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Abstract We present a fast algorithm for generating the inverse and the
determinant of an extended, periodic, tridiagonal matrix. We use backward
continued fractions to generate the elements of the inverse in closed form. By
trading memory use against the cost of repeating the computation of certain
quantities we are able to produce an effective procedure for a symbolic algebra
implementation. We compare the performance of our Maple implementation
with that of the standard Maple library procedures for matrix inversion and
computation of the determinant on a set of illustrative example matrices.
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1. Introduction
Tridiagonal matrix structures occur frequently in both practical application areas
and in the numerical approximation of equations resulting from the modelling of
physical phenomena; see, for example, [3–6,13,20,21].

Recently, attention has been given to methods for constructing inverses of both
simple and periodic tridiagonal matrices algebraically as a means of finding algo-
rithms that would prove efficient when implemented using symbolic (computer)
algebra (SA) systems like Maple [19] and Mathematica [23] (for these methods see,
for example, [10, 11, 14, 15, 17] and for other properties of both simple and peri-
odic tridiagonal matrices such as eigenvalues, eigenvectors or factorizations see, for
example, [2, 7, 8, 14]).

To compute the inverse of a simple tridiagonal matrix efficiently using floating-
point arithmetic we would solve a set of n right hand sides with the jth being Ij , the
jth column of the unit matrix and the solution the jth column of the inverse. Using
Gaussian Elimination this requires at least 5n2 + O(n) floating-point operations
increasing to 7n2+O(n) if partial pivoting is required to provide numerical stability.
Similar O(n2) algorithms also exist for periodic tridiagonal systems.

The situation is very different for SA systems where, generally, we are not inter-
ested in the use of floating-point numbers; here all the computations are performed
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algebraically and, therefore, without any computation errors. This means that we
do not need to worry about stability or the effects of the build up of errors due to
the use of floating-point data; the fast algorithms, when used for algebraic compu-
tations, are acceptable for any non-singular tridiagonal matrix.

Closed forms for the elements of the inverse of a general tridiagonal matrix offer
a number of possible advantages. First, they allow for the efficient computation of
the inverse by taking account of the structure of the matrix. Second, they provide
a means for just computing segments of the inverse without computing all the
elements.

Comparing the efficiency of algorithms for SA systems is more complex than
their floating-point counterparts. Generally a good comparative measure of effi-
ciency for floating-point implementations may be obtained by using the number of
basic arithmetic operations required to solve a problem of a particular size. This
works because we can assume that each of the basic floating-point arithmetic op-
erations executes at a fixed rate on a given processor and, provided that we have
an ‘average’ operation mix, we can just compare the number of operations required
to implement each algorithm. With SA systems the operands are general algebraic
quantities and thus the execution time for a basic arithmetic operation depends on
the complexity of the two operands. Thus, while operation counts are still useful
when comparing SA algorithms, they do not have the same discriminating power
as their floating-point cousins.

A periodic tridiagonal matrix, which may also be called a tridiagonal matrix
with corners ( [12,22]), is of the form

F =



x1 y1 δ2
z1 x2 y2

z2 x3
. . .

. . . . . . . . .
zn−2 xn−1 yn−1

µ2 zn−1 xn


. (1.1)

In [15] closed formulae for the elements of the inverse of (1.1) were obtained and it
was shown that a Maple implementation of this closed form generally outperformed
both the Maple Library procedures and an alternative algorithm proposed by [11]
on a variety of example matrices.

In the current article we extend the complexity of the coefficient matrix to that
given by G where Gkk = xk for 1 ≤ k ≤ n; Gkk+1 = yk and Gk+1k = zk for
1 ≤ k ≤ n− 1; G1n−1 = δ1, G1n = δ2, G2n = δ3, Gn−11 = µ1, Gn1 = µ2, Gn2 = µ3

and 0 otherwise. Clearly, this has the form

G =



x1 y1 δ1 δ2
z1 x2 y2 δ3

z2 x3
. . .

. . . . . . . . .
µ1 zn−2 xn−1 yn−1

µ2 µ3 zn−1 xn


. (1.2)

The efficient computation of the determinant of multidiagonal matrices with and
without corners is studied in [12].
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In the following discussion we also assume that, in (1.2), none of the xi, yi
and zi values are zero and that the determinant of all the principal minors of the
tridiagonal matrix, obtained by replacing all the corner elements of G by zeros, are
non-zero.

