Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 12, Number 6, December 2022, 2330-2348 DOI:10.11948/20210473

EXISTENCE AND COMPUTATION OF
INVARIANT ALGEBRAIC CURVES FOR
PLANAR QUADRATIC DIFFERENTIAL

SYSTEMS
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Abstract Some necessary conditions are given for the existence of invariant
algebraic curves for planar quadratic differential systems in a special canonical
form. An efficient algorithm is then designed for computations of invariant
algebraic curves. From the algorithm, a quadratic differential system is found
with two Hopf bifurcations as the parameter varies, each leading to an invariant
algebraic limit cycle of degree 5. A family of degree 6 invariant algebraic
limit cycles is also produced. To further demonstrate the capability of the
algorithm, we provide a quadratic system with a family of degree 7 invariant
algebraic curves enclosing one or two centers, and a system possessing a degree
16 irreducible invariant algebraic curve with a singular point of multiplicity 8
on the curve.
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1. Introduction

Invariant algebraic curves can play an important role in planar dynamical systems
with polynomial vector fields, for example, in the theory of Darboux integrabil-
ity [6,7,12,16]. Despite extensive investigations in this field during the past cen-
tury, there are still many open questions, especially for the existence of invariant
algebraic limit cycles with high degree [8,9,11,15]. One of the difficulties lies in
the construction of polynomial systems that possess irreducible invariant algebraic
curves with a given degree. From the computational point of view, it usually in-
volves large scale symbolic computations which may not succeed even with the help
of high performance computers.

Even for planar quadratic differential systems where the vector field is deter-
mined by polynomials of degree 2, there are many unanswered questions. For many
decades, mathematicians have been searching for planar quadratic systems that pos-
sess invariant algebraic limit cycles, and trying to determine the maximum number
of algebraic limit cycles a quadratic system may have [2-4,8,17-20]. Tt is well
known (see, for example, [2,19]) there is exactly one family possessing an invariant
algebraic limit cycle of degree 2. No quadratic system has an algebraic limit cycle
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of degree 3. Exactly four families of quadratic systems have an invariant algebraic
limit cycle of degree 4. But for higher degree, so far, only two families are found to
have an invariant algebraic limit cycle of degree 5, and one family has an algebraic
limit cycle of degree 6. It is still unknown weather there is any other quadratic
system possessing an invariant algebraic limit cycle of degree 5 or 6. No discovery
of any degree 7 or higher invariant algebraic limit cycles has been made for planar
quadratic systems.

The main goal of this paper is to develop an algorithm that is promising to find
invariant algebraic curves and algebraic limit cycles of high degree for quadratic
systems in a certain canonical form. The idea is similar to that presented in [20].
We transform the problem of finding an invariant algebraic curve to a problem of
solving large system of linear equations. In general, this process produces a large
block-multi-diagonal coefficient matrix for the linear system of equations obtained
from a planar quadratic system. Some invariant algebraic curves are reported in [20]
for some special quadratic systems. However, no algebraic limit cycle is produced
partially because of the large degrees of freedom in quadratic systems. The al-
gorithm present in this paper is based on the observation of a special canonical
form for planar quadratic systems. When the unknowns are ordered properly, the
coefficient matrix of the linear system is lower triangular that makes the solving
procedure much more efficient.

To further increase the efficiency of our algorithm, we derive some necessary
conditions for the existence of invariant algebraic curves. In the canonical form
(1.3) described below, there are five unknown parameters. To determine invariant
algebraic curves, there are two more unknowns in the cofactor. From the necessary
conditions, the number of unknowns can be reduced from a total of seven to five.
Also, under each condition, there are special cases when some diagonal entry in the
linear system becomes zero. This further reduces the number of unknowns to 4.
The combination of the special canonical form of planar quadratic systems and the
reduction of the number of unknowns makes our algorithm promising to find high
degree invariant algebraic curves and algebraic limit cycles.

We briefly recall some definitions and introduce the canonical form used in
this paper for planar quadratic systems. Let p(z,y) and g(z,y) be real coprime
polynomials with degree 2. The following differential equations

i::p(x,y), y:q(x7y) (11)

define a planar quadratic differential system in real space, where the dot denotes
the derivative with respect to the independent time variable ¢t. For a polynomial
o(x,y), the algebraic curve ¢(z,y) = 0 is called an invariant algebraic curve of the
system if there exists a polynomial K (x,y) with degree one such that

9¢ 09
p8x+q6y_K¢' (1.2)
The polynomial K is called the cofactor of the curve ¢ = 0. It is well-known that
every invariant algebraic curve is formed by orbits of the differential system. An
algebraic limit cycle of degree N is a limit cycle contained in an irreducible invariant
algebraic curve of degree IV for the system. Until now, the known maximum degree
of invariant algebraic limit cycles is found to be six [2,8,19].

