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Abstract This paper is concerned with a fractional order HCV infection
model with acute and chronic and general incidence rate. We first give the
positivity and boundedness of the solution for this model. Then, we establish
the dynamical behavior of this model in terms of Rα

0 . Numerical simulations
are given to verify the obtained theoretical results.
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1. Introduction
The World Health Organization (WHO) estimated that in 2019, 58 million people
were living with chronic hepatitis C virus (HCV) infection worldwide and 290000
people died from cirrhosis and hepatocellular carcinoma. About 30% (15-45%) of
infected people spontaneously clear the virus within 6 months of infection without
any treatment. The remaining 70% (55-85%) of people will develop chronic HCV
infection. The natural feature of Hepatitis C is the existence of a chronic stage.
Hence, it is difficult to characterize the natural history of this disease.

Reade et al. [21] proposed a model of disease with acute and chronic phases.
Motivated by the work of [21], Martcheva and Chavez [18] considered an HCV
model with chronic stage. Yuan and Zhang [32] then extended the work of [18].
They established the global stability of the endemic equilibrium. Cai and Li [3]
further improved the main results of [32]. Different from [32], Zhang and Zhou [34]
proposed a new HCV model to consider the moving from acute infection back to
the susceptible. They also established the global behavior for this model. Notice
that Cui et al. [7] recently studied the following SICR model with acute and chronic
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HCV infections: 

Ṡ(t) = Λ− βS(t)(I(t) + C(t))− dS(t),

İ(t) = βS(t)(I(t) + C(t))− (d+ γ)I(t),

Ċ(t) = pγI(t)− (d+ µ)C(t),

Ṙ(t) = (1− p)γI(t)− dR(t),

(1.1)

where S(t), I(t), C(t) and R(t) are the number of susceptible, acute infection,
chronic infection and recovery of HCV, respectively. Λ is the birth rate, β is the
transmission rate of acute or chronic hepatitis C cases, d is the natural death rate,
p is the proportion of progressing to chronic stage, γ is the rate moving from acute
stage to chronic stage, µ is the death rate induced by HCV. All parameters are
positive and p ∈ (0, 1). They investigated the global dynamical properties of system
(1.1). Wang et al. [27] used (1.1) to fit the data in six districts in Xiamen City,
China from 2004 to 2018 and predict the transmissibility of hepatitis C. Huang
et al. [12] pointed out that incidence rate can play an important role in modeling
of epidemic dynamics. More recently, Su and Yang [26] proposed a diffusive HCV
infection model with nonlinear incidence and analyzed the stability of the two kinds
of equilibria (see, for example, [19, 25]).

Since the fractional order derivative provides an excellent tool for describing
the memory properties of various processes, fractional differential equations play
a crucial role in modelling epidemiology properties. Recently, many researchers
have begun to study the dynamical behavior of different fractional order epidemic
models such as HIV and tuberculosis [1], HIV [24], SEIR [29], SIRI [15] and COVID-
19 [10,17]. For more review of epidemic models with frational order, we refer to [4].
However, the dimensions of most fractional order epidemic models in left-hand side
and righ-hand side do not match. Such flaws have been found in [9, 11, 22, 29]. As
far as we know, there is few work on the fractional order HCV infection models
with acute and chronic and general incidence rate.

Inspired by [9, 11, 22, 29], in this paper, we propose the frational order HCV
infection model as follows:

C
0 D

α
t S(t) = Λα − βαf(S(t))(I(t) + C(t))− dαS(t),

C
0 D

α
t I(t) = βαf(S(t))(I(t) + C(t))− (dα + γα)I(t),

C
0 D

α
t C(t) = pγαI(t)− (dα + µα)C(t),

C
0 D

α
t R(t) = (1− p)γαI(t)− dαR(t),

(1.2)

with α ∈ (0, 1] and initial conditions

S(0) > 0, I(0) > 0, C(0) > 0, R(0) > 0. (1.3)
C
0 D

α
t is the Caputo fractional derivative (see section 2). The function f : R+ → R+

satisfies

(A) f(0) = 0, f ′(S) > 0, for S ≥ 0.

