
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 12, Number 6, December 2022, 2349–2369 DOI:10.11948/20210492

BOUNDEDNESS CRITERION FOR
SUBLINEAR OPERATORS AND

COMMUTATORS ON GENERALIZED MIXED
MORREY SPACES

Mingquan Wei1,†

Abstract In this paper, the author studies the boundedness for a large class
of sublinear operators Tα, α ∈ [0, n) generated by Calderón-Zygmund operators
(α = 0) and generated by fractional integral operator (α > 0) on generalized
mixed Morrey spaces Mφ

q⃗ (R
n). Moreover, the boundeness for commutators

of Tα, α ∈ [0, n) on generalized mixed Morrey spaces Mφ
q⃗ (R

n) is also studied.
As applications, we obtain the boundedness for Hardy-Littlewood maximal
operator, Calderón-Zygmund singular integral operators, fractional integral
operator, fractional maximal operator and their commutators on generalzied
mixed Morrey spaces.
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1. Introduction
For x ∈ Rn, and r > 0, let B(x, r) be the open ball centered at x with the radius r,
and Bc(x, r) be its complement. The well-known fractional maximal operator Mα

and fractional integral operator Iα are defined by

Mαf(x) = sup
r>0

1

|B(x, r)|1−α/n

∫
B(x,r)

|f(y)|dy, 0 ≤ α < n,

and
Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy, 0 < α < n

respectively, where f is locally integrable and |B(x, r)| is the Lebesgue measure
of B(x, r). If α = 0, then M ≡ M0 is the classical Hardy-Littlewood maximal
operator.

Other than fractional maximal operator Mα and fractional integral operator
Iα, Calderón-Zygmund singular integral operators (see [8]) are also basic integral
operators in harmonic analyis. A Calderón-Zygmund singular integral operator
is a linear operator bounded from L2(Rn) to L2(Rn), which takes all infinitely
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continuously differentiable functions f with compact support to the functions f ∈
L1
loc(Rn) and can be represented by

Kf(x) =

∫
Rn

k(x, y)f(y)dy, a.e. off suppf.

Here k(x, y) is a continuous function away from the diagonal which satisfies the
standard estimates: there exists some 0 < ϵ ≤ 1, such that

|k(x, y)| ≲ 1

|x− y|n

for all x, y ∈ Rn, x ̸= y and

|k(x, y)− k(x′, y)|+ |k(y, x)− k(y, x′)| ≲ |x− x′|ϵ

|x− y|n+ϵ

whenever 2|x− x′| < |x− y|.
In order to study the above operators and some related operators in harmonic

analysis uniformly, many researchers introduced the following sublinear operators
satisfying some size conditions.

The first one is T ≡ T0, which is a sublinear opertor, and satisfies that for any
f ∈ L1(Rn) with compact support and x /∈ suppf ,

|Tf(x)| ≲
∫

|f(y)|
|x− y|n

dy. (1.1)

Another one is Tα (0 < α < n), the fractional version of T0, which is also a sublinear
opertor, and satisfies that for any f ∈ L1(Rn) with compact support and x /∈ suppf ,

|Tαf(x)| ≲
∫

|f(y)|
|x− y|n−α

dy. (1.2)

We point out that condition (1.1) was first introduced by Soria and Weiss [26]
and condition (1.2) was introduced by Guliyev et al. [12]. Conditions (1.1) and
(1.2) are satisfied by many interesting operators in harmonic analysis, such as the
Calderón-Zygmund singular integral operators, the Carleson’s maximal operators,
the Hardy-Littlewood maximal operators, the Fefferman’s singular multipliers, the
Fefferman’s singular integrals, the Ricci-Stein’s oscillatory singular integrals, the
Bochner-Riesz means and so on (see [16, 26] for more details).

As is well known, commutators are also important operators and play a key
role in harmonic analysis. Recall that for a locally integrable function b and an
integral operator T , the commutator formed by b and T is defined by [b, T ] =
bT − Tb. Commutators of fractional maximal operator, fractional integral operator
and Calderón-Zygmund singular integral operators have been intensively studied,
see [8] for more details. It is worthy pointing out that there are two different
commutators of the fractional maximal operator Mα. In this paper, the commutator
of fractional maximal operator [b,Mα] under consideration is of the form

[b,Mα]f(x) = sup
r>0

1

|B(x, r)|1−α/n

∫
B(x,r)

|b(x)− b(y)| |f(y)|dy, 0 ≤ α < n,

for all locally integrable functions f on Rn. For simplicity, we denote by [b,M ] =
[b,M0].
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To study a class of commutators uniformly, one can also introduce some sublinear
operators with additional size conditions as before. For a function b, suppose that
the operator Tb ≡ Tb,0 represents a linear or a sublinear operator, which satisfies
that for any f ∈ L1(Rn) with compact support and x /∈ suppf ,

|Tbf(x)| ≲
∫

|b(x)− b(y)|
|x− y|n

|f(y)|dy. (1.3)

Similarly, we assume that the operator Tb,α, α ∈ (0, n) represents a linear or a
sublinear operator, which satisfies that for any f ∈ L1(Rn) with compact support
and x /∈ suppf ,

|Tb,αf(x)| ≲
∫

|b(x)− b(y)|
|x− y|n−α

|f(y)|dy. (1.4)

The operator Tb,α, α ∈ [0, n) has been studied in [12, 16].
As we know, the classical Morrey space is an important generalization of Lebesgue

spaces. The classical Morrey space was introduced by Morrey in [18] to study the
regularity of elliptic partial differential equations. Nowadays, the Morrey space has
become one of the most important function spaces in the theory of function spaces.
By a slight modification, Guliyev et al. [3, 12] introduced generalized Morrey spaces
and studied the boundedness of many important operators in harmonic analysis on
generalized Morrey spaces. In particular, the boundedness of sublinear operators T ,
Tα, Tb and Tb,α was considered in [12]. Another interesting extension of the classical
Morrey space is the mixed Morrey space, which was introduced by Nogayama et al.
[20, 21, 22]. The boundedness of many integral operators and their commutators
on mixed Morrey spaces was studied in [20, 21].

Highly inspired by the work of Guliyev [3, 12, 13] and Nogayama et al. [20,
21, 22], we are going to study the boundedness of the operators T , Tα, Tb and
Tb,α under some size conditions on generalized mixed Morrey spaces in this paper.
Here, generalized mixed Morrey spaces are the combination of generalized Morrey
spaces and mixed Morrey spaces (see Definition 2.1 in the following section), and
theorefore are much more general. Our main results extend the boundedness of
many operators on Morrey spaces [1, 24, 25, 28], mixed Lebesgue spaces [2, 4],
generalized Morrey spaces [3, 12, 13], and mixed Morrey spaces [20, 21]. Moreover,
one can obtain the boundedness of many integral operators in harmonic analysis on
generalized mixed Morrey spaces from our main theorems.