There have been some different classifications of planar quadratic systems (see
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e.g., [10,17,22]). In this paper, we adopt the following canonical form used in [13,14]:

: 2
r=z"+xy+vy
. ) ) (1.3)
Y = aox + Py + azx” + baxy + 2y

The authors in [13, 14] introduce this canonical form to investigate the number
of limit cycles a planar quadratic system may have. A criterion on parameters
s, P2, as,bs, and co for the existence of four limit cycles is successfully derived
using perturbation theory. Although not every quadratic differential system can be
transformed to this canonical form, we have found that it is well suited for symbolic
computations of invariant algebraic curves. In this paper, we further assume as # 0.
We are especially interested in algebraic limit cycles enclosing a weak focus at the
origin that makes it reasonable to assume ¢(0,0) # 0. Otherwise, the origin is an
isolated point on the invariant algebraic curve. Therefore, we assume the cofactor
takes the form K(z,y) = mx + ny for some real numbers m and n.

The rest of the paper is organized as follows. Section 2 gives some necessary
conditions for the existence of invariant algebraic curves for planar quadratic sys-
tems in the canonical form (1.3). A computational method is described in Section 3
to search for invariant algebraic curves and algebraic limit cycles. A quadratic
system obtained from the algorithm is presented in Section 4 that undergoes two
Hopf bifurcations leading to two degree five invariant algebraic limit cycles. An-
other planar quadratic system possessing a degree six invariant algebraic limit cycle
is presented in Section 5. Since no degree seven invariant algebraic limit cycle is
found after combing through all degree seven invariant algebraic curves obtained
from the algorithm, we choose to present a quadratic system in Section 6 that has
one or two centers depending on parameter values. All centers are enclosed in a
family of degree seven irreducible invariant algebraic curves. Finally, a degree six-
teen irreducible invariant algebraic curve with a multiplicity eight singular point is
presented in Section 7 for a quadratic system. Section 8 concludes the paper.

2. Necessary conditions for the existence of invari-
ant algebraic curves

We write the invariant algebraic curve with degree N as

N

d(a,y) = > dilx,y) =0, (2.1)

=0

where ¢;(z,y) is a homogeneous polynomial with degree i. In our algorithm pre-
sented in the section below, ¢n, dn_1, - , ¢o Will be solved sequenceially. We first
provide some necessary conditions for the planar quadratic system in canonical form
(1.3) to possess any invariant algebraic curves. The highest degree terms, ¢y, in
the polynomial ¢ can also be constructed theoretically.

Lemma 2.1. Suppose the planar quadratic system (1) has an invariant algebraic
curve ¢(z,y) =0, and ¢n(x,y) is the homogeneous part of ¢ with the highest degree.
Then every irreducible factor of ¢ must be a factor of xqs — yps, where ps and g2
are homogeneous parts of p and q with highest degree, respectively.
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The above lemma is proved in [5] for general polynomial differential system with
any degree. Apply it to the canonical form (1.3) of quadratic systems, we have

xTq2 — Yyp2 = (1235(1’ - mly)(x - 3€2y)7

where,

T1g= ——0 q=+/(ba—1)2 — dag(cy — 1). (2.2)

We assume as # 0 and allow complex numbers in the analysis for 2y and x5 appeared
in the proof of the main theorem below.

Theorem 2.1. If the canonical form (1.3) for planar quadratic differential systems
has an invariant algebraic curve of degree N with cofactor K (x,y) = max +ny, then
one of the following conditions must be satisfied:

(i) m=n=N,
(i) co = % for some integer r =0,1,--- N — 1, and either
by = 2771]\;71\[7“*7“7 and N —r is even, (2.3)
or

where k is an integer, 0 < k < (N —r).

Proof. Let the highest degree homogeneous polynomial in the invariant algebraic
curve be ¢y = Zjvzr aja:JyN’J, where r is an integer, 0 < r < N, and a, = 1. The
coefficient of 2"y ~"*! in the expression

p% + qg—j — (mx +ny)o (2.5)
is given by co(N — r) 4+ r — n. It must vanish. If r = N, then n = N. In this case,
the coefficient of V! in the above expression (2.5) becomes N — m, which also
must vanish. Therefore, we get condition (i). If the integer » < N, then c; = {—.
This gives the first part of condition (ii). Now we prove that either (2.3) or (2.4)
has to be valid if there is an invariant algebraic curve.