Our motivation for looking at this problem is the article by Ao and Sun [1]
where matrices of a special case of (1.2) are used in the solution of Sturm-Liouville
problems arising from applications involving heat conduction and vibrating strings
with eigenproblem dependent boundary conditions.

As in [15], from the LU decomposition of the matrix G we generate the matrices
L−1 and U−1 in terms of BCFs. We may then use these to formulate the elements
of G−1 explicitly along with detG.

In Section 2 we provide basic definitions and results relating to the backward
continued fractions that we use (for more details, see [16]) and we define a number
of notational definitions that we use throughout the article. The LU decomposition
of the matrix G using BCFs is given in Section 3 and the explicit forms of the
elements of G−1 are presented in Section 4. The proof of the closed forms of the
inverse elements closely follows the method used in [15]; we, therefore, quote the
explicit forms of the elements but only give a detailed proof of one part of the
main result. An implementation of the algorithm in Maple is discussed in Section 5
along with efficiency comparisons with the Maple library routines for determining
the inverse and determinant of a general matrix. Our conclusions are presented in
Section 6.

2. Basic Definitions and Notations
2.1. Backward Continued Fractions
Following [17] we define a general backward continued fraction (BCF) as

an +
bn−1

an−1 +
bn−2

an−2 + . . .
+
b1
a1

(2.1)

where {ai}ni=1, {bi}n−1
i=1 are real and we may then rewrite this in compact form as

CB =

[
a1 +

b1
a2+

b2
a3+

· · · bn−1

an

]
B

.

Also the kth backward convergent to CB defined in [17] is

CB
k =

[
a1 +

b1
a2+

b2
a3+

· · · bk−1

ak

]
B

and
CB

k =
Pk (ak, bk−1)

Pk−1 (ak, bk−1)
, k = 1, . . . , n, (2.2)

where CB
n = CB and we also note CB

k ! = CkCk−1 . . . C1 = Pk (ak, bk−1).
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Pk (ak, bk−1) is defined by the recurrence relation

Pk (ak, bk−1) = akPk−1 (ak, bk−1) + bk−1Pk−2 (ak, bk−1) , 2 ≤ k ≤ n, (2.3)

with the initial conditions

P0 (ak, bk−1) = 1,

P1 (ak, bk−1) = a1.

Specifically, we define a general BCF in terms of the entries of the matrix G by
setting ak = xk and bk = −ykzk in (2.3). Throughout the remainder of this article
we will refer to {Pk (xk,−yk−1zk−1)} as {Pk} whence the recurrence relation (2.3)
becomes

Pk = xkPk−1 − yk−1zk−1Pk−2 (2.4)
with initial conditions P0 = 1 and P1 = x1.

2.2. Definitions and Notation
For convenience we collect together here a number of definitions that we will use
throughout the article.

We assume that
z0 = y0 = CB

0 = 1 (2.5)
and, in general, for any sequence {Sr} used in the article we will assume that S0 = 1
unless otherwise stated.

We define scaled versions of the given upper and lower diagonal elements

dr =
zr
CB

r

; ur =
yr
CB

r

; r = 1, 2, . . . , n− 2. (2.6)

For 1 ≤ i ≤ 3, we also use

Ωr =


x1

z1
δ3 − δ2, r = 1,

x1

y1
µ3 − µ2, r = 2,

fr (i) =

δi, r = 0,

δi
r∏

k=1

zk
CB

k

, 1 ≤ r ≤ n− 3,
(2.7)

gr (i) =


µi/x1, r = 0,

µi

r+1∏
k=1

yk−1

CB
k

, 1 ≤ r ≤ n− 3,
mr =


−g0(2), r = 0,

CB
1

y1
gr (3)− gr (2) , 1≤r≤n− 3,

(−1)
n−1

An/Bn, r = n− 2,

(2.8)

qr=

−f0(2), r=0,

CB
1

z1
fr (3)−fr (2) , 1≤r≤n−3,

(2.9)

T (n,m)=

n−2∑
k=m

yk−1!dk−1!

CB
k !

=

n−3∑
k=m−1

uk!dk!