This paper is organized as follows. The definitions and some preliminaries are
presented in Sect. 2. The boundedness of T and Tα on generalized mixed Morrey
spaces is studied in Sect. 3. The boundedness of Tb and Tb,α on generalized mixed
Morrey spaces is obtained in Sect. 4. Some applications are given in Sect. 5 to
show the power of our main theorems.

2. Definitions and preliminaries
Throughout the paper, we use the following notations.

For any r > 0 and x ∈ Rn, let B(x, r) = {y : |y−x| < r} be the ball centered at
x with radius r. Let B = {B(x, r) : x ∈ Rn, r > 0} be the set of all such balls. We
also use χE and |E| to denote the characteristic function and the Lebesgue measure
of a measurable set E.
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The letter p⃗ denotes n-tuples of the numbers in (0,∞], (n ≥ 1), p⃗ = (p1, · · · , pn).
By definition, the inequality, for example, 0 < p⃗ < ∞ means 0 < pi < ∞ for all
i. For 1 ≤ p⃗ ≤ ∞, we denote p⃗′ = (p′1, · · · , p′n), where p′i satisfies 1

pi
+ 1

p′
i
= 1. By

A ≲ B, we mean that A ≤ CB for some constant C > 0, and A ∼ B means that
A ≲ B and B ≲ A.

Let M(Rn) be the class of Lebesgue measurable functions on Rn. For 0 < p⃗ <

∞, a measurable function f on Rn belongs to Lp⃗
loc(Rn) if fχE ∈ Lp⃗(Rn) for any

compact subset E of Rn. We also use C to represent all the complex numbers, and
N to represent the collection of all non-negative integers.

The classical Morrey space Mp
q (Rn) is a natural generalization of Lebesgue

spaces, which consist of all functions f ∈ Lp
loc(Rn) with finite norm

∥f∥Mp
q
= sup

x∈Rn,r>0
|B(x, r)|

1
p−

1
q ∥f∥Lq(B(x,r)),

where 1 ≤ q ≤ p ≤ ∞. Note that Mp
q (Rn) = Lp(Rn) when p = q, and Mp

q (Rn) =
L∞(Rn) when p = ∞. If q > p, then Mp

q (Rn) = Θ, where Θ is the set of all
functions equivalent to 0 on Rn.

The classical Morrey space is a proper substitution when we consider the bound-
edness of integral operators in harmonic analysis. For example, Chiarenza and
Frasca [5] studied the boundedness of the maximal operator M in Mp

q (Rn). The well
known Hardy-Littlewood-Sobolev inequality was also extented to Morrey spaces by
Spanne (but published by Peetre [23]) and Adams [1]. Since Mαf(x) ≲ Iα|f |(x), 0 <
α < n, the fractional maximal operator Mα is also bounded on Mp

q (Rn).
In recent years, classical Morrey spaces Mp

q (Rn) were extended to generalized
Morrey spaces by Guliyev et al. [3, 10, 12, 13].

Let 1 ≤ q < ∞ and φ(x, r) : Rn × (0,∞) → (0,∞) be a Lebesgue measurable
function. A function f ∈ M(Rn) belongs to Mφ

q (Rn), the generalized Morrey
spaces, if it satisfies

∥f∥Mφ
q
= sup

x∈Rn,r>0
φ(x, r)−1|B(x, r)|−

1
q ∥f∥Lq(B(x,r)) < ∞.

Roughly speaking, generalized Morrey space Mφ
q (Rn) can be obtained by substi-

tuting |B(x, r)|1/p−1/q with a more general function in the definition of Mp
q (Rn).

From the definition, we recover the classical Morrey space Mp
q (Rn) by taking

φ(x, r) = |B(x, r)|−1/p. The boundedness of the sublinear operators T , Tα, Tb

and Tb,α on spaces Mφ
q (Rn) under some size conditions was obtained by Guliyev et

al. [12].
In 2019, Nogayama [21] considered a new Morrey type space, with the Lp(Rn)

norm replaced by the mixed Lebesgue norm Lq⃗(Rn), which is called the mixed
Morrey space.

We first recall the definition of mixed Lebesgue spaces defined in [2].
Let p⃗ = (p1, · · · , pn) ∈ (0,∞]n. Then the mixed Lebesgue norm ∥·∥Lp⃗ is defined

by

∥f∥Lp⃗ =

∫
R
· · ·

(∫
R

(∫
R
|f(x1, x2, · · · , xn)|p1dx1

) p2
p1

dx2

) p3
p2

· · · dxn


1

pn
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where f : Rn → C is a measurable function. If pj = ∞ for some j = 1, · · · , n, then
we have to make appropriate modifications. We define the mixed Lebesgue space
Lp⃗(Rn) to be the set of all f ∈ M(Rn) with ∥f∥Lp⃗ < ∞.

Let 1 ≤ q⃗ < ∞, 1 ≤ p < ∞ and n/p ≤
∑n

i=1 1/qi. A function f ∈ M(Rn)
belongs to the mixed Morrey spaces Mp

q⃗ (R
n) if

∥f∥Mp
q⃗
= sup

x∈Rn,r>0
|B(x, r)|

1
p−

1
n

(∑n
i=1

1
qi

)
∥fχB(x,r)∥Lq⃗ < ∞.

Obviously, we recover the classical Morrey space Mp
q (Rn) when q⃗ = q. We point

out that in [20, 21], the author used the cubes to define the mixed Morrey spaces.
It is not hard to verify that the two definitions are equivalent.

In [21], the Hardy-Littlewood maximal operator M , the fractional interal opera-
tor Iα and the singular integral operators K were proved to be bounded in Mp

q⃗ (R
n).

The boundedness of the commutator of Iα on Mp
q⃗ (R

n) was also obtained in [20].
Noting that generalized Morrey spaces and mixed Morrey spaces are different

extensions of the classical Morrey spaces, it is natural for us to unify the two spaces.
Now we are in a position to give the difinition of generalized mixed Morrey

spaces.

Definition 2.1. Let 1 ≤ q⃗ < ∞, and φ(x, r) : Rn × (0,∞) → (0,∞) be a Lebesgue
measurable function. A function f ∈ M(Rn) belongs to the mixed Morrey space
Mφ

q⃗ (R
n) if

∥f∥Mφ
q⃗
= sup

x∈Rn,r>0
φ(x, r)−1∥χB(x,r)∥−1

Lq⃗ ∥fχB(x,r)∥Lq⃗ < ∞.

Generalized mixed Morrey spaces contain generalized Morrey spaces and mixed
Morrey spaces as special cases. In fact, Mφ

q⃗ (R
n) = Mφ

q (Rn) when q⃗ = q, and
Mφ

q⃗ (R
n) = Mp

q⃗ (R
n) when φ(x, r) = |B(x, r)|−1/p. We point out that generalized

mixed Morrey spaces were also introduced recently by Zhang and Zhou [29] in
different ways.

For a non-negative locally integrable function w on Rn, the weighted Hardy
operators Hw and H∗

w are defined by defined

Hwg(t) :=

∫ ∞

t

g(s)w(s)ds, 0 < t < ∞

and
H∗

wg(t) :=

∫ ∞

t

(
1 + ln

s

t

)
g(s)w(s)ds, 0 < t < ∞,

respectively, where g ∈ L1
loc(Rn).