According to Lemma 2.1, the homogeneous part of the invariant algebraic curve

with the highest degree N can be written as
oy =a"(x—21y) (@ —22y)V I, r<j<N, (2.6)

where, 1 and x5 are given in (2.2). Then the following expression contains all
terms with the highest degree N + 1 in (2.5) :

09N, 5 Odn

=" (2 — 21y) T N @ — 2oy) NI (0122 + Gaxy + 6397),

H (azx? + bozy + coy?) — (mx + ny)pn
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where,
01 =N —m+as(rzy — Nag) + asj(xe — 1)
1
:5((b2—|—1)N—(bg—l)r—2m—q(N+r—2j)),

0o =N —n-+ CLQ(N — 7“).1‘11‘2 + (bg — 1)j(.’1’52 — 1‘1)
— N(bgxa + x1) + (ba — D)rzy + m(z1 + x2)

:%((bz—f—l)]\f—(bg—l)r—Qm—q(N—i—?“—Qj)),
d3 = ﬁ [(baN? =269 N1 + (by — 1)r* — m(N —r) + Nr) 2125
+j(N —n)(z1 — z2) + (N — n)(rze — Nz1)]
:_m((b2+1)N—(b2—1)r—2m—q(N+r—2j)).

Since H = 0 for all x and y, we must have §; = o = §3 = 0. So their common
factor
(be + )N — (bs — )r —2m — q(N +1r —25) =0.

If N+r—2j =0, that is, N —r is even, then we get the condition (2.3). Otherwise,

we have
(b2 + 1)N — (bg - 1)1“ - 2m

N+7r—2j

Then, together with (2.2), we can solve for n,

(N —7) (b2(N —7) + N + 17 —2m)?
o (107 - GO ),

n=N+

where, r < j < (N +r). Set k = j —r, we get the condition (2.4). O

Depending on N even or odd, there are +(N +2)2 or (N +1)(N +3) conditions
in the above theorem. For example, to find degree 6 invariant algebraic limit cycles,
we need to comb through planar quadratic differential systems from 16 conditions.
In the next section, we will develop an algorithm to find all invariant algebraic
curves under each condition.

3. Symbolic computation of invariant algebraic
curves

Unlike the algorithm proposed in [20] where a large linear system of equations is
generated, using the canonical form (1.3), the algorithm presented in this section
has the advantage to divide the whole process into two major stages in the com-
putation of the invariant algebraic curve ¢(x,y) = 0. The first stage is to solve
for coefficients of all monomials in ¢ as functions of parameters in the differential
system. During this stage, other necessary conditions are produced for the existence
of invariant algebraic curves. The second stage is to solve for unknown parameters
to get sufficient conditions. Then invariant algebraic curves can be constructed
accordingly.
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3.1. Solving for invariant algebraic curves as functions of un-
known parameters

Let K(x,y) =matny be the cofactor of an invariant algebraic curve ¢ = Zﬁvzoqbi (z,y)
for planar quadratic system (1.3). Theorem 2 provides necessary conditions for the
existence of algebraic curves on the parameter variables, oo, B2, as, bs, co, m and n.
For any one condition, from the proof of the theorem, there is always a solution for
the highest degree homogeneous polynomial ¢. To determine the existence of ¢,
we try to solve for ¢n_1,dn—_2, - , P as functions of parameters sequentially. The
necessary conditions in the theorem essentially eliminates two unknown parameters.
In each step of the algorithm, one or more equations will be produced for other
unknown parameters to satisfy.

Suppose ¢;’s have been solved for i < k < N, and are substituted into equation
(1.2). Let ¢; = Z;ZO ai;x*~Iyl. Then, from the homogeneous part of (1.2) with
degree 7, the coeflicients a;;,0 < j < 4, in ¢; can be determined from a linear system
of equations:

Ap =4, (3.1)

wheres, p is the unknown vector comprising (a;o, a;1,- - ,as;), 0 is the right hand
side vector with each component a function of the parameters. For the canonical
form (1.3), the coefficient matrix A = (0;;) is lower-triangular with 3 diagonals

Jjj:j_(i_j)CQ_na j:()v]-v"'via
Ojy1j=J+ (@ —5)ba—m, j=0,1,---4, (3.2)
Ojy2, = (i—jlag, j=0,1,---i—1.

Clearly, the matrix A has ¢ + 2 rows and i + 1 columns. Forward substitution
method can be performed on the first ¢ + 1 equations to solve for (a0, @1, - , ai;).
Suppose no diagonal entry is zero, a unique solution is produced from the procedure.
Substituting the solution into the last equation, we get a condition that has to be
satisfied by all parameters.