The paper is organized as follows. In Section 2, some basic results of fractional
order calculus are given. In Section 3, we then establish the well-posedness of system
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(1.2). The stability of equilibria for system (1.2) is analyzed in Section 4. Finally,
we point out through numerical simulations the effects of fractional order on the
dynamical behavior of system (1.2) and end up with a brief discussion.

2. Preliminaries

In this section, we give some notations, definitions and lemmas.

Definition 2.1 ( [20]). The fractional integral of order q > 0 for a function g :
R+ → R is defined as

Jqg(t) =
1

Γ(q)

∫ t

0

(t− η)q−1g(η)dη.

Definition 2.2 ( [20]). The Caputo fractional derivative with order q > 0 (n−1 <
q < n) for a function g ∈ Cn([a,+∞),R) is defined as

C
0 D

q
t f(t) =

1

Γ(n− q)

∫ t

0

g(n)(η)

(t− η)q+1−n
dη.

Definition 2.3 ( [20]). The two-parameters Mittag-Leffler function is defined as

Eη1,η2
(z) =

∞∑
k=0

zk

Γ(kη1 + η2)
, η1, η2 > 0, z ∈ C.

For short, set Eη1
(z) := Eη1,1(z).

The Laplace transform of the Caputo fractional derivative and the function
tη2−1Eη1,η2

(±λtη1) are

L{C0 D
q
t g(t)} = sqF (s)−

n−1∑
k=0

sq−k−1g(k)(0), n < q ≤ n− 1,

and
L[tη2−1Eη1,η2

(±λtη1)] =
sη1−η2

sη1 ∓ λ
,

where F (s) = L(g(t)).

Lemma 2.1 ( [8]). If η > 0, r > 0, ϕ ∈ [−π, π] and ϱ = reiϕ, then lim
t→∞

Eη(−ϱtη) =

0 for |ϕ| < ηπ
2 .

Lemma 2.2 ( [8]). If η1 > 0, η2 > 0 and z ∈ C. Then,

Eη1,η2
(z) = zEη1,η1+η2

(z) +
1

Γ(η2)
.

Lemma 2.3 ( [35]). For η ∈ (0, 1] and z ∈ R, we have Eη(z) > 0.

Lemma 2.4 ( [33]). Let ρ : R → R be a uniformly continuous function on [t0,+∞)
and Jq|ρ(t)|m ≤ K for all t > t0 with 0 < q < 1, m > 0 and K > 0. Then
lim
t→∞

ρ(t) = 0.
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Lemma 2.5 ( [23]). Suppose that g is continuous on (0,∞) and of exponential
order q and that g′ is piecewise continuous on [0,∞) and furthermore that lim

t→∞
f(t)

exists. Then, lim
t→∞

g(t) = lim
λ→0

λL(g(t)).

Lemma 2.6 ( [15]). Let g : (0,∞) → (0,∞) be an increasing function of class C1.
For all a, b > 0, we define

σ(a, b) =

∫ b

a

g(η)− g(a)

g(η)
dη.

Then, for any function X : (0,∞) → (0,∞) of class C1, we have

C
0 D

q
t [σ(X (t), a)] ≤ g(X (t))− g(a)

g(X (t))
× C

0 D
q
tX (t),

where 0 < q ≤ 1.

3. Well-posedness
In this section, we prove the positivity and boundedness of the solution for system
(1.2) with intial conditions (1.3).

Theorem 3.1. System (1.2) with intial conditions (1.3) has a unique positive so-
lution. Furthermore, the set

Ω =
{
(S, I, C,R) ∈ R4

+ : S > 0, I > 0, C > 0, R > 0, S + I + C +R ≤ S0
}

is positively invariant.

Proof. Define

X(t) =


S(t)

I(t)

C(t)

R(t)

 , X0 =


S(0)

I(0)

C(0)

R(0)


and

h(X(t)) =


h1(X(t))

h2(X(t))

h3(X(t))

h4(X(t))

 =


Λα − βαf(S(t))(I(t) + C(t))− dαS(t)

βαf(S(t)(I(t) + C(t))− (dα + γα)I(t)

pγαI(t)− (dα + µα)C(t)

(1− p)γαI(t)− dαR(t)

 .