CB
k+1

, (2.10)

An = zn−1 +

n−3∑
k=0

fk (1)mk − (−1)
n
mn−3yn−2

= zn−1 +

(
δ1Ω2T (n, 2)−

δ1µ2

x1

)
− (−1)nΩ2un−2!,

(2.11)
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Ân = yn−1 +

n−3∑
k=0

gk (1) qk − (−1)
n
qn−3dn−2

= yn−1 −
µ1δ2
x1

+ µ1Ω1T (n, 2)− (−1)nΩ1dn−2!,

(2.12)

Bn = xn−1 −
n−4∑
k=0

fk (1) gk (1)− (dn−2 − (−1)
n
gn−3 (1)) (yn−2 − (−1)

n
fn−3 (1))

= xn−1 − δ1µ1T (n, 1)− dn−2yn−2 + (−1)n (µ1un−2! + δ1dn−2!) ,

(2.13)

Un,n = xn + (−1)
n
mn−2Ân −

n−3∑
k=0

mkqk = xn − AnÂn

Bn
− δ2µ2

x1
− Ω1Ω2T (n, 2).

(2.14)

3. LU Factorization
In this section, we give the LU decomposition of the matrix G via backward con-
tinued fractions. Suppose that the entries of G are given, that is, we have xi for
1 ≤ i ≤ n, yi and zi for 1 ≤ i ≤ n− 1, µi and δi for 1 ≤ i ≤ 3.

We define the unit lower triangular matrix L of order n as

Lij =



1; i = j,

dj ; i = j + 1, 1 ≤ j ≤ n− 3,

dn−2 + (−1)n−1gn−3(1); i = n− 1, j = n− 2,

(−1)j−1gj−1(1); i = n− 1, 1 ≤ j ≤ n− 3,

(−1)jmj−1; i = n, 1 ≤ j ≤ n− 1,

0; otherwise,

(3.1)

where the gr and mr are defined by (2.8) and the dr by (2.6).
Define an upper triangular matrix U of order n by

Uij =



CB
i ; 1 ≤ i = j ≤ n− 2,

yj ; i = j + 1, 1 ≤ j ≤ n− 3,

(−1)i−1fi−1(1); j = n− 1, 1 ≤ i ≤ n− 3,

yn−2 − (−1)nfn−3(1); i = n− 2, j = n− 1,

−q0; i = 1, j = n,

(−1)iqi−1; 2 ≤ i ≤ n− 2, j = n,

Ân; i = n− 1, j = n,

Bn; i = n− 1, j = n− 1,

Unn; i = n, j = n,

0; otherwise,

(3.2)

where the CB
r , yr, fr, qr, Ân, Bn and Unn are defined by (2.2), (1.2), (2.7), (2.9),

(2.12), (2.13) and (2.14) respectively.
Now we give the LU decomposition of matrix G via the following theorem
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Theorem 3.1. The LU decomposition of the matrix G is given by

G = L · U,

where L and U are given by (3.1) and (3.2), respectively.

Then we have the following corollary:

Corollary 3.1. With the matrix G and the backward continued fraction CB
n defined

by (1.2) and (2.2) respectively with ak = xk and bk = −ykzk we have, for n > 1,

detG = Un,nBnC
B
n−2!

where Un,n and Bn are defined by (2.14) and (2.13) respectively.

Corollary 3.2. For n > 1

detG = Un,nBnPn−2, (3.3)

where {Pn} is given by (2.4).

Thus when computing the elements of the inverse of G we obtain the determinant
almost for free (2 multiplies) since all the terms of the product, Unn, Bn, and Pn−2

in (3.3), are required elsewhere in the computation of the inverse elements.
If only the determinant is required we make no claims as to the efficiency of

using (3.3); it may be more efficient to use the pentadiagonal algorithm proposed
in [12] and take account of the zero elements in the outer diagonals.

4. Inverse of the periodic tridiagonal matrix
Before we present G−1 in terms of backward continued fractions, we derive the
inverses of L and U .

Lemma 4.1. Let the unit lower triangular matrix L have the form (3.1) then
Q = L−1 is defined by

Qi,j =
(−1)

j

dj−1!



(−1)
i
di−1! if 1 ≤ j ≤ i ≤ n− 2,

n−3∑
k=j−1

dk!gk (1)− (−1)
n
dn−2! if i = n− 1,

(−1)
n
mn−2

n−3∑
k=j−1

dk!gk (1)−
n−2∑

k=j−1

dk!mk if i = n & 1 ≤ j < n,

1 if i = j = n,

0 if i < j.