We keep track of special parameter values that make one of the diagonal entries,
say oy, zero. In this case, we skip the I-th equation that usually solves for ay
during the process, and continue the forward substitution. After the procedure is
finished, the solutions are substituted back into the skipped equation and the last
equation. The result from the last equation may or may not contain a;. If it does
contain a;;, then a;; can be solved. Otherwise, a;; becomes a free parameter. In this
scenario, including the [-th equation skipped earlier, two conditions are produced
in the process that must be satisfied for all parameters, including the new one, a;;.

The above procedure is sequentially performed for ¢ = N — 1, N — 2,--- until
the last step ¢ = 0 where there are two equations for the unknown constant term
in ¢. One equation is used to solve the constant term and the other produces a
condition for parameters to satisfy.

3.2. Determining solutions for parameters

After the above process is finished, N or more nonlinear algebraic equations are
obtained for parameters to satisfy. The next step is to solve these equations to
find sufficient conditions for the existence of invariant algebraic curves. In the case
assuming no diagonal entry is zero, there are exactly N equations (some may be



2336 R. Zhou

0=0) and 5 unknown parameters. In other cases, there are more than N equations
and 4 unknowns. Any solution produced from these equations generates an invariant
algebraic curve with degree IV for the planar quadratic system, although it may not
be irreducible.

Mainly two simple techniques are used in solving nonlinear algebraic equations
obtained from the above algorithm for parameters. One is pattern match. Because
of the large number of monomials in the nonlinear system of equations, it is difficult
to solve for all unknowns together. We select several values of one unknown, say, bs.
For each by value, we solve the system of equations for other unknowns. Then we try
to use rational functions of by to fit the solution data. This approach works well and
greatly reduces the time to find all families of planar quadratic systems possessing
invariant algebraic curves with at least one free parameter by. The drawback is that
it may lose some solutions, especially those isolated ones.

If solutions still cannot be found with fixed by or some solutions cannot be fit
with rational functions, we employ Groebner basis (see for example [1]) to generate
an equivalent system of equations that can be solved directly. During this process,
we are more interested in the nonlinear relation, say, between 85 and by. In the case
the relation between B and by can be expressed as a quadratic equation, a rational
transform will be performed to avoid square roots during the solving process. In
the cases that these two variables satisfy cubic or quartic equations, we discard the
family of solutions due to their complicated expressions.

3.3. Post-processing

Substitute the solution for parameters to the solution for coefficients in the polyno-
mial ¢, the corresponding invariant algebraic curve can be explicitly constructed.
Then we can investigate equilibrium points, their transitions, integrability, and
other important issues of the quadratic system. We are more interested in algebraic
limit cycles of planar quadratic differential systems [3,4,8,15,17-19]. We especially
pay attention to Hopf bifurcations leading to limit cycles. When the equilibrium
point at the origin has two purely imaginary eigenvalues in the Jacobian matrix,
the first Lyapunov quantity is given by (see [13,14])

_7'('(0&2([7262 — 1) — ag(bg + 2))

L =
! 4(—ap)5/2

If Ly is not zero, the equilibrium point is a weak focus of multiplicity 1. A Hopf
bifurcation occurs at this point with limit cycles emerging when a suitable parameter
changes. In this case, we further examine the invariant algebraic curve ¢ obtained
in the above algorithm to figure out if it contains an oval. If it does, we can prove
theoretically that the limit cycle is indeed algebraic.

We have implemented the algorithm using the software Mathematica [21], which
provides some sophisticated methods to solve nonlinear algebraic equations, as well
as a tool to generate Groebner basis. Some examples of invariant algebraic curves,
including invariant algebraic limit cycles, obtained from our algorithm are presented
in the following sections.

Remark 3.1. Unless otherwise stated, all invariant algebraic curves produced be-
low are irreducible. The built-in function in Mathematica is used to check the
absolute irreducibility of a polynomial in complex space.
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4. Invariant algebraic limit cycles of degree 5

From the algorithm described in the last section, a quadratic system with the fol-
lowing parameters

(254 1)(9s — 7) (27s® — 63s% + 89s — 77)

“@= 8(s — 7)2 ’
) 3(05% 4275 195 - 63)
: 8(s—17) ’

co =2, (4.1)
(s =1)(9s —7)? (3s* = 7)

a2 = 4(s —T7)2 ’
(9s —7) (35> + 25— 9)

Bo =

8(s—7) ’

is generated to have an invariant algebraic curve of degree 5 that contains a limit
cycle:

