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LOCAL WELL-POSEDNESS FOR A 3D
LIQUID-GAS TWO PHASE MODEL WITH

VACUUM
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Abstract In this paper we prove the local well-posedness of strong solutions
to a 3D liquid-gas two-phase flow model with vacuum in a bounded domain
without the standard compatibility conditions.
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1. Introduction
In this paper we consider the following liquid-gas two-phase flow model in a bounded
domain Ω ⊂ R3:

∂tρ+ div (ρu) = 0, (1.1)
∂t(ρu) + div (ρu⊗ u) +∇p(ρ, n) = µ∆u+ (λ+ µ)∇div u, (1.2)
∂tn+ div (nu) = 0, in Ω× (0,∞), (1.3)
u = 0, on ∂Ω× (0,∞), (1.4)
(ρ, ρu, n)(·, 0) = (ρ0, ρ0u0, n0)(·) in Ω ⊂ R3. (1.5)

Here ρ, n and u denote the liquid mass, gas mass, and velocity of the liquid and
gas, respectively. µ and λ are viscosity constants satisfying

µ > 0, λ+
2

3
µ ≥ 0.

p > 0 is the common pressure for both phases, which satisfies

p(ρ, n) := C0(−b(ρ, n) +
√
b2(ρ, n) + c(n)), (1.6)

with
b(ρ, n) := k0 − ρ− a0n, c(n) := 4k0a0n,

and C0, k0, and a0 are positive constants.
Below we review some results to two-phase flow models. Evje and Karlsen [3]

showed global existence of weak solutions to a two-phase model in 1D case, see
also [4] for some improvements. Guo et al. [6] obtained the global strong solution
for a 3D viscous liquid-gas two-phase flow model with vacuum when the energy of
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the initial data is small enough, see also [13]. Wen et al. [10] proved the local well-
posedness and a blow-up criterion of strong solutions to the problem (1.1)–(1.5)
following natural compatibility condition:

∇p(ρ0, n0)− µ∆u0 − (λ+ µ)∇div u0 =
√
ρ0g (1.7)

for some g ∈ L2(Ω). Wu and Zhang [12] obtained the global existence and asymp-
totic behavior of strong solutions for the viscous liquid-gas two-phase flow model
in a bounded domain when the initial data are near their equilibrium. Zhang [15]
obtained the weak solutions of an inviscid two-phase flow model in physical vacuum
in one-dimensional case. Recently, Li et al. [8] considered the large time behavior
for a compressible two-fluid model with algebraic pressure closure and large initial
data. Chen and Zhu [1] proved the existence of weak solutions to a steady two-phase
flow. For more results on the two-phase flow models, see the review paper [11].

The aim of this paper is to prove the local well-posedness of strong solutions to
the problem (1.1)–(1.5) without the assumption (1.7). We will prove

Theorem 1.1. Let 0 ≤ ρ0, n0 ∈ W 1,q (3 < q < 6) and u0 ∈ H1
0 . Then the problem

(1.1)–(1.5) has a unique local strong solution (ρ, n, u) satisfying
0 ≤ ρ, n ∈ L∞(0, T ;W 1,q), ∂tρ, ∂tn ∈ L∞(0, T ;L2),

u ∈ L∞(0, T ;H1
0 ) ∩ L2(0, T ;H2),

√
ρ∂tu ∈ L2(0, T ;L2),

√
tρ∂tu ∈ L∞(0, T ;L2),

√
t∂tu ∈ L2(0, T ;H1

0 ),

(1.8)

for some 0 < T < ∞.

Remark 1.1. Recently, Gong et al. [5] and Huang [7] obtained similar results
to the isentropic compressible Navier-Stokes equations without the compatibility
condition similar to (1.7). Their proofs are in the sprit of Choe and Kim [2] by
taking more delicate estimates. Our arguments are different from those in [5, 7].
Here we construct a priori estimates by using some ideas developed in the study of
low Mach number limit problem [9], see the details below.

We will prove Theorem 1.1 in the following way: For δ > 0, we choose 0 < δ ≤
ρδ0, n

δ
0 ∈ H2 and uδ

0 ∈ H1
0 ∩H2 satisfying

(ρδ0, n
δ
0) → (ρ0, n0) in W 1,q uδ

0 → u0 in H1
0 as δ → 0. (1.9)

Then it is easy to verify that the problem has a unique local strong solution
(ρδ, nδ, uδ) in [0, Tδ). We point out that the condition 3 < q < 6 is used at this
point to guarantee that H2 is compactly embedded in W 1,q (since q < 6) which is
compactly embedded in L∞ (since q > 3).