System (1.2) with (1.3) can be rewritten asC
0 D

α
t X(t) = h(X(t)),

X(0) = X0.
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One derives that the Jacobian matrix ∂h

∂x
=

∂(h1, h2, h3, h4)

∂(S, I, C,R)
is continuous on R4

+.

Thanks to [14, Remark 1.2.1], h is locally Lipschitz on R4
+. Using [16, Remark 3.8],

we conclude that system (1.2) with (1.3) has a unique solution .
For all t ∈ [0,∞), we now show the solution X(t) is positive. From the first

equation of system (1.2), one can get C
0 D

α
t S(t)

∣∣
S=0

= Λα > 0. Using [13, Remark
1], we have S(t) > 0 for all t ∈ [0,∞). We next prove that I(t) > 0 for all t ∈ [0,∞).
If not, then there exists T0 > 0 such that I(t) > 0 for t ∈ [0, T0) and I(T0) = 0. By
the third equation of system (1.2), one has

C
0 D

α
t C(t) ≥ −(dα + µα)C(t), for t ∈ [0, T0].

Applying Laplace transform to the above inequality and Lemma 2.3, we get

C(t) ≥ C(0)Eα(−(dα + µα)tα) > 0, for t ∈ [0, T0]. (3.1)

From (3.1), one has
C
0 D

α
t I(t) ≥ −(dα + γα)I(t), for t ∈ [0, T0].

Thus, I(t) ≥ I(0)Eα(−(dα + γα)tα) > 0, for t ∈ [0, T0], contracting to I(T0) = 0.
Hence, I(t) > 0 for t ∈ [0,∞). Simlarly, we can show that C(t) > 0 and R(t) > 0
for t ∈ [0,∞).

Define N(t) = S(t) + I(t) + C(t) +R(t). By system (1.2), we derive
C
0 D

α
t N(t) = Λα − dαS(t)− dαI(t)− (dα + µα)C(t)− dαR(t)

≤ Λα − dαN(t).

Laplace transform is used for the above inequality. Then,

N(t) ≤ ΛαtαEα,α+1(−dαtα) + Eα,1(−dαtα)N(0).

By Lemma 2.2 and N(0) ≤ S0 with S0 = Λα/dα, we have

N(t) ≤ S0(dαtαEα,α+1(−dαtα) + Eα,1(−dαtα)) =
S0

Γ(1)
= S0.

Therefore, Ω is positively invariant.

4. Stability analysis

Clearly, the disease-free equilibrium of system (1.2) is E0 = (S0, 0, 0, 0). By [17,
Theorem 3.2], the basic reproduction number for system (1.2) is

Rα
0 =

βα(dα + µα + pγα)

(dα + µα)(dα + γα)
f
(
S0

)
. (4.1)

To find the endemic equilibrium, let

Λα − βαf(S)(I + C)− dαS = 0,

βαf(S)(I + C)− (dα + γα)I = 0,

pγαI − (dα + µα)C = 0,

(1− p)γαI − dαR = 0.

(4.2)
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Adding the first two equations of (4.2), one gets

S =
Λα − (dα + γα)I

dα
.

We can further get
C =

pγα

dα + µα
I, R =

(1− p)γα

dα
I.

Substituting the above equalities into the second equation of (4.2), one derives

βαf

(
Λα − (dα + γα)I

dα

)(
1 +

pγα

dα + µα

)
− (dα + γα) = 0.

Define

H(I) = βαf

(
Λα − (dα + γα)I

dα

)(
1 +

pγα

dα + µα

)
− (dα + γα).

Clearly, H(0) = (dα + γα)(Rα
0 − 1), H

(
Λα

dα+γα

)
= −(dα + γα) < 0 and

H ′(I) = −dα + γα

dα
βαf ′

(
Λα − (dα + γα)I

dα

)(
1 +

pγα

dα + µα

)
< 0.

So, system (1.2) has a unique endemic equilibrium E∗ = (S∗, I∗, C∗, R∗) when
Rα

0 > 1.

Theorem 4.1. The disease-free equilibrium E0 is locally asymptotically stable if
Rα

0 < 1 and unstable if Rα
0 > 1.