¢ =3d1(3s — 1)% (35> — 14s + 7) u* ((27s® — 635 + 89s — 77) u + 8v)
+ 4d1u® (do(9s — T)u® + 16 (455 — 81s® + 1355 — 91) uv + 64v°)
+3072d5(s — 2)(2s + 1)(9s — 7)% (155> — 10s + 7) u®
+9216(s + 1)(9s — 7) (9s* + 1835 — 417s* 4 5095 — 308) u*v
—18432(9s — 7) (9s* — 48s” + 10s® — 184s + 133) wv?
— 98304 (352 — 145 +7) v + 144(s — 3)*(9s — 7)? (dyu + 16v)

where, we have shifted the origin to a singular point on the curve with a partial

scaling
(95 —17)2
12(3s—1) )’

9s -7
u_x+73(33—1)’ v=1_(s=7) (y+
and
dy =27(s —3)(s +1)(35s — 1)*(3s +7)(9s — 7),
dy = 243s° — 585s* + 10625 — 2042s% 4 2039s — 1197,
ds = (9s — 7) (95> + 25 + 25) .

The cofactor is given by

382 -7
K(x,y) =6 .
(z,y) ( - x+y>
For the existence of invariant algebraic curves with degree N = 5, one of the
12 conditions in Theorem 2 must be satisfied. This quadratic system is produced
when r =4,k = 0 in condition (2.4), equivalently,
(m —5)(by —m +4)

co=n—4,a9 = .
n—>5

For the special case n = 6, one of the diagonal entries 0;; in the coefficient matrix
(3.2) is zero. Three complicated algebraic equations with 4 unknown parameters
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Figure 1. Top: Invariant algebraic limit cycle of degree 5 for the quadratic system (4.1) at s = — 2.

Bottom: Another invariant algebraic limit cycle at s = % The dashed blue curves in this and other

figures below are # = 0 and y = 0, respectively. Their intersections are equilibrium points of the

dynamical system. Solid red curves are components of the invariant algebraic curve of the quadratic

system.

ag, B2,ba, and m are obtained from the algorithm (other two equations 0=0 are
deleted). Using Groebner Basis, we found one of the invariant algebraic curves
satisfying the equation

96b3 — (m? + 120m — 144) by + 2m® — 3m? + 288m — 1080 = 0.

With the help of the rational transform

6(3s2 — 7)
m=Ts 7

we produced parameter values presented in (4.1).
There are two Hopf bifurcations in this system each generating algebraic limit

cycles as parameter s varies. One Hopf bifurcation occurs at s = —%(1 +24/7) with
Lyapunov number L =~ —0.025. Stable limit cycles emerge as a result for smaller
s value in the interval (—%, —%ﬁ) The invariant algebraic curve for s = —2 is

shown in Figure 1 (top). Clearly, there is a periodic orbit in the algebraic curve.

Theorem 4.1. Let f(x,y) = 0 be a real invariant algebraic curve of degree larger
than 1 for the quadratic system (1.1). Let k(x,y) be the cofactor of f. We define
XY XY XY
P(X.Y,Z) = Z%p(

A E)’ Q(X,Y,Z) = Z2CI(§’ E)u K(X,Y,Z) = Zk(ga E)’
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Figure 2. Top: The degree 5 invariant algebraic curve at s = % for the quadratic system (4.1). There is
a heteroclinic loop enclosing the equilibrium point at the origin. For s > %, algebraic limit cycle emerges.
Bottom: The degree 5 invariant algebraic curve of (4.1) at s = % < % It contains a heteroclinic loop
connecting two equilibrium points B and C.

Suppose that there are two points A1 and As in the complex projective plane such
that P(A;) = Q(A;) = K(A;) =0, i =1,2. Then all the limit cycles of the quadratic
system are contained in f =0, so in particular they are algebraic.

The above theorem is proved in [3]. For the quadratic system with parameters
in (4.1), one easily checks that, the following two points

7 — 382 (7 —3s?)2 )
(Bs—1)" s(s—T7)(3s—1)’

A1<0307 1)7 A2 (5

in the complex projective plane satisfy the assumption in Theorem 4.1. Therefore,
there is an unique degree 5 invariant algebraic limit cycle for the system that is on
¢ = 0. As s decreases, the size of the limit cycle increases. When s approaches
s = —%, the size increases to infinity.

From Figure 1 (top), besides the algebraic limit cycle enclosing the unstable focus
at the origin A, the invariant algebraic curve contains another branch homeomorphic
to a straight line passing through two equilibrium points B and C', where B is an
unstable node while C' is stable. The other equilibrium point D not on the algebraic
curve is a hyperbolic saddle. We remark that, at the transition point s = —%, the
invariant algebraic curve degenerates to two straight lines. For s < —%, it contains
three disjoint branches with each homeomorphic to a straight line.