Now we define, similar to [14],

M δ(t) :=1 + sup
0≤s≤t

{∥(ρδ, nδ)(·, s)∥W 1,q + ∥(∂tρδ, ∂tnδ)(·, s)∥L2

+ ∥uδ(·, s)∥H1 +
√
s∥
√

ρδuδ
t (·, s)∥L2}+ ∥uδ∥L2(0,t;H2)

+ ∥
√
ρδ∂tu

δ∥L2(0,t;L2) + ∥
√
s∇uδ

t∥L2(0,t;L2). (1.10)

We can prove
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Theorem 1.2. For any t ∈ (0, Tδ), we have that

M δ(t) ≤ C0(M
δ
0 ) exp(t

6−q
4q C(M δ(t))) (1.11)

for some nondecreasing continuous function C0(·) and C(·).

It follows from (1.11) that (see [9]):

M δ(t) ≤ C (1.12)

and thus the proof of existence part is complete by taking δ → 0 and the standard
compactness principle.

In the remainder of this paper we give the proof of Theorem 1.2 in section 2
and present the proof of uniqueness part of Theorem 1.1 with the regularity (1.8)
in section 3.

2. Proof of Theorem 1.2
Below, for the sake of simplicity, we shall drop the superscript “δ” of ρδ, nδ, uδ, M δ

0

and M δ(t), and denote M ≡ M(t).
First, it is easy to see that

0 < ρ, n and
∫

ρdx =

∫
ρ0dx,

∫
ndx =

∫
n0dx. (2.1)

We note that

∂p

∂ρ
= C0

(
1− b√

b2 + c(n)

)
> 0,

∂p

∂n
= C0a0

(
1 +

−b+ 2k0√
b2 + c(n)

)
> 0,

∂2p

∂ρ2
= C0

c(n)√
(b2 + c(n))3

> 0,

∂2p

∂ρ∂n
= C0a0

2bk0 + c(n)√
(b2 + c(n))3

> 0,

∂2p

∂n2
= −4C0a

2
0k0

ρ√
(b2 + c(n))3

< 0,

and thus ∣∣∣∣∂p∂ρ
∣∣∣∣+ ∣∣∣∣ ∂p∂n

∣∣∣∣ ≤ C(M). (2.2)

Equation (1.2) can be written as

− µ∆u− (λ+ µ)∇div u = f := −ρ∂tu− ρu · ∇u−∇p. (2.3)

Because the system (2.3) is a strong elliptic system so that one can use the elliptic
regularity to obtain

∥u∥W 2,q ≤C∥f∥Lq ≤ C∥ρ∂tu∥Lq + C∥ρu · ∇u∥Lq + C∥∇p∥Lq
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≤C∥ρ∥
5q−6
4q

L∞ ∥√ρut∥
6−q
2q

L2 ∥ut∥
3q−6
2q

L6

+ C(M)∥u∥L∞∥∇u∥Lq + C(M)(∥∇ρ∥Lq + ∥∇n∥Lq )

≤C(M)∥√ρut∥
6−q
2q

L2 ∥∇ut∥
3q−6
2q

L2 + C(M)∥∇u∥
1
2

L2∥u∥
3
2

H2 + C(M)

≤C(M)∥√ρut∥
6−q
2q

L2 ∥∇ut∥
3q−6
2q

L2 + C(M)∥u∥
3
2

H2 + C(M), (2.4)

which gives∫ t

0

∥u∥W 2,qds ≤C(M)

∫ t

0

∥√ρut∥
6−q
2q

L2 ∥∇ut∥
3q−6
2q

L2 ds+C(M)

∫ t

0

∥u∥
3
2

H2ds+ C(M)t

≤C(M)

∫ t

0

s−
3q−6
4q (

√
s∥∇ut∥L2)

3q−6
2q ∥√ρut∥

6−q
2q

L2 ds

+ C(M)

(∫ t

0

ds

) 1
4
(∫ t

0

∥u∥2H2ds

) 3
4

+ C(M)t

≤C(M)

(∫ t

0

s−
3q−6
2q ds

) 1
2
(∫ t

0

s∥∇ut∥2L2ds

) 3q−6
4q

×
(∫ t

0

∥√ρut∥2L2ds

) 6−q
4q

+ C(M)t
1
4

≤C(M)t
6−q
4q + C(M)t

1
4 ≤ C(M)t

6−q
4q (2.5)

for all 0 < t ≤ 1. Here, in (2.4), we have used the continuous embedding W 1,q ↪→ L∞

(since q > 3) and Agmon’s inequality

∥u∥L∞ ≤ C∥u∥1/2H1 ∥u∥1/2H2 .