We have the following boundedness results for the weighted Hardy operators
Hw and H∗

w proved in [9, 11].

Lemma 2.1. The inequality

ess sup
t>0

v2(t)Hwg(t) ≤ C ess sup
t>0

v1(t)g(t)

holds for all non-negative and non-increasing g on (0,∞) if and only if

A = sup
t>0

v2(t)

∫ ∞

t

w(s)ds

ess sups<τ<∞ v1(τ)
< ∞,
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and C ∼ A.

Lemma 2.2. The inequality

ess sup
t>0

v2(t)H
∗
wg(t) ≤ C ess sup

t>0
v1(t)g(t)

holds for all non-negative and non-increasing g on (0,∞) if and only if

A = sup
t>0

v2(t)

∫ ∞

t

(
1 + ln

s

t

) w(s)ds

ess sups<τ<∞ v1(τ)
< ∞,

and C ∼ A.

3. Sublinear operators T and Tα in spaces Mφ
q⃗ (R

n)

In this section, we investigate the boundedness of T and Tα satisfying the size con-
ditions (1.1) and (1.2) respectively, on generalized mixed Morrey spaces Mφ

q⃗ (R
n).

We first prove two lemmas, which give us the explicit estimats for the Lq⃗(Rn)
norm of T and Tα on a given ball B(x0, r).

Lemma 3.1. Let 1 < q⃗ < ∞, T be a sublinear operator satisfying condition (1.1),
and bounded on Lq⃗(Rn).

Then for 1 < q⃗ < ∞, the inequality

∥Tf∥Lq⃗(B(x0,r)) ≲ r
∑n

i=1
1
qi

∫ ∞

2r

t
−1−

∑n
i=1

1
qi ∥f∥Lq⃗(B(x0,t))dt

holds for any ball B(x0, r) and all f ∈ Lq⃗
loc(Rn).

Proof. For any ball B = B(x0, r), let 2B = B(x0, 2r) be the ball centered at x0,
with the radius 2r. We represent f as f = f1 + f2, where

f1(y) = fχ2B(y), f2(y) = fχ(2B)c(y), r > 0.

Since T is a sublinear operator, we have

∥Tf∥Lq⃗(B) ≤ ∥Tf1∥Lq⃗(B) + ∥Tf2∥Lq⃗(B).

Noting that f1 ∈ Lq⃗(Rn) and T is bounded in Lq⃗(Rn), we have

∥Tf1∥Lq⃗(B) ≤ ∥Tf1∥Lq⃗(Rn) ≲ ∥f1∥Lq⃗(Rn) = ∥f∥Lq⃗(2B).

It is clear that x ∈ B, y ∈ (2B)c imply 1
2 |x0−y| ≤ |x−y| ≤ 3

2 |x0−y|, which further
yields

|Tf2(x)| ≲
∫
(2B)c

|f(y)|
|x0 − y|n

dy.

By Fubini’s theorem, we have∫
(2B)c

|f(y)|
|x0 − y|n

dy ∼
∫
(2B)c

|f(y)|
∫ ∞

|x0−y|

dt

tn+1
dy

∼
∫ ∞

2r

∫
2r≤|x0−y|<t

|f(y)|dy dt

tn+1
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≲
∫ ∞

2r

∫
B(x0,t)

|f(y)|dy dt

tn+1
.

Applying Hölder’s inequality on mixed Lebesgue spaces (see [2]), we obtain∫
(2B)c

|f(y)|
|x0 − y|n

dy ≲
∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
qi

. (3.1)

Moreover, for all 1 < q⃗ < ∞, we have

∥Tf2∥Lq⃗(B(x0,r)) ≲ r
∑n

i=1
1
qi

∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
qi

.

Therefore, we get

∥Tf∥Lq⃗(B(x0,r)) ≲ ∥f∥Lq⃗(2B) + r
∑n

i=1
1
qi

∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
qi

.

On the other hand,

∥f∥Lq⃗(2B) ∼ r
∑n

i=1
1
qi ∥f∥Lq⃗(2B)

∫ ∞

2r

dt

t
1+

∑n
i=1

1
qi

≲ r
∑n

i=1
1
qi

∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
qi

. (3.2)

Thus
∥Tf∥Lq⃗(B(x0,r)) ≲ r

∑n
i=1

1
qi

∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
qi

.

The second lemma is about the estimates of ∥Tαf∥Lp⃗(B(x0,r)).

Lemma 3.2. Let 1 < q⃗ < ∞, 0 < α < n/q⃗, 1
p⃗ = 1

q⃗ − α
n , Tα be a sublinear operator

satisfying condition (1.2), and bounded from Lq⃗(Rn) to Lp⃗(Rn).
Then for 1 < q⃗ < ∞, the inequality

∥Tαf∥Lp⃗(B(x0,r)) ≲ r
∑n

i=1
1
pi

∫ ∞

2r

t
−1−

∑n
i=1

1
pi ∥f∥Lq⃗(B(x0,t))dt

holds for any ball B(x0, r) and all f ∈ Lq⃗
loc(Rn).

Proof. For any ball B = B(x0, r), we also let 2B = B(x0, 2r) as before. Write
f = f1 + f2, with f1 = fχ2B and f2 = fχ(2B)c .

By the fact that Tα is a sublinear operator, we have

∥Tαf∥Lp⃗(B) ≤ ∥Tαf1∥Lp⃗(B) + ∥Tαf2∥Lp⃗(B).

Noting that f1 ∈ Lq⃗(Rn) and Tα is bounded from Lq⃗(Rn) to Lp⃗(Rn), we have

∥Tαf1∥Lp⃗(B) ≤ ∥Tαf1∥Lp⃗(Rn) ≲ ∥f1∥Lq⃗(Rn) = ∥f∥Lq⃗(2B).

Since x ∈ B, y ∈ (2B)c imply 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|, it yields that

|Tαf2(x)| ≲
∫
(2B)c

|f(y)|
|x0 − y|n−α

dy.
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By Fubini’s theorem, we have∫
(2B)c

|f(y)|
|x0 − y|n−α

dy ∼
∫
(2B)c

|f(y)|
∫ ∞

|x0−y|

dt

tn+1−α
dy

∼
∫ ∞

2r

∫
2r≤|x0−y|<t

|f(y)|dy dt

tn+1−α

≲
∫ ∞

2r

∫
B(x0,t)

|f(y)|dy dt

tn+1−α
.

Applying Hölder’s inequality on mixed Lebesgue spaces, we obtain∫
(2B)c

|f(y)|
|x0 − y|n−α

dy ≲
∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
pi

. (3.3)

Moreover, for all 1 < q⃗ < ∞, we have

∥Tαf2∥Lp⃗(B(x0,r)) ≲ r
∑n

i=1
1
pi

∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
pi

.

Therefore,

∥Tαf∥Lp⃗(B(x0,r)) ≲ ∥f∥Lq⃗(2B) + r
∑n

i=1
1
pi

∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
pi

.