There is another Hopf bifurcation point of the quadratic system at s = %(—1 +

24/7) with Lyapunov number L ~ —179.8. Stable algebraic limit cycles emerge and
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persist in the interval % <5< %(71 + 2v/7). An example is shown in Figure 1
(bottom) for s = % Similar to the case discussed earlier, the invariant algebraic
curve contains one limit cycle enclosing the unstable focus A and another branch
passing through two equilibrium points B and C'. Unlike the limit cycle presented
above, the size of the limit cycle is always bounded in this case. At the transition
point s = g, there is a heteroclinic loop enclosing the unstable focus at the origin.
This loop is formed by a straight line and a parabola with two hyperbolic saddles
on it (Figure 2 top). For s < %7 There are two disjoint branches in the invariant
algebraic curve. One of them forms a heteroclinic loop with a cusp on it (Figure 2

bottom).

5. Invariant algebraic limit cycles of degree 6

The quadratic system with the following parameters

as = —s (25° + 16s + 59) /70,
by = —(s? 4 23s — 168) /70,
co =2, (5.1)
ap = —5%(2s — 3)/70,
B2 = —s(s — 19)/70,
has an irreducible invariant algebraic limit cycle with degree 6. Define
2

w=od %4

> +
LR
g v=v

the invariant algebraic curve can be expressed as
¢ =(—14+5)%(2 + 5)%(21 + 5)(7 + 25)u®
+30(—14 4 5)3(2 + 8)*(21 + s)u*(s(9 + s)u — 14v)
+11760000* (3s (35 + 62s + 14) u — 196(s + 1)v)
+3000s” (s + 16) (25 — 111s* — 741s — 1708) u®
— 126000s%(—1512 — 160s — 415% + 25%)uv
+300(—14 4 5)%(2 + s)%u? (s*(179 + 18s + s%)u® — 285(23 + s)uv + 588v%)
4 2025005%(s(s + 16)u — 28v)*.
The cofactor is K (z,y) = 6x + 6y. This planar quadratic system is generated when
the condition m = n = 6 is satisfied in Theorem 2. For the special case ¢y = 2, one
of the diagonal entries o;; in the coefficient matrix (3.2) is zero. Three algebraic
equations with 4 unknowns s, 82, as and by are obtained from the algorithm (other

three equations 0=0 are deleted). Using Groebner basis, for one family of invariant
algebraic curves, the parameters b and §o in the system satisfy the relation

10062 — 200b2 8 + 660by + 10052 + 186083, — 2160 = 0.

The transform by = —(s? + 23s — 168)/70 is then used to produce all parameter
values of the system given in (5.1).

For 14 < s < 19, the invariant algebraic curve of the system contains an oval
enclosing the unstable focus at the origin A as shown in Figure 3 (top) when s = 18.
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Figure 3. Top: The invariant algebraic curve for the quadratic system (5.1) when s = 18. One of the
branches is an algebraic limit cycle of degree 6 enclosing the focus at the origin. Bottom: The invariant
algebraic curve at s = 7. One of the branches is a heteroclinic loop enclosing the focus at the origin

with a cusp.
Theorem 5.1. The quadratic system (1.3) with parameters in (5.1) has a unique

limit cycle, the algebraic one of degree 6 on ¢ = 0.

Proof. Define the function
H =(5%(2s — 3) + 25(25% — 45 + 19)x + (2 + 5)(25% — 95 + 14)2% — 140y)¢~ /3.

Since ¢ = 0 is an invariant algebraic curve with cofactor K = 6z 4 6y, we have
H =[25(25% — 45+ 19)i + 2(2 + 5)(25% — 95 + 14)zi — 140g]¢~ /3
[s2(25 — 3) + 25(25% — 45 + 19)x + (2 + 5)(25% — 9s + 14)2?

3
— 140y] K (z,y)p~/*
=40s(s + 2)z2¢~ /3,
Suppose there is another limit cycle or periodic orbit v for the system. Because the
curve ¢ = 0 is invariant, so 7 does not have intersection with it. Therefore, ¢ does

not change sign on . Then we would have
/H = /403(5 +2)22¢p7 /3 £ 0, for s # 0, -2,
gl ¥
O

a contradiction. Therefore, the algebraic curve ¢ = 0 contains a unique degree 6

invariant algebraic limit cycle for the system.
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From Figure 3 (top), besides the oval, there is another branch in the algebraic
curve passing through other three equilibrium points B, C, and D, where B is an
unstable node, C' a saddle, and D a stable node. For s > 19, there is only one
branch in the invariant algebraic curve that is homeomorphic to a straight line. A
Hopf bifurcation occurs at s = 19 with Lyapunov number L ~ —0.0025. Stable
algebraic limit cycle emerges in the interval 14 < s < 19 with the size of the cycle
increasing to infinity when s approaches 14. At s = 14, the invariant algebraic
curve degenerates to two crossing straight lines. In the interval 0 < s < 14, there is
a heteroclinic loop, with a cusp on it, enclosing the unstable focus at the origin as
shown in Figure 3 (bottom) when s = 7.