Using the Gagliardo-Nirenberg inequality

∥∇u∥L∞ ≤ C∥∇u∥
2q−6
5q−6

L2 ∥u∥
3q

5q−6

W 2,q , (2.6)

we observe that∫ t

0

∥∇u∥L∞ds ≤C(M)

∫ t

0

∥u∥
3q

5q−6

W 2,qds

≤C(M)

(∫ t

0

ds

) 2q−6
5q−6

(∫ t

0

∥u∥W 2,qds

) 3q
5q−6

≤C(M)t
2q−6
5q−6 · t

6−q
4q · 3q

5q−6 = C(M)t
1
4 ≤ C(M)t

6−q
4q . (2.7)

Testing (1.1) by ρm−1, we see that

1

m

d

dt

∫
ρmdx = −

∫
div (ρu)ρm−1dx =

∫
ρu∇ρm−1dx = −m− 1

m

∫
ρmdiv udx,

which leads to
d

dt
∥ρ∥Lm ≤ ∥div u∥L∞∥ρ∥Lm ,
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and thus (using Gronwall’s inequality and the Sobolev embedding W 1,q ↪→ L∞

(since q > 3))

∥ρ∥Lm ≤∥ρ0∥Lm exp

(∫ t

0

∥div u∥L∞ds

)
≤∥ρ0∥Lm exp(t

6−q
4q C(M)) (2 ≤ m ≤ ∞). (2.8)

Applying ∇ to (1.1), testing by |∇ρ|q−2∇ρ, we find that

d

dt
∥∇ρ∥Lq ≤ C∥∇u∥L∞∥∇ρ∥Lq + C∥ρ∥L∞∥∇div u∥Lq ,

which implies

∥∇ρ∥Lq ≤C

(
∥∇ρ0∥Lq +

∫ t

0

∥ρ∥L∞∥∇div u∥Lqds

)
exp

(∫ t

0

∥∇u∥L∞ds

)
≤C(1 + C(M)t

6−q
4q ) exp(t

6−q
4q C(M))

≤C0(M0) exp(t
6−q
4q C(M)). (2.9)

Similarly, we have

∥n∥Lm ≤ ∥n0∥Lm exp(t
6−q
4q C(M)) (2 ≤ m ≤ ∞), (2.10)

∥∇n∥Lq ≤ C0(M0) exp(t
6−q
4q C(M)). (2.11)

Testing (1.2) by ut, and using the equation (1.1), we deduce that

1

2

d

dt

∫
(µ|∇u|2 + (λ+ µ)(div u)2)dx+

∫
ρ|ut|2dx

=−
∫

ρu · ∇u · utdx+

∫
pdiv utdx

= : I1 + I2. (2.12)

We bound I1 and I2 as follows.

|I1| ≤ ∥√ρut∥L2∥√ρ∥L∞∥u∥L6∥∇u∥L3

≤C(M)∥√ρut∥L2∥∇u∥
1
2

L2∥u∥
1
2

H2 ≤ C(M)∥√ρut∥L2∥u∥
1
2

H2

≤ 1

4
∥√ρut∥2L2 + C(M)∥u∥H2 ;

I2 =
d

dt

∫
pdiv udx−

∫
ptdiv udx

=
d

dt

∫
pdiv udx−

∫ (
∂p

∂ρ
ρt +

∂p

∂n
nt

)
div udx

≤ d

dt

∫
pdiv udx+ C(M)(∥ρt∥L2 + ∥nt∥L2)∥∇u∥L2

≤ d

dt

∫
pdiv udx+ C(M).
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Here we have used the using the continuous embedding H1 ↪→ L6 and the Gagliardo-
Nirenberg interpolation inequality

∥∇u∥L3 ≤ C∥u∥1/2H2 ∥∇u∥1/2L2 . (2.13)

Inserting the above estimates into (2.12) and integrating over (0, t), we have

∥∇u∥2L2 +

∫ t

0

∥√ρut∥2L2ds ≤ C0(M0) exp(t
6−q
4q C(M)). (2.14)

Applying ∂t to (1.2) and using (1.1), we infer that

ρ∂2
t u+ ρu · ∇ut − µ∆ut − (λ+ µ)∇div ut

=−∇pt + div (ρu)(ut + u · ∇u)− ρut · ∇u. (2.15)