Lemma 4.2. Let the n × n upper triangular matrix U have the form (3.2) then
H = U−1 is defined by

Hi,j =
(−1)

i
CB

i−1!

yi−1!
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×



−1

BnUn,n

n−3∑
t=i−1

yt!

CB
t+1!

(
Ânft (1) + qtBn

)
+ (−1)

n yn−2!Ân

CB
n−2!BnUn,n

;

j = n & 1 ≤ i ≤ n− 1,

1

Bn

n−3∑
t=i−1

yt!

CB
t+1!

ft (1)− (−1)
n yn−2!

CB
n−2!Bn

; j = n− 1 & 1 ≤ i ≤ n− 1,

(−1)
j yj−1!

CB
j !

; i ≤ j ≤ n− 2,

0; i > j,

and Hn,n = U−1
n,n.

Assume that yizi ̸= 0 for 1 ≤ i ≤ n− 1. Let

F (i1, i2, i3, i4, i5, i6, i7; c1, c2)

=
(−1)

i+j

ui−1!dj−1!Bn
[BnT (n, i1)+(δ1T (n, i2)−(−1)

n
un−2!) (µ1T (n, i3)−(−1)

n
dn−2!)

− U−1
n,n

(
Ân [δ1T (n, i4)− (−1)

n
un−2!] +Bn (Ω1T (n, i5)− c1)

)
× (mn−2 [(−1)

n
µ1T (n, i6)− dn−2!]− Ω2T (n, i7)− c2)] . (4.1)

Then we have the following result for the inverse of the matrix G.

Theorem 4.1. Denote the inverse of matrix G of order n by W . Then

I. For 1 ≤ i = j ≤ n. There are three subcases

(A) If i = 1, then W11 = F (1, 1, 1, 1, 2, 1, 2; δ2/x1,−µ2/x1).
(B) If 1 < i < n, then Wii = F (i, i, i, i, i, i, i; 0, 0).
(C) If i = n, then Wnn = U−1

n,n.

II. For 1 ≤ i < j ≤ n, there are three subcases

(A) If 1 ≤ i < j = n, then Win = Hin.

(B) If 1 = i < j < n, then W1j = F (j, 1, j, 1, 2, j, j; δ2/x1, 0).
(C) If 1 < i < j < n, then Wij = F (j, i, j, i, i, j, j; 0, 0).

III. For 1 ≤ j < i ≤ n, there are three subcases

(A) If 1 ≤ j < i = n, then Wnj = U−1
n,nQnj .

(B) If 1 = j < i < n, then Wi1 = F (i, i, 1, i, i, 1, 2, 0;−µ2/x1).
(C) If 1 < j < i < n, then Wij = F (i, i, j, i, i, j, j; 0, 0).

Especially, we note

Wn−1,n−1 =
1

Bn

(
1 +

ÂnAn

BnUnn

)
,

which could also be derived from (I)A above. Here F (−;−) is defined by (4.1) and
dn, Ân, An, Bn, Tn, ur, Un,n and Ωi are all defined in Section 2.
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Proof. There are three separate cases to consider: the diagonal elements, the
strictly lower triangular elements and the strictly upper triangular elements. Here,
to conserve space, we just show the proof for the diagonal elements; the upper and
lower triangular elements may be confirmed in a similar fashion.

Diagonal elements, i = j:
Since Hij = 0 for i > j and W = (LU)

−1
= HQ, we have for 1 ≤ i < n

Wii=

n∑
k=1

Hi,kQk,i =

n∑
k=i

Hi,kQk,i =

n−2∑
k=i

Hi,kQk,i +Hi,n−1Qn−1,i +Hi,nQn,i

=

n−2∑
k=i

(−1)
i C

B
i−1!

yi−1!
(−1)

k yk−1!

CB
k !

(−1)
i

di−1!
(−1)

k
dk−1!

+
(−1)

i
CB

i−1!

yi−1!

(
1

Bn

n−3∑
t=i−1

yt!

CB
t+1!

ft (1)− (−1)
n yn−2!

CB
n−2!Bn

)

× (−1)
i

di−1!

(
n−3∑

k=i−1

dk!gk (1)− (−1)
n
dn−2!

)

+
(−1)

i
CB

i−1!

yi−1!

(
−1

BnUn,n

n−3∑
t=i−1

yt!

CB
t+1!