Proof. At E0, the Jacobian matrix for system (1.2) is

J(E0) =


−dα −βαf(S0) −βαf(S0) 0

0 βαf(S0)− (dα + γα) βαf(S0) 0

0 pγα −(dα + µα) 0

0 (1− p)γα 0 −dα

 .

Obviously, two eigenvalues of J(E0) are λ1 = −dα < 0 and λ2 = −dα < 0. The
other two eigenvalues λ3 and λ4 are determined by the following characteristic
equation:

λ2 + a1λ+ a0 = 0,

where
a1 = dα + γα − βαf(S0) + dα + µα > (dα + γα)(1−Rα

0 ),

a0 = (dα + µα)(dα + γα − βαf(S0))− pγαβαf(S0)

= (dα + µα)(dα + γα)(1−Rα
0 ).

Hence, one has

λ3 =
−a1 −

√
a21 − 4a0
2

, λ4 =
−a1 +

√
a21 − 4a0
2

.
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Since Rα
0 < 1, we can obtain that a1 > 0 and a0 > 0. This yields that |arg(λi)| > απ

2
(i = 1, 2, 3, 4) is satisfied [5]. Hence, E0 is locally asymptotically stable. If Rα

0 > 1,
then we have a0 < 0 and |arg(λ4)| < απ

2 . Thus, E0 is unstable [6].
Let D(ξ) be the discriminant of (4.3), where

D(ξ) = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 b2 b1 b0 0

0 1 b2 b1 b0

3 2b2 b1 0 0

0 3 2b2 b1 0

0 0 3 2b2 b1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 18b0b1b2 + (b1b2)

2 − 4b0b
3
2 − 4b31 − 27b20.

Theorem 4.2. The endemic equilibrium E∗ is locally asymptotically stable if Rα
0 >

1 and D(ξ) > 0.

Proof. At E∗, the Jacobian matrix for system (1.2) is

J(E∗) =


−dα − βαf ′(S∗)(I∗ + C∗) −βαf(S∗) −βαf(S∗) 0

βαf ′(S∗)(I∗ + C∗) βαf(S∗)− (dα + γα) βαf(S∗) 0

0 pγα −(dα + µα) 0

0 (1− p)γα 0 −dα

 .

It is easy to see that one eigenvalue of J(E∗) is λ1 = −dα < 0. The other three
eigenvalues λi (i = 1, 2, 3) are determined by the following characteristic equation:

λ3 + b2λ
2 + b1λ+ b0 = 0, (4.3)

where

b2 = βαf ′(S∗)(I∗ + C∗) + 2dα + µα + dα + γα − βαf(S∗),

b1 = dα(dα + γα − βαf(S∗)) + (dα + γα)βαf ′(S∗)(I∗ + C∗)

+ (dα + µα)(2dα + γα − βαf(S∗) + βαf ′(S∗)(I∗ + C∗))− pγαβαf(S∗),

b0 =(dα+µα)[dα(dα+γα−βαf(S∗))+(dα+γα)βαf ′(S∗)(I∗+C∗)]−pdαγαβαf(S∗).

From (4.2), one has

βαf(S∗)(I∗ + C∗) = (dα + γα)I∗, C∗ =
pγα

dα + µα
I∗,

which implies that βαf(S∗)(dα + µα + pγα) = (dα + µα)(dα + γα). Therefore, we
obtain dα + γα > βαf(S∗). By some calculations, we derive that b2 > 0,

b1=dα(dα+µα)+(2dα+γα+µα)βαf ′(S∗)(I∗+C∗) + dα(dα + γα − βαf(S∗)) > 0

and
b0 = (dα + µα)(dα + γα)βαf ′(S∗)(I∗ + C∗) > 0.

It is clear that b1b2 − b0 > 0. From [2, Proposition 1], we derive the theorem.
Similarly proof as in [14, Lemma 4.5], we have the following result.
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Lemma 4.1. The solutions S, I, C and R of system (1.2) are uniformly continuous.

We next study the global stability of equilibria for system (1.2).

Theorem 4.3. If Rα
0 < 1, then E0 is globally asymptotically stable (GAS) in Ω.