On the other hand,

∥f∥Lq⃗(2B) ∼ r
∑n

i=1
1
pi ∥f∥Lq⃗(2B)

∫ ∞

2r

dt

t
1+

∑n
i=1

1
pi

≲ r
∑n

i=1
1
pi

∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
pi

. (3.4)

Thus
∥Tαf∥Lp⃗(B(x0,r)) ≲ r

∑n
i=1

1
pi

∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
pi

.

Now we can present the first main result in this section.

Theorem 3.1. Let 1 < q⃗ < ∞, and (φ1, φ2) satisfy the condition∫ ∞

r

ess inft<s<∞φ1(x, s)s
∑n

i=1
1
qi

t
1+

∑n
i=1

1
qi

dt ≲ φ2(x, r).

Suppose T is a sublinear operator satisfying condition (1.1) which is bounded
on Lq⃗(Rn). Then for 1 < q⃗ < ∞, the operator T is bounded form Mφ1

q⃗ (Rn) to
Mφ2

q⃗ (Rn). Moreover,
∥Tf∥Mφ2

q⃗
≲ ∥f∥Mφ1

q⃗
.

Proof. By Lemma 3.1 and Lemma 2.1 with v2(r)=φ2(x, r)
−1, v1(r)=φ1(x, r)

−1r
−
∑n

i=1
1
qi,

g(r)=∥f∥Lq⃗(B(x,r)) and w(r) = r
−1−

∑n
i=1

1
qi , we have

∥Tf∥Mφ2
q⃗

≲ sup
x∈Rn,r>0

φ2(x, r)
−1

∫ ∞

r

t
−1−

∑n
i=1

1
qi ∥f∥Lq⃗(B(x,t))dt
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≲ sup
x∈Rn,r>0

φ1(x, r)
−1r

−
∑n

i=1
1
qi ∥f∥Lq⃗(B(x,t)) ∼ ∥f∥Mφ1

q⃗
.

By taking q⃗ = q in Theorem 3.1, we recover the result of Guliyev et al. [12,
Theorem 4.5], which gave the boundedness of T on generalized Morrey spaces.

Similarly, for the sublinear operator Tα with the size condition (1.2), we have
the second theorem.

Theorem 3.2. Let 1 < q⃗ < ∞, 0 < α < n/q⃗, 1
p⃗ = 1

q⃗ − α
n , and (φ1, φ2) satisfy the

condition ∫ ∞

r

ess inft<s<∞φ1(x, s)s
∑n

i=1
1
qi

t
1+

∑n
i=1

1
pi

dt ≲ φ2(x, r).

Suppose Tα is a sublinear operator satisfying condition (1.2) which is bounded from
Lq⃗(Rn) to Lp⃗(Rn). Then for 1 < q⃗ < ∞, the operator Tα is bounded form Mφ1

q⃗ (Rn)

to Mφ2

p⃗ (Rn). Moreover,
∥Tαf∥Mφ2

p⃗
≲ ∥f∥Mφ1

q⃗
.

Proof. By Lemma 3.2 and Lemma 2.1 with v2(r)=φ2(x, r)
−1, v1(r)=φ1(x, r)

−1r
−
∑n

i=1
1
qi,

g(r) = ∥f∥Lq⃗(B(x,r)) and w(r) = r
−1−

∑n
i=1

1
pi , we have

∥Tαf∥Mφ2
p⃗

≲ sup
x∈Rn,r>0

φ2(x, r)
−1

∫ ∞

2r

t
−1−

∑n
i=1

1
pi ∥f∥Lq⃗(B(x,t))dt

≲ sup
x∈Rn,r>0

φ1(x, r)
−1r

−
∑n

i=1
1
qi ∥f∥Lq⃗(B(x,t)) ∼ ∥f∥Mφ1

q⃗
.

By taking q⃗ = q in Theorem 3.2, we recover the result of [12, Theorem 5.4].

4. Sublinear operators Tb and Tb,α in spaces Mφ
q⃗ (R

n)

In this section, we investigate the boundedness of Tα and Tb,α satisfying the size
conditions (1.3) and (1.4) respectively, on generalized mixed Morrey space Mφ

q⃗ (R
n).

First, we review the definition of BMO(Rn), the bounded mean oscillation space.
A function f ∈ L1

loc(Rn) belongs to BMO(Rn) if

∥f∥BMO = sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)− fB(x,r)|dy < ∞.

If one regards two functions whose difference is a constant as one, then the space
BMO(Rn) is a Banach space with respect to norm ∥ · ∥BMO. The John-Nirenberg
ineuqalitiy for BMO(Rn) yields that for any 1 < q < ∞ and f ∈ BMO(Rn), the
BMO(Rn) norm of f is equivalent to

∥f∥BMOq = sup
x∈Rn,r>0

(
1

|B(x, r)|

∫
B(x,r)

|f(y)− fB(x,r)|qdy

) 1
q

.

Recall that for any q⃗ = (q1, · · · , qn) ∈ (1,∞)n, the John-Nirenberg inequality for
mixed norm spaces [15] shows that the BMO(Rn) norm of all f ∈ BMO(Rn) is also



2358 M. Wei

equivalent to

∥f∥BMOq⃗ = sup
x∈Rn,r>0

∥(f − fB(x,r))χB(x,r)∥Lq⃗

∥χB(x,r)∥Lq⃗

. (4.1)

The following property for BMO(Rn) functions is valid.

Lemma 4.1. Let f ∈ BMO(Rn). Then for all 0 < 2r < t, we have

|fB(x,r) − fB(x,t)| ≲ ∥f∥BMO ln
t

r
. (4.2)

We first prove two lemmas, which give us the explicit estimats for the Lq⃗(Rn)
norm of Tb and Tb,α on a given ball B(x0, r).

Lemma 4.2. Let 1 < q⃗ < ∞, b ∈ BMO(Rn), Tb be a sublinear operator satisfying
condition (1.3), and bounded on Lq⃗(Rn).

Then for 1 < q⃗ < ∞, the inequality

∥Tbf∥Lq⃗(B(x0,r)) ≲ r
∑n

i=1
1
qi

∫ ∞

2r

(
1 + ln

t

r

)
t
−1−

∑n
i=1

1
qi ∥f∥Lq⃗(B(x0,t))dt

holds for any ball B(x0, r) and all f ∈ Lq⃗
loc(Rn).

Proof. For any ball B = B(x0, r), let 2B = B(x0, 2r). Write f as f = f1 + f2,
where f1 = fχ2B and f2 = fχ(2B)c .

Since Tb is a sublinear operator, we have

∥Tbf∥Lq⃗(B) ≤ ∥Tbf1∥Lq⃗(B) + ∥Tbf2∥Lq⃗(B).

Noting that f1 ∈ Lq⃗(Rn) and Tb is bounded in Lq⃗(Rn), we have

∥Tbf1∥Lq⃗(B) ≤ ∥Tbf1∥Lq⃗(Rn) ≲ ∥f1∥Lq⃗(Rn) = ∥f∥Lq⃗(2B).