(
Ânft (1)+qtBn

)
+(−1)

n yn−2!Ân

CB
n−2!BnUn,n

)

× (−1)
i

di−1!

(
(−1)

n
mn−2

n−3∑
k=i−1

dk!gk (1)−
n−2∑

k=i−1

dk!mk

)
,

which, by taking k−1 instead of k and using the definitions of a number of quantities,
gives

T (n, i)

ui−1!di−1!
+

1

ui−1!di−1!Bn
(δ1T (n, i)− (−1)

n
un−2!) (µ1T (n, i)− (−1)

n
dn−2!)

− 1

ui−1!di−1!BnUn,n

(
δ1ÂnT (n, i) +Bn

n−2∑
t=i

ut−1!

CB
t

qt−1 − (−1)
n
un−2!Ân

)

×

(
µ1 (−1)

n
mn−2T (n, i)−

n−1∑
t=i

dt−1!mt−1

)
.

We examine three subcases:
I) i = 1

W11 =T (n, 1) +
1

Bn
(δ1T (n, 1)− (−1)

n
un−2!) (µ1T (n, 1)− (−1)

n
dn−2!)

− 1

BnUn,n

(
Ân (δ1T (n, 1)− (−1)

n
un−2!) +Bn

(
− δ2
x1

+Ω1T (n, 2)

))
×
(
mn−2 [(−1)

n
µ1T (n, 1)− dn−2!] +

µ2

x1
− Ω2T (n, 2)

)
,

as claimed.
II) 1 < i < n

Wii=
1

ui−1!di−1!Bn
[BnT (n, i)+(δ1T (n, i)−(−1)

n
un−2!) (µ1T (n, i)−(−1)

n
dn−2!)
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− 1

Un,n

(
Ân (δ1T (n, i)− (−1)

n
un−2!) +BnΩ1T (n, i)

)
× (mn−2 [µ1 (−1)

n
T (n, i)− dn−2!]− Ω2T (n, i))] .

III) i = n

Wnn =

n∑
k=1

Hn,kQk,n =

n∑
k=i

Hn,kQk,n = Hn,nQn,n = Hn,n = U−1
n,n

as required.
We also note that we may obtain a compact definition for the case i = n − 1,

i.e.,

Wn−1,n−1 =

n∑
k=i

Hn−1,kQk,n−1 = Hn−1,n−1 +Hn−1,nQn,n−1

=
1

Bn
+

ÂnAn

BnBnUnn
,

as claimed.

5. An Efficient Maple Implementation
In this section we look at the efficiency of our proposed algorithm (KA) as a com-
putational method, implemented in Maple, and compare its performance against a
pair of Maple library procedures. We also use the Maple implementation to increase
our confidence that the algorithm specified in this article does compute the inverse
of the matrix G as defined by (1.2).

We begin by looking at the basic arithmetic operation count and assume that
add/subtract and multiply/divide may be considered comparable operations. As
we noted in Section 1 this is a reasonable assumption for floating-point arithmetic
but may not be so useful for algebraic computations. We also consider how we may
trade savings in execution time against the use of extra storage.

5.1. The Implementation of the Proposed Algorithm
A pseudocode version of KA which attempts to minimize repeated computations
as far as is reasonable is given as Algorithm 1. This requires eight temporary
arrays using a total of 8n − 6 extra elements to store reusable calculations. The
implemented version uses 5n2+20n−14 multiplications and 2n2+2n+12 additions.

In addition, our current implementation of Algorithm 1 places the following
restrictions on the structure of G:

1. yi, zi ̸= 0; i = 1, . . . , n− 1, and
2. x1 ̸= 0, and
3. the determinants of all the principal minors of G must be non-zero; i.e., pi ̸=

0, i = 1, . . . , n− 1. Condition 2. above is a consequence of this requirement.
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We note that none of these restrictions taken on their own would signify that (1.2)
was singular; however, each causes a division by zero at some point in the execution
of our algorithm. We suspect that some or all of these restrictions could be removed
by re-arranging the computation in some way but we could not discover how this
may be achieved. All these conditions are checked by our implementation and an
error flag is raised if any are not met.

For the Maple implementation it is vital to control the complexity of the alge-
braic expressions generated during the computation; failure to do this often leads
to a dramatic increase in the number of terms in computed quantities and a cor-
responding increase in execution times. A good strategy appears to be to simplify
all intermediate results in order, hopefully, to reduce the complexity of further
calculations.