6. Invariant algebraic curves of degree 7 enclosing
one or two centers

No degree 7 invariant algebraic limit cycle for the quadratic system in canonical form
(1.3) has been found from our algorithm. In this section, we report a quadratic sys-
tem having a family of irreducible invariant algebraic curves of degree 7 that contain
periodic orbits enclosing one or two centers for appropriate parameter values.

The planar quadratic differential system (1.3) with the following parameters

as = —5(2by — 5)(7Thy — 4) /243,

by = ba,

co = 2/5, (6.1)
(p = —25(by + 2)(Thy — 4)/243,

P2 =0,

has a family of irreducible invariant algebraic curves with degree 7. Define p =
(35by — 20)x — 27y, and s = Tby — 4, the polynomial ¢(x,y) of the algebraic curve
can be expressed as

896p” + 78400sp® + 2940000s%p® + 61250000 (25b3 + 64by — 134) sp*

+ 30625000p" s (1944 (2b5 — by — 10) y — 5(13b; — 100)s?)

+ 6562500p° [40824 (11by* — 82by — 46) sy — 25(307by — 484)s*

+45360(bs + 2)s®y| + 1093750p [972000(bs + 2)s'y (6.2)

+2449440(5b2 + 1)s°y® — 39680928 (by + 2)(5b2 + 1)sy® — 38125s°]

+ 78125 (122472000(5b5 + 1)s'y? — 2499898464 (5b2 + 1)%sy* — 9531255

+ A\[=35(2by — 5)x? — 5(Tby — 4)(Tx + 5) + 189(x + 1)y]?,

where, A is a free parameter for the system with fixed bs. The cofactor is given by

14

14

K(z,y) =
(z,y) 7
This system is obtained when r = k = 0 in condition (2.4), equivalently,

(m —T7)(Tby — m)
T(n—17)

Co = , A2 =

|3
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For the special case n = %, one of the diagonal entries o;; in the coefficient matrix

(3.2) is zero. And, when m = % (by + 2), another diagonal entry becomes zero.
During the first stage of the algorithm, the coefficient of z%y? in the invariant
algebraic curve, ags, becomes a free parameter. Eight algebraic equations with 4
unknowns s, 2,bs and ags are obtained from the algorithm. Surprisingly, they
are easy to solve without using Groebner basis in the software Mathematica. There
are three families of solutions with either one or two free parameters, as well as one
isolated solution. One family of the solutions produces the quadratic system (6.1)
with a free parameter bs.

For by < —2, the quadratic system has 4 equilibrium points. The one at the
origin is a center inside a homoclinic orbit. Figure 4 (top) shows 3 invariant alge-
braic curves of the system corresponding to 3 different A values in the expression
(6.2) when by = —3. One contains a periodic orbit enclosing the center. One forms
a homoclinic orbit bounding all algebraic periodic orbits. And the third is home-
omorphic to a straight line with two cusps on it. For —2 < by < %, the origin
becomes a saddle point. For by > %, the quadratic system has only two equilibrium
points. Both of them are centers. Figure 4 (bottom) shows 6 invariant algebraic
curves of the system corresponding to 6 different A values in the expression (6.2)
when by = 1, each containing a line and a periodic orbit enclosing one of the two
centers.

Figure 4. Top: Three invariant algebraic curves of the planar quadratic system (6.1) at b, = —3. One
contains a homoclinic orbit enclosing the center at the origin. Bottom: Six invariant algebraic curves
of the planar quadratic system (6.1) at b = 1. Each contains a periodic orbit enclosing one of the two
centers and a branch homeomorphic to a straight line. Flow field of the dynamical system is shown in
the figure with arrowed lines.
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7. Irreducible invariant algebraic curves of degree
16

A test run of our algorithm searching for irreducible invariant algebraic curves of
degree 16 is performed when the condition m = n = 16 is satisfied in Theorem 2.1.
Two quadratic systems are found with invariant algebraic limit cycles. However,
both polynomials of the curves are reducible. What we have found turn out to
be degree 4 irreducible algebraic limit cycles. So we do not report them in this
paper. Instead, we show a quadratic differential system possessing a degree 16
irreducible invariant algebraic curve with a singular point of multiplicity 8 on it.
The parameters in the system are given in (7.1) below,

a5 = —%(3—3)(s+4)(43_29),
4
bg = T5 (52 — ].) ,
=2, (7.1)
o = —%(s S 11)(s — 3)2,
B2 = 14—5(8 —10)(s — 3).