Since x ∈ B, y ∈ (2B)c imply 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|, we get

|Tbf2(x)| ≲
∫
Rn

|b(x)− b(y)|
|x− y|n

|f2(y)|dy

∼
∫
(2B)c

|b(x)− b(y)|
|x0 − y|n

|f(y)|dy.

By using generalized Minkowski’s inequality on mixed Lebesgue spaces, we have

∥Tbf2∥Lq⃗(B)) ≲
∥∥∥∥∥
∫
(2B)c

|b(·)− b(y)|
|x0 − y|n

|f(y)|dy

∥∥∥∥∥
Lq⃗(B(x0,r))

≲
∥∥∥∥∥
∫
(2B)c

|bB − b(y)|
|x0 − y|n

|f(y)|dy

∥∥∥∥∥
Lq⃗(B(x0,r))

+

∥∥∥∥∥
∫
(2B)c

|b(·)− bB |
|x0 − y|n

|f(y)|dy

∥∥∥∥∥
Lq⃗(B(x0,r))

= I1 + I2.
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For the term I1, we have

I1 ∼ r
∑n

i=1
1
qi

∫
(2B)c

|bB − b(y)|
|x0 − y|n

|f(y)|dy

∼ r
∑n

i=1
1
qi

∫
(2B)c

|b(y)− bB ||f(y)|
∫ ∞

|x0−y|

dt

tn+1
dy

∼ r
∑n

i=1
1
qi

∫ ∞

2r

∫
2r≤|x0−y|<t

|b(y)− bB ||f(y)|dy
dt

tn+1

≲ r
∑n

i=1
1
qi

∫ ∞

2r

∫
B(x0,t)

|b(y)− bB ||f(y)|dy
dt

tn+1
.

Applying Hölder’s inequality and (4.1), (4.2), we get

I1 ≲ r
∑n

i=1
1
qi

∫ ∞

2r

∫
B(x0,t)

|b(y)− bB(x0,t)||f(y)|dy
dt

tn+1

+r
∑n

i=1
1
qi

∫ ∞

2r

∫
B(x0,t)

|bB(x0,r) − bB(x0,t)||f(y)|dy
dt

tn+1

≲ r
∑n

i=1
1
qi

∫ ∞

2r

∫
B(x0,t)

∥(b(·)− bB(x0,t))χB(x0,t)∥Lq⃗′∥f∥Lq⃗(B(x0,t))dy
dt

tn+1

+r
∑n

i=1
1
qi

∫ ∞

2r

|bB(x0,r) − bB(x0,t)| ∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
qi

≲ ∥b∥BMOr
∑n

i=1
1
qi

∫ ∞

2r

(
1 + ln

t

r

)
∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
qi

.

In order to estimate I2, note that

I2 =

∫
(2B)c

|f(y)|
|x0 − y|n

dy × ∥b(·)− bB∥Lq⃗(B(x0,r))
.

It follows from (4.1) that

I2 ≲ ∥b∥BMOr
∑n

i=1
1
qi

∫
(2B)c

|f(y)|
|x0 − y|n

dy.

Thus by (3.1), we get

I2 ≲ ∥b∥BMOr
∑n

i=1
1
qi

∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
qi

.

Summing up I1 and I2, we get

∥Tbf2∥Lq⃗(B) ≲ r
∑n

i=1
1
qi

∫ ∞

2r

(
1 + ln

t

r

)
t
−1−

∑n
i=1

1
qi ∥f∥Lq⃗(B(x0,t))dt.

Therefore, by (3.2), there holds

∥Tbf2∥Lq⃗(B) ≲ ∥f∥Lq⃗(2B) + r
∑n

i=1
1
qi

∫ ∞

2r

(
1 + ln

t

r

)
t
−1−

∑n
i=1

1
qi ∥f∥Lq⃗(B(x0,t))dt

≲ r
∑n

i=1
1
qi

∫ ∞

2r

(
1 + ln

t

r

)
t
−1−

∑n
i=1

1
qi ∥f∥Lq⃗(B(x0,t))dt.

We are done.
The second lemma in this section is about the estimates of ∥Tb,αf∥Lp⃗(B(x0,r)).
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Lemma 4.3. Let 1 < q⃗ < ∞, 0 < α < n/q⃗, 1
p⃗ = 1

q⃗ − α
n , b ∈ BMO(Rn), Tb,α be a

sublinear operator satisfying condition (1.4), and bounded from Lq⃗(Rn) to Lp⃗(Rn).
Then for 1 < q⃗ < ∞, the inequality

∥Tb,αf∥Lp⃗(B(x0,r)) ≲ r
∑n

i=1
1
pi

∫ ∞

2r

(
1 + ln

t

r

)
t
−1−

∑n
i=1

1
pi ∥f∥Lq⃗(B(x0,t))dt

holds for any ball B(x0, r) and all f ∈ Lq⃗
loc(Rn).

Proof. For any ball B = B(x0, r), let 2B = B(x0, 2r). Write f as f = f1 + f2,
where f1 = fχ2B and f2 = fχ(2B)c as before.

Since Tb,α is a sublinear operator, we have

∥Tb,αf∥Lq⃗(B) ≤ ∥Tb,αf1∥Lq⃗(B) + ∥Tb,αf2∥Lq⃗(B).

Noting that f1 ∈ Lq⃗(Rn) and Tb,α is bounded from Lq⃗(Rn) to Lp⃗(Rn), we have

∥Tb,αf1∥Lq⃗(B) ≤ ∥Tb,αf1∥Lq⃗(Rn) ≲ ∥f1∥Lq⃗(Rn) = ∥f∥Lq⃗(2B).

Since x ∈ B, y ∈ (2B)c imply 1
2 |x0 − y| ≤ |x− y| ≤ 3

2 |x0 − y|, we get

|Tb,αf2(x)| ≲
∫
Rn

|b(x)− b(y)|
|x− y|n−α

|f2(y)|dy

∼
∫
(2B)c

|b(x)− b(y)|
|x0 − y|n−α

|f(y)|dy.

By using generalized Minkowski’s inequality, we have

∥Tb,αf2∥Lp⃗(B)) ≲
∥∥∥∥∥
∫
(2B)c

|b(·)− b(y)|
|x0 − y|n−α

|f(y)|dy

∥∥∥∥∥
Lp⃗(B(x0,r))

≲
∥∥∥∥∥
∫
(2B)c

|bB − b(y)|
|x0 − y|n−α

|f(y)|dy

∥∥∥∥∥
Lp⃗(B(x0,r))

+

∥∥∥∥∥
∫
(2B)c

|b(·)− bB |
|x0 − y|n−α

|f(y)|dy

∥∥∥∥∥
Lp⃗(B(x0,r))

= I1 + I2.