5.2. Choice of Sample Problems
Because a lower operation count does not translate directly into a more efficient
symbolic algebra implementation (see Section 1 and [15] for more details). We are
often unable to make a categorical choice that one implementation will always be
more efficient over the whole problem class.

We have run our implementation on a wide variety of different matrices of the
form (1.2) and this has allowed us to provide some indications of when our imple-
mentation may prove more efficient that the Maple Library procedures.

Three examples have been chosen to represent different classes of matrices and
provide timing comparisons that illustrate the wide range of effectiveness of both
methods of generating inverses.

5.2.1. Example Problems

Example 5.1. This example uses as its base the symmetric tridiagonal inverse of
the Lehmer matrix [18] defined by

Gij =



4i3

4i2 − 1
i = j, 1 ≤ i < n,

n2

2n− 1
i = j = n,

− i(i+ 1)

2i+ 1
j = i+ 1, 1 ≤ i ≤ n− 1 and j = i− 1, 2 ≤ i ≤ n,

0 otherwise

(5.1)

which we have augmented with δ = [n/4, 3n/4,−n/4] and µ = [−n/3, 2n/3, n/3].
We use this as a representative of matrices whose elements are all rational num-

bers. The operation count may still not be a good efficiency metric as the different
sizes of numerators and denominators mean that the time required for each arith-
metic operation is not constant.

Example 5.2. This matrix is an extension to the one given in [11]

Gij =


a i = j, 1 ≤ i < n,

1 j = i+ 1, 1 ≤ i ≤ n− 1,

−1 j = i− 1, 2 ≤ i ≤ n,

0 otherwise

(5.2)
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with δ = [a/2,−a,−a/2] and µ = [−a/2, a, a/2].
We use this as an example of a simple algebraic matrix that is defined in terms

of just a single free variable and rational numbers.

Example 5.3. This is an example matrix based on the tridiagonal inverse of the
general KMS matrix [9, pp. E190–E191] and defined by

Gij =



1/(1− σρ) i = j = 1, n,

(1 + σρ)/(1− σρ) i = j = 2, . . . , n− 1,

−σ/(1− σρ) j = i− 1, 2 ≤ i ≤ n,

−ρ/(1− σρ) j = i+ 1, 1 ≤ i ≤ n− 1,

0 otherwise

(5.3)

which we have augmented with δ = [−ρ, σ2,−σ] and µ = [σ, σρ, ρ].
Here we have a matrix with more complex algebraic elements.

5.3. Performance of the Implementations
All the timings presented below are given in seconds and were achieved using Maple
2019 running under Ubutu 18.04 on an eight thread, four core, Intel(R) Core i7-
8650U, 1.9Ghz CPU with 32GB of memory. The tests were all performed while
the machine was very lightly loaded; i.e., it was not connected to the network
and only a single window was open for executing the run-scripts (for more details
see [15, Section 6.4]). All tests were executed, using our implementation of KA
and the Maple library procedures, for multiple values of n and both detG and the
computed elements of G−1 were compared for equality.

Sample execution times are quoted in Figure 1 for Examples 5.1–5.3 and Figure 2
gives the largest order of matrix that could be inverted utilising < 10 seconds of
processor time on our test platform.

Example 5.1 Example 5.2 Example 5.3
n MAPLE KA n MAPLE KA n MAPLE KA
50 0.13 0.09 20 0.04 0.09 10 0.01 0.79

100 0.92 0.62 40 7.47 3.28 30 0.08 6.12
200 7.23 4.56 60 77.14 12.23 40 0.21 12.84

Figure 1. Comparison of execution times for MAPLE and KA on the test problems

Example MAPLE KA
5.1 250 300
5.2 50 60
5.3 140 40

Figure 2. Comparison of the maximum order of the test examples that can be inverted in less than 10
seconds.

In the case of matrices using just rational numbers our implementation outper-
formed the Maple Library procedures but, as illustrated by Example 5.1, this may
still not reflect the apparent savings in operation counts. Example 5.2 provides an
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example where the KA implementation does extremely well and Example 5.3 shows
a case where the Maple routine.