Proof. Define the following Lyapunov function:

U(t) = I(t) + k1C(t),

where k1 > 0 is to be chosen later. Clearly, U(t) is positive definite function in Ω.
Since X0 ∈ Ω, one has S(t) ≤ S0. By system (1.2), it follows that
C
0 D

α
t U(t) = C

0 D
α
t I(t) + k1

C
0 D

α
t C(t)

= βαf(S(t))(I(t)+C(t))−(dα+γα)I(t)+k1pγ
αI(t)−k1(d

α+µα)C(t)

≤ βαf(S0)(I(t) + C(t))− (dα + γα)I(t) + k1pγ
αI(t)− k1(d

α + µα)C(t)

= −(dα + γα − k1pγ
α − βαf(S0))I(t)− (k1(d

α + µα)− βαf(S0))C(t).

Since Rα
0 < 1, we can choose k1 > 0 such that

dα + γα − k1pγ
α − βαf(S0) > 0, k1(d

α + µα)− βαf(S0) > 0.

Set

K1(t) := (dα + γα − k1pγ
α − βαf(S0))I(t) + (k1(d

α + µα)− βαf(S0))C(t).

Then, C
0 D

α
t U(t) ≤ −K1(t), that is U(t)− U(0) ≤ −JαK1(t). So, one derives that

U(t) + JαK1(t) ≤ U(0).

It gives that JαI(t) ≤ C̃1 and JαC(t) ≤ C̃1 with C̃1 > 0. Using Lemmas 2.4 and
4.1, we obtain

lim
t→∞

I(t) = 0 and lim
t→∞

C(t) = 0.

According to the first and fourth equations of system (1.2), when t → ∞, one getsC
0 D

α
t S(t) = Λα − dαS(t),

C
0 D

α
t R(t) = −dαR(t).

We can find that S(t) = S0 + (S(0)− S0)Eα(−dαtα) and R(t) = R(0)Eα(−dαtα).
By Lemma 2.1, we conclude that lim

t→∞
S(t) = S0 and lim

t→∞
R(t) = 0.

Theorem 4.4. If Rα
0 > 1, then E∗ is globally asymptotically stable (GAS) in Ω.

Proof. Define the following Lyapunov function:

V(t) =
∫ S(t)

S∗

f(τ)− f(S∗)

f(τ)
dτ +

∫ I(t)

I∗

τ − I∗

τ
dτ +

βαf(S∗)C∗

pγαI∗

∫ C(t)

C∗

τ − C∗

τ
dτ.

Clearly, V(t) is positive definite in Ω. For α = 1, the proof is similar as in [30,
Theorem 1.4] and [31, Theorem 3.3], we omit here. For 0 < α < 1, from Lemma
2.6, one derives

C
0 D

α
t V(t) ≤

(
1− f(S∗)

f(S(t))

)
C
0 D

α
t S(t) +

(
1− I∗

I(t)

)
C
0 D

α
t I(t)

+
βαf(S∗)C∗

pγαI∗

(
1− C∗

C(t)

)
C
0 D

α
t C(t)
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Applying

Λα = βαf(S∗)(I∗ + C∗) + dαS∗, dα + γα =
βαf(S∗)(I∗ + C∗)

I∗
, C∗ =

pγαI∗

dα + µα
,

we obtain

C
0 D

α
t V(t)≤

(
1− f(S∗)

f(S(t))

)
(Λα − dαS(t)− βαf(S(t))(I(t) + C(t)))

+

(
1− I∗

I(t)

)
(βαf(S(t))(I(t) + C(t))− (dα + γα)I(t))

+
βαf(S∗)C∗

pγαI∗

(
1− C∗

C(t)

)
(pγαI(t)− (dα + µα)C(t))

=

(
1− f(S∗)

f(S(t))

)
(dαS∗−dαS(t)−βαf(S(t))(I(t)+C(t))+βαf(S∗)(I∗+C∗))

+

(
1− I∗

I(t)

)(
βαf(S(t))(I(t) + C(t))− βαf(S∗)(I∗ + C∗)

I∗
I(t)

)
+ βαf(S∗)C∗

(
1− C∗

C(t)

)(
I(t)

I∗
− C(t)

C∗

)
= −dα(S(t)− S∗)

(
1− f(S∗)

f(S(t))

)
+ βαf(S∗)I∗

(
2− f(S∗)

f(S(t))
− f(S(t))

f(S∗)

)
+ βαf(S∗)C∗

(
3− f(S∗)

f(S(t))
− f(S(t))I∗C(t)

f(S∗)I(t)C∗ − I(t)C∗

I∗C(t)

)
.