For the term I1, we have

I1 ∼ r
∑n

i=1
1
pi

∫
(2B)c

|bB − b(y)|
|x0 − y|n−α

|f(y)|dy

∼ r
∑n

i=1
1
pi

∫
(2B)c

|b(y)− bB ||f(y)|
∫ ∞

|x0−y|

dt

tn+1−α
dy

∼ r
∑n

i=1
1
pi

∫ ∞

2r

∫
2r≤|x0−y|<t

|b(y)− bB ||f(y)|dy
dt

tn+1−α

≲ r
∑n

i=1
1
pi

∫ ∞

2r

∫
B(x0,t)

|b(y)− bB ||f(y)|dy
dt

tn+1−α
.
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Applying Hölder’s inequality and (4.1), (4.2), we get

I1 ≲ r
∑n

i=1
1
pi

∫ ∞

2r

∫
B(x0,t)

|b(y)− bB(x0,t)||f(y)|dy
dt

tn+1−α

+r
∑n

i=1
1
pi

∫ ∞

2r

∫
B(x0,t)

|bB(x0,r) − bB(x0,t)||f(y)|dy
dt

tn+1−α

≲ r
∑n

i=1
1
pi

∫ ∞

2r

∫
B(x0,t)

∥(b(·)− bB(x0,t))χB(x0,t)∥Lq⃗′∥f∥Lq⃗(B(x0,t))dy
dt

tn+1−α

+r
∑n

i=1
1
pi

∫ ∞

2r

|bB(x0,r) − bB(x0,t)| ∥f∥Lq⃗(B(x0,t))

dt

t
1−α+

∑n
i=1

1
qi

≲ ∥b∥BMOr
∑n

i=1
1
pi

∫ ∞

2r

(
1 + ln

t

r

)
∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
pi

.

For the term I2, note that

I2 =

∫
(2B)c

|f(y)|
|x0 − y|n−α

dy × ∥b(·)− bB∥Lp⃗(B(x0,r))
.

It follows from (4.1) that

I2 ≲ ∥b∥BMOr
∑n

i=1
1
pi

∫
(2B)c

|f(y)|
|x0 − y|n−α

dy.

Thus by (3.3), we get

I2 ≲ ∥b∥BMOr
∑n

i=1
1
pi

∫ ∞

2r

∥f∥Lq⃗(B(x0,t))

dt

t
1+

∑n
i=1

1
pi

.

Summing up I1 and I2, we get

∥Tb,αf2∥Lp⃗(B) ≲ r
∑n

i=1
1
pi

∫ ∞

2r

(
1 + ln

t

r

)
t
−1−

∑n
i=1

1
pi ∥f∥Lq⃗(B(x0,t))dt.

Therefore, by (3.4), there holds

∥Tb,αf∥Lp⃗(B) ≲ ∥f∥Lq⃗(2B) + r
∑n

i=1
1
pi

∫ ∞

2r

(
1 + ln

t

r

)
t
−1−

∑n
i=1

1
pi ∥f∥Lq⃗(B(x0,t))dt

≲ r
∑n

i=1
1
pi

∫ ∞

2r

(
1 + ln

t

r

)
t
−1−

∑n
i=1

1
pi ∥f∥Lq⃗(B(x0,t))dt.

We are done.
Now we give the boundedness of Tb and Tb,α on generalized mixed Morrey spaces.

Theorem 4.1. Let 1 < q⃗ < ∞, and (φ1, φ2) satisfy the condition∫ ∞

r

(
1 + ln

t

r

)
ess inft<s<∞φ1(x, s)s

∑n
i=1

1
qi

t
1+

∑n
i=1

1
qi

dt ≲ φ2(x, r).

Suppose b ∈ BMO(Rn), and Tb is a sublinear operator satisfying condition (1.3),
and bounded on Lq⃗(Rn). Then for 1 < q⃗ < ∞, the operator Tb is bounded form
Mφ1

q⃗ (Rn) to Mφ2

q⃗ (Rn). Moreover,

∥Tbf∥Mφ2
q⃗

≲ ∥f∥Mφ1
q⃗

.
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Proof. The proof of Theorem 4.1 follows by Lemma 4.2 and Lemma 2.2 in the
same manner as in the proof of Theorem 3.1.

From Theorem 4.1, on can recover the result of Guliyev et al. [12, Theorem 6.6]
by taking q⃗ = q.

Similarly, for the sublinear operator Tb,α with size condition (1.4), we have the
following theorem.

Theorem 4.2. Let 1 < q⃗ < ∞, 0 < α < n/q⃗, 1
p⃗ = 1

q⃗ − α
n , and (φ1, φ2) satisfy the

condition ∫ ∞

r

(
1 + ln

t

r

)
ess inft<s<∞φ1(x, s)s

∑n
i=1

1
qi

t
1+

∑n
i=1

1
pi

dt ≲ φ2(x, r).

Suppose b ∈ BMO(Rn), and Tb,α is a sublinear operator satisfying condition (1.4),
and bounded from Lq⃗(Rn) to Lp⃗(Rn). Then for 1 < q⃗ < ∞, the operator Tb,α is
bounded from Mφ1

q⃗ (Rn) to Mφ2

p⃗ (Rn). Moreover,

∥Tb,αf∥Mφ2
p⃗

≲ ∥f∥Mφ1
q⃗

.

Proof. The statement of Theorem 4.2 follows by Lemma 4.3 and Lemma 2.2 in
the same manner as in the proof of Theorem 3.2.

By taking q⃗ = q in Theorem 4.2, we recover the result of Guliyev et al. [12,
Theorem 7.4], which proved the boundedness of Tb,α on the generalized Morrey
spaces.

5. Some applications
This section gives some applications of our main theorems. We will show that
many important integral operators and commutators appearing in harmonic analysis
satisfy the assumptions mentioned above. Therefore, we can obtain the boundedness
of various operators on generalized mixed Morrey spaces by using our main results.

As stated in the introduction, the Hardy-Littlewood maximal operator M and
the Calderón-Zygmund singular integral operator K are all sublinear operators sat-
isfying the condition (1.1). One can also see that [b,M ] and [b,K] are also subilinear
operators and satisfiy the condition (1.3). Note that the fractional integral operator
Iα is a linear operator satisfying the condition (1.2), and the commutator [b, Iα] is
also a linear operator satisfying (1.4). So in order to apply our main theorems to
the mentioned operators, we need to show the boundedness of M,K, [b,M ], [b,K]
on Lq⃗(Rn), and the boundedness of Iα, [b, Iα] from Lq⃗(Rn) to Lp⃗(Rn).

As we know, the Hardy-Littlewood maximal operator M is bounded on Lq⃗(Rn),
1 < q⃗ < ∞ (see [21]), but there is no complete boundedness results for some other
operators on mixed Lebesgue spaces. To prove the boundedness of some important
operators on mixed Lebesgue spaces in a uniform way, we will give the extrapolation
theorems on mixed Lebesgue spaces, which have their own interest.

The extrapolaton theory on mixed Lebesgue spaces relies on the classical Ap

weight (see [8]).