These examples illustrate very well the difficulties associated with comparing
performance between symbolic algebra algorithms. For Example 5.1 it would seem
likely that the two implementations would be fairly even since, although the Maple
library routines operate on a full matrix, many of the extra arithmetic operations
will involve one or both of the operands being zero and, thus, complete very cheaply.
The Example 5.1 KA timings show a saving of around a third over the Maple
procedures and this is fairly typical for this type of matrix.

Examples 5.2 and 5.3 provide very different performance profiles for matrices
with algebraic elements. The simpler algebraic matrix shows the increasing effi-
ciency of KA as the order of the matrix increases with a factor six difference by
n = 60. This contrasts sharply with Example 5.3, which has elements which are
slightly more complex than Example 5.2, where the Maple procedures outperform
KA by a factor of 60 by n = 40.

When the matrix elements are algebraic we have found that the two routines
both exhibit a wide spectrum of performances. Thus, in a situation where exact
inverses are required for a sequence of matrices of increasing order, and where the
elements are of similar algebraic structure, it would be sensible to compare timings
of the two implementations on some smaller orders and use these to inform a decision
on a suitable choice for higher orders.

Finally, we note that our algorithm is unsuitable for use with floating-point
arithmetic due to possible build up of rounding errors.

6. Conclusions and Future Work
We have used BCFs to generate explicit expressions for the elements of the inverse
of the matrix, G, defined by (1.2). These expressions were then used to construct an
algorithm and its efficient implementation in Maple to compute the inverse, G−1.
By exploiting the structure of the matrix we were able to generate a ‘fast’ algorithm
for computing the inverse algebraically by reducing the order of complexity to 7n2+
O(n).

Our performance results illustrate clearly the difficulty of identifying an effective
implementation that will perform consistently well over the full range of algebraic
problems. The operation count and the sparse regular pattern of the elements in
the matrix would suggest that the proposed algorithm should perform better than
the Maple library procedures; this is not borne out by our results. Our timing
comparisons do, however, show that for some problems our proposed method could
be a worthwhile alternative.

In the future we intend to study a number of other published algorithms for
computing inverses of matrices with special structures to ascertain whether their
implementations could prove competitive with the Maple routines for some classes
of problems.
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ALGORITHM 1: Pseudocode for the KA using temporary storage to save reusable
computations.
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#
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v1..n = δ1t1..n − sg × Un−2; w1..n = µ1t1..n − sg ×Dn−2;
e1..n−1 = bt1..n−1 s0..n−2 = b× U0..n−2;
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1,n = g1/b; A

−1
n,1 = −h1/unn;
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ALGORITHM 2: Pseudocode for the KA using temporary storage to save reusable
computations continued
# First row
A−1

1,2:n−1:2 = −(e2:n−1:2 + v1w2:n−1:2 − g1h2:n−1:2)/(D1:n−2:2b);
A−1

1,3:n−1:2 = (e3:n−1:2 + v1w3:n−1:2 − g1h3:n−1:2)/(D2:n−2:2b);
# First column
A−1

2:n−1:2,1 = −(e2:n−1:2 + v2:n−1:2w1 − g2:n−1:2h1)/(s1:n−2:2);
A−1

3:n−1:2,1 = (e3:n−1:2 + v3:n−1:2w1 − g3:n−1:2h1)/(s2:n−2:2);
# Upper triangle
k = −1;
for j = 3, n− 1 do

T = k/(Dj−1b);
A−1

2:j−1:2,j = T/U1:j−2:2(ej + v2:j−1:2wj − g2:j−1:2hj);
A−1

3:j−1:2,j = −T/U2:j−2:2(ej + v3:j−1:2wj − g3:j−1:2hj);
k = −k;

end
# Column n

A−1
2:n−1:2,n = −g2:n−1:2/(s1:n−2:2);

A−1
3:n−1:2,n = g3:n−1:2/(s2:n−2:2);

# Lower triangle
k = −1;
for i = 3, n− 1 do

T = k/,i−1;
A−1

i,2:i−1:2 = T/D1:i−1:2(ei + viw2:i−1:2 − gih2:i−1:2);
A−1

i,3:i−1:2 = −T/D2:i−1:2(ei + viw3:i−1:2 − gih3:i−1:2);
k = −k;

end
# Row n

A−1
n,2:n−1:2 = h2:n−1:2/(D1:n−2:2unn);

A−1
n,3:n−1:2 = −h3:n−1:2/(D2:n−2:2unn);

return (FALSE, det, A−1)
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