(4.4)
By (A) and the arithmetic and geometric means, we get

C
0 D

α
t V(t) ≤ 0, for t ≥ 0.

This means that
V(t) ≤ V(0), for t ≥ 0.

We now show that lim inf
t→∞

S(t) > 0. If not, then one has lim inf
t→∞

S(t) = 0. Since

∫ S(t)

S∗

f(τ)− f(S∗)

f(τ)
dτ ≤ V(0), for t ≥ 0,

we get

lim sup
t→∞

∫ S∗

S(t)

1

f(τ)
dτ ≤ 1

f(S∗)
(V(0) + S∗), for t ≥ 0.

By (A) and lim inf
t→∞

S(t) = 0, we have

∫ S∗

0

1

f(τ)
dτ ≤ 1

f(S∗)
(V(0) + S∗), for t ≥ 0.

Since lim
η→0

f(η)
η = f ′(0), there exists a constant k2 > 0 such that

1

f(η)
≥ 1

k2η
, as η → 0.
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By above discussions, we derive∫ S∗

0

1

f(τ)
dτ = +∞.

It is a contradiction. Similarly, we can show lim inf
t→∞

I(t) > 0 and lim inf
t→∞

C(t) > 0.

Using the positivity and continuity of the solution X(t) for system (1.2), we can
define inf

t≥0
S(t) := ζ > 0. From (4.4), we get

C
0 D

α
t V(t) ≤ −dα(S(t)− S∗)

(
1− f(S∗)

f(S(t))

)
= − dα

f(S(t))
(S(t)− S∗)(f(S(t))− f(S∗))

= − dα

f(S(t))
(S(t)− S∗)2

f(S(t))− f(S∗)

S(t)− S∗

= − dα

f(S(t))
(S(t)− S∗)2f ′(ν(t))

≤ − dαM

f(S0)
(S(t)− S∗)2,

(4.5)

where ν(t) is between S∗ and S(t) and M = max
ζ≤ν≤S0

|f ′(ν(t))|. Define

K2(t) :=
dαM

f(S0)
(S(t)− S∗)2.

By (4.5), we derive C
0 D

α
t V(t) ≤ −K2(t). This yields that V(t)− V(0) ≤ −JαK2(t),

that is, V(t) + JαK2(t) ≤ V(0). Then, one has Jα(S(t) − S∗)2 ≤ C̃2 with C̃2 > 0.
By Lemma 4.1, the uniform continuity of (S(t)− S∗)2 is obtained. Then, applying
Lemma 2.4, we conclude that lim

t→∞
S(t) = S∗.

By Lemma 2.5, we have lim
λ→0+

λL(S(t)) = S∗. Adding the first two equations of
system (1.2), we have

C
0 D

α
t (S(t) + I(t)) = Λα − dαS(t)− (dα + γα)I(t).

Using the Laplace transform to the above equality, we obtain

λαL(S(t) + I(t))− λα−1(S(0) + I(0)) =
Λα

λ
− dαL(S(t))− (dα + γα)L(I(t)),

which gives that

L(I(t)) =
Λα

λ + λα−1(S(0) + I(0))− (λα + dα)L(S(t))
λα + dα + γα

.

Hence,

lim
λ→0+

λL(I(t)) = lim
λ→0+

Λα

λα + dα + γα
+ lim

λ→0+

λα(S(0) + I(0))

λα + dα + γα

−
(

lim
λ→0+

λα + dα

λα + dα + γα

)
· ( lim

λ→0+
λL(S(t)))

=
Λα

dα + γα
− dαS∗

dα + γα
= I∗.
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By Lemma 2.5, we derive lim
t→∞

I(t) = I∗. From the third and fourth equations of
system (1.2), similarly as the above discussions, we can obtain that lim

t→∞
C(t) = C∗

and lim
t→∞

R(t) = R∗. Therefore, we get

lim
t→∞

(S(t), I(t), C(t), R(t)) = (S∗, I∗, C∗, R∗).

