + 1)
φq

(∥ a ∥c φp(∥ u ∥X)

Γ(α1 + 1)
+

∥ b ∥c
Γ(α1 + 1)

)
≤ K +

2

Γ(α2 + 1)
φq

( ∥ a ∥c
Γ(α1 + 1)

)
∥ u ∥X +

2

Γ(α2 + 1)
φq

( ∥ b ∥c
Γ(α1 + 1)

)
.

Therefore,

∥ u ∥X≤
KΓ(α2 + 1) + 2φq(

∥b∥c

Γ(α1+1) )

Γ(α2 + 1)− 2φq(
∥a∥c

Γ(α1+1) )
.

We can conclude that Ω1 is bounded in X.

Lemma 3.6. Let Ω2 = {u|u ∈ KerL,QNu = 0}. Suppose (H1)− (H2) hold. Then
Ω2 is bounded in X.

Proof. Let u ∈ Ω2, we have

u(t) = ctγ2−2, c ∈ R. (3.7)

Since QNu(t) = 0, according to (H2), there exists t0 ∈ (0, 1] such that
∣∣∣t2−γ2

0 u(t0)
∣∣∣ ≤

M . Taking t = t0 into equation (3.7), we have |c| = |t2−γ2

0 u(t0)| ≤ M .
Therefore, Ω2 is bounded in X.

Proof of Theorem 3.1. Let Ω ⊃ Ω1 ∪ Ω2 ∪ {x|x ∈ X, ∥ x ∥≤ M} be an open
and bounded set of X. By Lemma 3.5 and Lemma 3.6, we can get Lu ̸= Nλu,
u ∈ domL ∩ ∂Ω and QNu ̸= 0, u ∈ KerL ∩ ∂Ω.

Let H(u, δ) = ρδu+ (1− δ)JQNu, δ ∈ [0, 1], u ∈ KerL ∩ Ω, where J : ImQ →
KerL is a homeomorphism with Jk = ktγ2−2,

ρ =

1, if (H3)(1) holds,

−1, if (H3)(2) holds.

For u ∈ KerL ∩ ∂Ω, we have u(t) = k0t
γ2−2 and |t2−γ2u(t)| = |k0| > M .

Therefore
H(u, δ) = ρδk0t

γ2−2 + (1− δ)(Qf)tγ2−2.

If δ = 1, then H(u, 1) = ρk0t
γ2−2 ̸= 0. If δ = 0, then H(u, 0) = (Qf)tγ2−2 ̸= 0.

If 0 < δ < 1, suppose H(u, δ) = 0, then ρδk0t
γ2−2 = −(1 − δ)(Qf)tγ2−2. So,

k0 = − (1−δ)(Qf)
δρ . By (H2), we get

k20 = − (1− δ)(k0Qf)

δρ
< 0.

A contradiction. So, H(u, δ) ̸= 0, u ∈ KerL ∩ ∂Ω, δ ∈ [0, 1].
Therefore, via the homotopy property of degree, we obtain

deg(JQN,Ω ∩KerL, 0) = deg(H(·, 0),Ω ∩KerL, 0)

= deg(H(·, 1),Ω ∩KerL, 0)

= deg(ρI,Ω ∩KerL, 0) ̸= 0.

Applying Lemma 2.1, we conclude that problem (1.1) has at least one solution in
X. The proof is completed.
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4. Example
Consider the following boundary value problem at resonance:

D
1
2 ,

1
3

0+ φp(D
3
2 ,

1
2

0+ u(t)) =
1

8
t2 sin(t

1
4u(t))2 + 2− t3, t ∈ (0, 1],

D
3
2 ,

1
2

0+ u(0) = D
3
4
0+u(0) = 0, u(1) =

∫ 1

0

2t
5
4u(t)dt.

(4.1)

Corresponding to problem (1.1), we have α1 = 1
2 , α2 = 3

2 , β1 = 1
3 , β2 = 1

2 ,
γ1 = 2

3 , γ2 = 7
4 , h(t) = 2t

5
4 and

f(t, t2−γ2u(t)) =
1

8
t2 sin(t

1
4u(t))2 + 2− t3.

Take a(t) = 1
8 t

2, b(t) = 2− t3.
If p = 3, we can obtain

Γ(α2 + 1) ≈ 1.3296 > 2φq

( ∥ a ∥c
Γ(α1 + 1)

)
≈ 0.75

and

|f(t, t2−γ2u(t))| ≤ 1

8
t2|(t 1

4u(t))2|+ 2− t3 = a(t)φp(|t
1
4u(t)|) + b(t).

That means condition (H3) holds.
Next, we show that condition (H2) holds. Let M = 2, if t 1

4u(t) > M holds for
any t ∈ (0, 1], then

(t
1
4u(t))f(t, t

1
4u(t)) = (t

1
4u(t))

[1
8
t2 sin(t

1
4u(t))2 + 2− t3

]
> M(−1

8
t2 + 2− t3)

>
7M

8
> 0.

If t 1
4u(t) < −M holds for any t ∈ (0, 1], then

(t
1
4u(t))f(t, t

1
4u(t)) = (t

1
4u(t))

[1
8
t2 sin(t

1
4u(t))2 + 2− t3

]
< −M(−1

8
t2 + 2− t3)

< −7M

8
< 0.

Hence, condition (H2) holds. Therefore, by an application of Theorem 3.1, we
obtain that problem (4.1) has at least one solution.

If p = 5
3 , then

Γ(α2 + 1) ≈ 1.3296 > 2q−1φq

( ∥ a ∥c
Γ(α1 + 1)

)
≈ 1.062,
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and

|f(t, t2−γ2u(t))| ≤ 1

8
t2|(t 1

4u(t))2|+ 2− t3 = a(t)φp(|t
1
4u(t)|) + b(t).

That means the condition (H3) holds. Let M = 2, by simple calculations, we can
get that the condition (H2) holds. By Theorem 3.1, we obtain that problem (4.1)
has at least one solution.
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