Testing (2.15) by ut and using (1.1), we have

1

2

d

dt

∫
ρ|ut|2dx+

∫
(µ|∇ut|2 + (λ+ µ)(div ut)

2)dx

=

∫
ptdiv utdx−

∫
ρu∇|ut|2dx−

∫
ρu · ∇(u · ∇u · ut)dx−

∫
ρut · ∇u · utdx

= :

6∑
i=3

Ii. (2.16)

We bound Ii (i = 3, . . . , 6) as follows.

|I3| =
∣∣∣∣∫ (∂p

∂ρ
ρt +

∂p

∂n
nt

)
div utdx

∣∣∣∣
≤C(M)∥∇ut∥L2

≤ µ

16
∥∇ut∥2L2 + C(M);

|I4| ≤ 2∥√ρ∥L∞∥√ρut∥L3∥u∥L6∥∇ut∥L2

≤C(M)∥√ρut∥L3∥∇ut∥L2

≤C(M)∥√ρut∥
1
2

L2∥
√
ρut∥

1
2

L6∥∇ut∥L2

≤C(M)∥√ρut∥
1
2

L2∥∇ut∥
3
2

L2

≤ µ

16
∥∇ut∥2L2 + C(M)∥√ρut∥2L2 ;

|I5| ≤∥ρ∥L∞∥u∥L6∥∇u∥2L3∥ut∥L6 + ∥ρ∥L∞∥u∥2L6∥∇2u∥L2∥ut∥L6

+ ∥ρ∥L∞∥u∥2L6∥∇u∥L6∥∇ut∥L2

≤C(M)(∥∇u∥2L3 + ∥u∥H2)∥∇ut∥L2

≤C(M)(∥∇u∥L2∥u∥H2 + ∥u∥H2)∥∇ut∥L2

≤C(M)∥u∥H2∥∇ut∥L2

≤ µ

16
∥∇ut∥2L2 + C(M)∥u∥2H2 ;

|I6| ≤ ∥∇u∥L2∥√ρut∥2L4 ≤ ∥∇u∥L2∥√ρut∥
1
2

L2∥
√
ρut∥

3
2

L6

≤C(M)∥√ρut∥
1
2

L2∥∇ut∥
3
2

L2
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≤ µ

16
∥∇ut∥2L2 + C(M)∥√ρut∥2L2 .

Inserting the above estimates into (2.16), we have

1

2

d

dt

∫
ρ|ut|2dx+

3

4
µ

∫
|∇ut|2dx ≤ C(M)+C(M)∥√ρut∥2L2+C(M)∥u∥2H2 . (2.17)

Multiplying the above inequality by t and integrating over (0, t), we have

t

∫
ρ|ut|2dx+

∫ t

0

s∥∇ut∥2L2ds ≤ C0(M0) exp(t
6−q
4q C(M)). (2.18)

It follows from (2.3) that, using the Gagliardo-Nirenberg interpolation inequality
(2.13) and Young’s inequality,

∥u∥H2 ≤C∥f∥L2 ≤ C∥ρut + ρu · ∇u+∇p∥L2

≤C∥√ρ∥L∞∥√ρut∥L2 + C∥ρ∥L∞∥u∥L6∥∇u∥L3 + C∥∇p∥L2

≤C∥√ρ∥L∞∥√ρut∥L2 + C(M)∥u∥
1
2

H2 + C(M),

which yields
∥u∥H2 ≤ C∥√ρ∥L∞∥√ρut∥L2 + C(M),

and therefore
∥u∥L2(0,t;H2) ≤ C0(M0) exp(t

6−q
4q C(M)). (2.19)

It follows from (1.1), (2.8), (2.9) and (2.14) that

∥ρt∥L2 = ∥u · ∇ρ+ ρdiv u∥L2

≤∥u∥
L

2q
q−2

∥∇ρ∥Lq + ∥ρ∥L∞∥div u∥L2

≤C∥ρ∥W 1,q∥∇u∥L2

≤C0(M0) exp(t
6−q
4q C(M)). (2.20)

Similarly, we have

∥nt∥L2 ≤ C0(M0) exp(t
6−q
4q C(M)). (2.21)

Combining (2.8)–(2.11), (2.14), and (2.18)–(2.21), we conclude that (1.11) holds
true. This completes the proof of Theorem 1.2. □

In the remainder of this paper we give the proof of Theorem 1.2 in section 2
and present the proof of uniqueness part of Theorem 1.1 with the regularity (1.8)
in section 3.