5. Numerical simulations and discussion
In this section, we choose f(S) = S

1+δS for δ ≥ 0. System (1.2) can reduce to

C
0 D

α
t S(t) = Λα − βαS(t)(I(t)+C(t))

1+δS(t) − dαS(t),

C
0 D

α
t I(t) =

βαS(t)(I(t)+C(t))
1+δS(t) − (dα + γα)I(t),

C
0 D

α
t C(t) = pγαI(t)− (dα + µα)C(t),

C
0 D

α
t R(t) = (1− p)γαI(t)− dαR(t).

(5.1)

System (5.1) always has a disease-free equilibrium E0 = (Λα/dα, 0, 0, 0). From
(4.1), the basic reproduction number for system (5.1) is

Rα
0 =

Λαβα(dα + µα + pγα)

(dα + δΛα)(dα + µα)(dα + γα)
. (5.2)

From (5.2), we can see that Rα
0 is monotonically decreasing with respect to δ. By

some calculations, when Rα
0 > 1, the endemic equilibrium E∗ = (S∗, I∗, C∗, R∗) of

system (5.1) is

I∗ =
(dα + δΛα)(dα + µα)(dα + γα)− Λαβα(dα + µα + pγα)

(dα + γα)(δ(dα + µα)(dα + γα)− βα(dα + µα + pγα))
,

and
S∗ =

Λα − (dα + γα)I∗

dα
, C∗ =

pγαI∗

dα + µα
, R∗ =

(1− p)γαI∗

dα
.

In the following, we fix δ = 1. Firstly, we set the parameter values [34]: Λ = 1,
β = 0.2483, d = 0.007, γ = 0.5, p = 0.75 and µ = 0.001. By Figure 1, it is clear that
Rα

0 is monotonically increasing with respect to α. From Table 1, we can observe
that the acute infection and chronic infection increase as α increases (see Figures
2 and 3). The endemic equilibrium E∗ is GAS by using Theorem 4.5 (see Figure
4). Then, we choose the parameter values [26]: Λ = 1, β = 0.65, d = 0.5, γ = 0.5,
p = 0.4 and µ = 0.5. The disease-free equilibrium E0 is GAS by applying Theorem
4.4 (see Table 2 and Figure 5).

Due to capturememory and hereditary nature of real-world problems, fractional
order has aroused great interests in different fields. By the above simulations, we
observe that the incidence rate and fractional order α can effect the dynamical
behavior of system (5.1). The acute infection and chronic infection of system (5.1)
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Table 1. Endemic equilibrium and stability for different α

α Rα
0 Equilibrium point Stability

0.96 19.9847 E∗ = (0.0522, 1.9127, 74.8267, 28.7938) E∗ is GAS
0.86 13.5983 E∗ = (0.0782, 1.7681, 43.8752, 17.3686) E∗ is GAS
0.76 9.2084 E∗ = (0.1188, 1.6255, 25.4579, 10.4198) E∗ is GAS
0.66 6.2029 E∗ = (0.1839, 1.4806, 14.5518, 6.1935) E∗ is GAS

Table 2. Disease-free equilibrium and stability for different α

α Rα
0 Equilibrium point Stability

0.96 0.5098 E0 = (1.9453, 0, 0, 0) E0 is GAS
0.86 0.4848 E0 = (1.8150, 0, 0, 0) E0 is GAS
0.76 0.4605 E0 = (1.6935, 0, 0, 0) E0 is GAS
0.66 0.4369 E0 = (1.5801, 0, 0, 0) E0 is GAS
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Figure 1. Plot of Rα
0 in terms of α.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
I*

Figure 2. Plot of I∗ in terms of α.
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Figure 3. Plot of C∗ in terms of α.

decrease as α decreases. This yields that memory can reduce the spread of HCV.
Thus, this work is a novel analysis to study the transmission dynamics of HCV.
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Figure 4. Dynamics of system (5.1) for different values α when Rα
0 > 1.
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Figure 5. Dynamics of system (5.1) for different values α when Rα
0 < 1.
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This can help us to draft more scientific and reasonable public health policies. It is
our future work to take time delay into this model.
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