Definition 5.1. For 1 < p < ∞, a positive function w ∈ L1
loc(Rn) is said to be an

Ap weight if

[w]Ap = sup
B∈B

(
1

|B|

∫
B

w(x)dx

)(
1

|B|

∫
B

w(x)−
p′
p dx

) p
p′

< ∞.
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A positive locally integrable function w is said to be an A1 weight if

1

|B|

∫
B

w(y)dy ≤ Cw(x), a.e. x ∈ B

for some constant C > 0. The infimum of all such C is denoted by [w]A1
. We

denote A∞ by the union of all Ap (1 ≤ p < ∞) functions.

We also need the boundedness of M on mixed norm spaces Lq⃗(Rn), see [21].

Lemma 5.1. For 1 < q⃗ < ∞, there holds

∥Mf∥Lq⃗ ≲ ∥f∥Lq⃗ .

By F, we mean a family of pair (f, g) of non-negative measurable functions that
are not identical to zero. For such a family F, p > 0 and a weight w ∈ Aq, the
expression ∫

Rn

f(x)pw(x)dx ≲
∫
Rn

g(x)pw(x)dx, (f, g) ∈ F

means that this inequality holds for all pair (f, g) ∈ F if the left hand side is finite,
and the implicated constant depends only on p and [w]Aq

.
Now we give the extrapolation theorems on mixed Lebesgue spaces. The first

one is the diagonal extrapolation theorem.

Theorem 5.1. Let 0 < q0 < ∞ and q⃗ = (q1, · · · , qn) ∈ (0,∞)n. Let f, g ∈ M(Rn).
Suppose for every w ∈ A1, we have∫

Rn

f(x)q0w(x)dx ≲
∫
Rn

g(x)q0w(x)dx, (f, g) ∈ F.

Then if q⃗ > q0, we have

∥f∥Lq⃗ ≲ ∥g∥Lq⃗ , (f, g) ∈ F.

Our second main result in this section is the off-diagonal extrapolation on mixed
Lebesgue spaces.

Theorem 5.2. Let f, g ∈ M. Suppose that for some p0 and q0 with 0 < q0 < p0 <
∞ and every w ∈ A1,(∫

Rn

f(x)p0w(x)dx

) 1
p0

≲
(∫

Rn

g(x)q0w(x)
q0
p0 dx

) 1
q0

, (f, g) ∈ F. (5.1)

Then for all q0 < q⃗ < p0q0
p0−q0

, and p⃗ satisfies 1/q⃗ − 1/p⃗ = 1/q0 − 1/p0, we have

∥f∥Lp⃗ ≲ ∥g∥Lq⃗ , (f, g) ∈ F. (5.2)

Proof. By the similarity, we only prove Theorem 5.2.
We use the Rubio de Francia iteration algorithm presented in [7].
Let ¯⃗q = q⃗/q0 and ¯⃗p = p⃗/p0. By the assumptions and Lemma 5.1, the maximal

operator is bounded on L
¯⃗p′
(Rn), so there exists a positive constant B such that

∥Mf∥L ¯⃗p′ ≤ B∥f∥L ¯⃗p′ .
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For any non-negative function h, define a new operator Rh by

Rh(x) =

∞∑
k=0

Mkh(x)

2kBk
,

where for k ≥ 1, Mk denotes k iterations of the maximal operator, and M0 is the
identity operator.

The operator R satisfies

h(x) ≤ Rh(x), (5.3)
∥Rh∥L ¯⃗p′ ≤ 2∥h∥L ¯⃗p′ , (5.4)
∥Rh∥A1 ≤ 2B. (5.5)

The inequality (5.3) is straight-forward.
Since

M(Rh) ≤
∞∑
k=0

Mk+1h

2kBk
≤ 2B

∞∑
k=1

Mkh

2kBk
≤ 2BRh,

the properties (5.4) and (5.5) are consequences of Lemma 5.1 and the definition of
A1.

Since the dual of L ¯⃗p(Rn) is L
¯⃗p′
(Rn), we get

∥f∥p0

Lp⃗ = ∥fp0∥L ¯⃗p (5.6)

≲ sup

{∫
Rn

|f(x)|p0h(x)dx : ∥h∥L ¯⃗p′ ≤ 1, h ≥ 0

}
.

By using Hölder’s inequality on mixed Lebesgue spaces and (5.3), we have∫
Rn

f(x)p0h(x)dx ≲
∫
Rn

f(x)p0Rh(x)dx

≲ ∥fp0∥L ¯⃗p∥h∥L ¯⃗p′ < ∞. (5.7)

In view of (5.3) and Rh ∈ A1, we use (5.1) with w = Rh(x) to obtain∫
Rn

f(x)p0h(x)dx ≲
∫
Rn

f(x)p0Rh(x)dx ≲
(∫

Rn

g(x)q0 [Rh(x)]q0/p0dx

)p0/q0

.

Combining (5.4) with (5.7) and using Hölder’s inequality on mixed Lebesgue spaces
again, we arrive at∫

Rn

f(x)p0h(x)dx ≲ ∥gq0∥p0/q0
L ¯⃗q

∥(Rh)q0/p0∥p0/q0
L ¯⃗q′ (5.8)

∼ ∥g∥p0

Lq⃗∥(Rh)q0/p0∥p0/q0
L ¯⃗q′ .

A direct calculation yields q0 ¯⃗q
′ = p0 ¯⃗p

′. Therefore

∥(Rh)q0/p0∥p0/q0
L ¯⃗q′ = ∥Rh∥L ¯⃗p′ ≲ ∥h∥L ¯⃗p′ . (5.9)

By taking the supremum over all h ∈ L
¯⃗p′
(Rn) with ∥h∥L ¯⃗p′ ≤ 1 and h ≥ 0, (5.6),

(5.8) and (5.9) give us the desired conclusion (5.2).
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We point out that when n = 2, there are other versions of the diagonal ex-
trapolation theorem [14] and the off-diagonal extrapolation theorem [27] on mixed
Lebesgue spaces, which are different from Theorem 5.1 and Theorem 5.2.

By the density of smooth functions with compact support C∞
c (Rn) in the mixed

Lebesgue space Lq⃗(Rn), 1 < q⃗ < ∞ (see [2]), one can apply Theorem 5.1 and
Theorem 5.2 to the mapping property of some sublinear operators.

Theorem 5.3. Suppose 0 < q0 < q⃗ < ∞ and T is a sublinear operator such that
for every w ∈ A1,∫

Rn

|Tf(z)|q0w(z)dz ≲
∫
Rn

|f(z)|q0w(z)dz, f ∈ C∞
c (Rn).

Then T can be extended to a bounded operator on Lq⃗(Rn).

Proof. By Theorem 5.1, for any f ∈ C∞
c (Rn), we have

∥Tf∥Lq⃗ ≲ ∥f∥Lq⃗ .

Since T is a sublinear operator, we have |T (f)− T (g)| ≤ |T (f − g)|, and hence, for
any f, g ∈ C∞

c (Rn), we have

∥T (f)− T (g)∥Lq⃗ ≤ ∥T (f − g)∥Lq⃗ ≲ ∥f − g∥Lq⃗ .