For the condition m = n = 16, during the forward substitution procedure in
the algorithm, one of the diagonal entries becomes 0 when c; = 2. Eight nontrivial
nonlinear algebraic equations are obtained for 4 parameters from the first stage of
the algorithm. For one family of solutions, using pattern match in the second stage
of the algorithm, the following polynomial is produced in the Groebner basis

4224 — 2140by + 75b3 — 124085 — 150b2 35 + 7553.

Then, the solution for all parameters in (7.1) are generated using the transform
by = % (52 - 1). Due to the large number of monomials in the polynomial of the
invariant algebraic curve, we omit the expression of ¢ in this paper. The cofactor
is K(x,y) = 16(z + y).

Take s = —1—33, for example, we get the following planar quadratic differential
system

i=a"+ay+y,
4TS 265 T, 5L,
Y= P T ¥ 9" Tt Ty

(7.2)

The degree 16 polynomial ¢ of the invariant algebraic curve of the system is provided
in Appendix A.
System (7.2) has four equilibrium points

25 625 19 361 25
P Py(——,——), P3s(——, —), Pu(5,——).
1(070)7 2( 27’ 54 )7 3( 9 ) 90 )7 4(5, 6 )
The invariant algebraic curve ¢(x,y) = 0 and the vector field of the differential
system are shown in Figure 5. Two heteroclinic loops are clearly on the algebraic
curve, each containing an unstable node (P; and Py, respectively), and meeting at
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Figure 5. The algebraic curve (solid red) and the vector field (black arrows) of the differential system
(7.2). Blue dashed lines are determined by # = 0 and y = 0.

the stable node P,. The other equilibrium point P, is a saddle. From the figure,
there are 16 orbits on the algebraic curve, each leading to the stable node P,. From
the expression of the polynomial ¢ in (A.1), one easily finds that

8i+j¢
O'xdiy (P2) =0

fori+j5=0,1,--- ,7. Therefore, P, is a singular point of the polynomial ¢ with
multiplicity 8.

This is one example to show the effectiveness of our algorithm finding high
degree invariant algebraic curves. We are in the process generating other quadratic
systems with complex dynamics.

8. Conclusion

In this paper, we have derived some necessary conditions for the existence of invari-
ant algebraic curves for planar quadratic systems in the canonical form (1.3). An
algorithm is then carefully designed to search for invariant algebraic curves with an
arbitrary degree. From the algorithm, we have successfully produced one example
of degree 5 and one example of degree 6 invariant algebraic limit cycles for two
quadratic differential systems, respectively. A family of degree 7 invariant alge-
braic curves enclosing one or two centers is also produced from the algorithm. A
test run for degree 16 irreducible invariant algebraic curves further shows that our
algorithm is capable of producing high degree algebraic curves. Theoretically, based
on the algorithm presented in this paper, going over all conditions in Theorem 2.1,
it is possible to find all invariant algebraic limit cycles for quadratic systems in the
canonical form (1.3).



2346 R. Zhou

A. Coefficients in the irreducible invariant algebraic
curve of degree 16

The invariant algebraic curve of the quadratic system (7.2) can be written as

dla,y)= > ay (x+;‘;’) (y+65%f)j =0, (A.1)

8<i+j<16

where the nonzero terms are given below in Figure 6 with the format (i, 7, a;;).

80 —28516111132

122  283%9527113119%923!
90 21035514131931411?

53 2751371131891
10 0 —283%5117113119231103!

6 3 —2163°51271131232
110 283'551013119123183!

73  21639597313119123!
12 0 —2°320597111113119123!

8 3 —21°3155813119123129!
130 26323567113119123'431

9 3 2133205671113119123!
140 —243295471191932

10 3 2'2323537111113119% 231
150 —2%33151191 231

4 4 —ol751371131711
16 0 338191231

54 2835571317193t
71 213518131

6 4 —2163195871131191231311
8 1 —2123551472131931

7 4 2163155711113'19123!
9 1 2!13105117113117119123!

8 4 2133205511113%19123!
101 —219315511132191231

35 2251171131531
111 293%95°11'13'19123!

45 —22036597111113%23¢!
121 —283%4577113119123!

55 219310567113219123!
131 273295471191 23!

6 5 2183155%7113119123!
14 1 —92633451191931!

2 6 —22251172131
6 2 —2t45t47t13t107t

36 222355971131231
7 2 2143%51271131931991

4 6 220395%71131191923!
8 2 —2123105107113119193167?

17 225591311 7!
9 2 2133155913119193147!

27 2243557131231
102 —2'03225711113%19%23!

08 22458131
112  210324547213119' 23!

Figure 6. Coefficients in the algebraic curve (A.1).
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