3. Proof of the uniqueness part of Theorem 1.1
This section is devoted to the proof of the uniqueness part of Theorem 1.1. Let
(ρi, ui, ni) (i = 1, 2) be the two strong solutions satisfying (1.8) with the same
initial data.

We denote
(ρ, u, n) := (ρ1 − ρ2, u1 − u2, n1 − n2).
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Then it is easy to verify that

∂tρ+ u2 · ∇ρ+ ρdiv u2 + ρ1div u+ u · ∇ρ1 = 0, (3.1)
ρ1∂tu+ρ1u1 · ∇u−µ∆u−(λ+ vµ)∇div u=− ρ1u · ∇u2−ρ(∂tu2+u2 · ∇u2)

−∇(p(ρ1, n1)− p(ρ2, n2)),
(3.2)

∂tn+ u2 · ∇n+ ndiv u2 + n1div u+ u · ∇n1 = 0. (3.3)

Testing (3.1) by ρ and using (1.8), we have

1

2

d

dt

∫
ρ2dx = −

∫
(u2∇ρ+ ρdiv u2 + ρ1div u+ u · ∇ρ1)ρdx

= −
∫ (

1

2
ρ2div u2 + ρ1div uρ+ u∇ρ1ρ

)
dx

≤C∥∇u2∥L∞∥ρ∥2L2 + C∥ρ1∥L∞∥∇u∥L2∥ρ∥L2

+ C∥u∥L6∥∇ρ1∥L3∥ρ∥L2

≤C∥∇u2∥L∞∥ρ∥2L2 + C∥∇u∥L2∥ρ∥L2 ,

which gives
d

dt
∥ρ∥L2 ≤ C∥∇u2∥L∞∥ρ∥L2 + C∥∇u∥L2 .

By the Gronwall inequality, we get

∥ρ∥L2 ≤ C

∫ t

0

∥∇u∥L2ds. (3.4)

Similarly, testing (3.3) by n and using (1.8), we have

1

2

d

dt

∫
n2dx = −

∫
(u2∇n+ ndiv u2 + n1div u+ u · ∇n1)ndx

≤C∥∇u2∥L∞∥n∥2L2 + C∥∇u∥L2∥n∥L2 ,

which gives
d

dt
∥n∥L2 ≤ C∥∇u2∥L∞∥n∥L2 + C∥∇u∥L2 .

Hence
∥n∥L2 ≤ C

∫ t

0

∥∇u∥L2ds. (3.5)

Testing (3.2) by u, using (1.1), (1.8), (2.2), (3.4), and (3.5) we find that

1

2

d

dt

(∫
ρ1|u|2dx+

∫ t

0

∫
(µ|∇u|2 + (λ+ µ)(div u)2)dxds

)
+

1

2

∫
(µ|∇u|2 + (λ+ µ)(div u)2)dx

≤C∥∇u2∥L∞

∫
ρ1|u|2dx+ C∥∂tu2∥L6∥u∥L6∥ρ∥

L
3
2

+ C∥u2∥L6∥∇u2∥L6∥u∥L6∥ρ∥L2 + C∥p(ρ1, n1)− p(ρ2, n2)∥L2∥∇u∥L2

≤C∥∇u2∥L∞

∫
ρ1|u|2dx+ C∥∇u2t∥L2∥∇u∥L2∥ρ∥L2
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+ C∥u2∥H2∥∇u∥L2∥ρ∥L2 + C(∥ρ∥L2 + ∥n∥L2)∥∇u∥L2

≤C∥∇u2∥L∞

∫
ρ1|u|2dx

+ C(∥∇u2t∥L2 + ∥u∥H2 + 1)∥∇u∥L2

∫ t

0

∥∇u∥L2ds

≤ µ

16
∥∇u∥2L2 + C∥∇u2∥L∞

∫
ρ1|u|2dx

+ C(∥∇u2t∥2L2 + ∥u∥2H2 + 1)

(∫ t

0

∥∇u∥L2ds

)2

≤ µ

16
∥∇u∥2L2 + C∥∇u2∥L∞

∫
ρ1|u|2dx

+ C(t∥∇u2t∥2L2 + ∥u∥2H2 + 1)

∫ t

0

∥∇u∥2L2ds. (3.6)

Applying the Gronwall inequality to (3.6) gives u = 0, and then using this fact,
we get ρ = 0 and n = 0 from (3.4) and (3.5). Thus, we complete the proof of the
uniqueness part of Theorem 1.1 and finally get Theorem 1.1. □

Acknowledgments. The author is very grateful to the referees for their helpful
suggestions, which improved the earlier version of this paper.
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