Since C∞
c (Rn) is dense in Lq⃗(Rn), the above inequalities guarantee that T can be

extended to be a bounded operator on Lq⃗(Rn).
The following corollary is a consequence of Theorem 5.3 and the weighted bound-

edness of the corresponding operators.

Corollary 5.1. Let 1 < q⃗ < ∞, b ∈ BMO(Rn), then M,K, [b,M ], [b,K] are all
bounded on Lq⃗(Rn).

Proof. It is well known that M,K, [b,M ], [b,K] are all sublinear operators, and
bounded on Lq0

w (Rn) for arbitrary 1 < q0 < ∞ and w ∈ Aq0 (see [8] for example).
Since A1 ⊂ Aq0 , Theorem 5.3 implies that M,K, [b,M ], [b,K] are all bounded on
Lq⃗(Rn) for all q0 < q⃗ < ∞. In view of the arbitrariness of 1 < q0 < ∞, M ,
K, [b,M ], [b,K] are also bounded on Lq⃗(Rn) for all 1 < q⃗ < ∞.

Similarly, we have the following theorem.

Theorem 5.4. Suppose that 0 < q0 < p0 < ∞, and T is a sublinear operator such
that every w ∈ A1,(∫

Rn

|Tf(x)|p0w(x)dx

) 1
p0

≲
(∫

Rn

|f(x)|q0w(x)
q0
p0 dx

) 1
q0

, f ∈ C∞
c (Rn).

Then for all q0 < q⃗ < p0q0
p0−q0

, and p⃗ satisfies 1/q⃗ − 1/p⃗ = 1/q0 − 1/p0, T can be
extended to a bounded operator from Lq⃗(Rn) to Lp⃗(Rn).

Since the proof of Theorem 5.4 is similar to that of Theorem 5.3, we leave it to
readers.

To apply Theorem 5.4 to fractional integral operator and its commutator, we
need a different class of weights: Suppose 0 < α < n, 1 < q < n/α and 1/q− 1/p =
α/n, we say w ∈ Aq,p(Rn) if for any ball B ∈ B,

1

|B|

∫
B

w(x)dx

(
1

|B|

∫
B

w(x)−q′/pdx

)p/q′

< ∞.
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Note that this is equivalent to w ∈ Ar, where r = 1 + p/q′, so, in particular if
w ∈ A1, then w ∈ Aq,p. The boundedness of fractional integral operator Iα and its
commutator [b, Iα] on weighted Lebesgue spaces was obtained in [17, 19].

Lemma 5.2. Let 0 < α < n and 1 < q < p < ∞ with 1/q−1/p = α/n. If w ∈ Aq,p

and b ∈ BMO(Rn), then we have(∫
Rn

|Iαf(x)|pw(x)dx
)1/p

≲
(∫

Rn

|f(x)|qw(x)q/pdx
)1/q

,(∫
Rn

|[b, Iα]f(x)|pw(x)dx
)1/p

≲
(∫

Rn

|f(x)|qw(x)q/pdx
)1/q

.

These results are usually stated with the class Aq,p defined slightly differently,
with w replaced by wp (see [6, 17, 19] for example). Our formulation, though
non-standard, is better for our purposes.

By Theorem 5.4 and Lemma 5.2, we can get the following result.

Corollary 5.2. Let 0 < α < n, 1 < q⃗ < n/α, 1
q⃗ − 1

p⃗ = α
n , and b ∈ BMO(Rn), then

both Iα and [b, Iα] are bounded from Lq⃗(Rn) to Lp⃗(Rn).

Proof. The proof is just a repetition of the proof of Corollary 5.1, so we omit the
details.

We point out that the boundedness of Iα on mixed Lebesgue spaces has al-
ready proved in [2] in a more general setting. However, our proof, relying on the
extrapolation theory on mixed norm spaces, has its own interest.

From the statement at the beginning of this section, we can obtain the bounded-
ness of M,K on generalized mixed Morrey spaces, whose proof is just a combination
of Theorem 3.1 and Corollary 5.1.

Theorem 5.5. Let 1 < q⃗ < ∞, and (φ1, φ2) satisfy the condition∫ ∞

r

ess inft<s<∞φ1(x, s)s
∑n

i=1
1
qi

t
1+

∑n
i=1

1
qi

dt ≲ φ2(x, r).

Then the Hardy-Littlewood maximal operator M and the Calderón-Zygmund singular
integral operator K are both bounded from Mφ1

q⃗ (Rn) to Mφ2

q⃗ (Rn). Moreover,

∥Mf∥Mφ2
q⃗

≲ ∥f∥Mφ1
q⃗

,

∥Kf∥Mφ2
q⃗

≲ ∥f∥Mφ1
q⃗

.

Similarly, we have

Theorem 5.6. Let 1 < q⃗ < ∞, and (φ1, φ2) satisfy the condition∫ ∞

r

(
1 + ln

t

r

)
ess inft<s<∞φ1(x, s)s

∑n
i=1

1
qi

t
1+

∑n
i=1

1
qi

dt ≲ φ2(x, r).

If b ∈ BMO(Rn), then the commutator of the Hardy-Littlewood maximal operator
[b,M ] and the commutator of the Calderón-Zygmund singular integral operator [b,K]
are both bounded from Mφ1

q⃗ (Rn) to Mφ2

q⃗ (Rn). Moreover,

∥[b,M ]f∥Mφ2
q⃗

≲ ∥f∥Mφ1
q⃗

,

∥[b,K]f∥Mφ2
q⃗

≲ ∥f∥Mφ1
q⃗

.
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For the boundedness of Iα, [b, Iα] on generalized mixed Morrey spaces, we have
the following theorems.

Theorem 5.7. Let 1 < q⃗ < ∞, 0 < α < n/q⃗, 1
p⃗ = 1

q⃗ − α
n , and (φ1, φ2) satisfy the

condition ∫ ∞

r

ess inft<s<∞φ1(x, s)s
∑n

i=1
1
qi

t
1+

∑n
i=1

1
pi

dt ≲ φ2(x, r).

Then the fractional integral operator Iα is bounded from Mφ1

q⃗ (Rn) to Mφ2

p⃗ (Rn).
Moreover,

∥Iαf∥Mφ2
p⃗

≲ ∥f∥Mφ1
q⃗

.

Theorem 5.8. Let 1 < q⃗ < ∞, 0 < α < n/q⃗, 1
p⃗ = 1

q⃗ − α
n , and (φ1, φ2) satisfy the

condition ∫ ∞

r

(
1 + ln

t

r

)
ess inft<s<∞φ1(x, s)s

∑n
i=1

1
qi

t
1+

∑n
i=1

1
pi

dt ≲ φ2(x, r).

If b ∈ BMO(Rn), then the commutator of the fractional integral operator [b, Iα] is
bounded from Mφ1

q⃗ (Rn) to Mφ2

p⃗ (Rn). Moreover,

∥[b, Iα]f∥Mφ2
p⃗

≲ ∥f∥Mφ1
q⃗

.

We point out that the results in Theorem 5.7 and Theorem 5.8 remain true for
fractional maximal operator and its commutator.
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