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A FREE BOUNDARY PROBLEM OF SOME
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Abstract In this paper, we mainly study the long time dynamical behavior
of the Leslie-Gower prey-predator model with two free boundaries in some
shifting environments. We assume that the unfavourable region of the envi-
ronment moves into the otherwise favourable homogeneous environment with
a given speed c > 0 in the spreading direction of the prey and predator. We
focus on the invasion of introduced predator in the new habitat. We show
that such shifting environments could reverse the fates of the prey and the
predator can be able to successfully invade. A complete discussion of the long
time behavior of the model can be obtained for such cases.
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1. Introduction
Climate change has a profound impact on the survival and spreading of ecologi-
cal species, resulting in changes in species abundance, diversity and habitat, and
leading to the extinction of some vulnerable species around the world. In order to
gain insight into the consequences of climate change, many mathematicians have
proposed some models which can be deduced that climate change may threaten the
survive of species by shifting environment from favorable to unfavorable conditions.

In [7], Du et al. considered the following free boundary problem of the diffusive
logistic equation 

ut − duxx = u(a− bu), t > 0, 0 < x < h(t),

u(t, h(t)) = 0, ux(t, 0) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

(1.1)
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where u(t, x) stands for the population density of the species at time t and spatial
position x, x = h(t) is the moving boundary to be determined together with u(t, x),
a, b, d are given positive constants, h0 > 0 denotes the size of initial habitat, µ > 0
is the ratio of expanding speed of the free boundary and population gradient at
expanding front, and u0 is a given positive initial function. They have obtained the
spreading-vanishing dichotomy results.

In [12], Du et al. investigated a similar situation by the following free boundary
model 

ut = d1uxx +A1(x− ct)u− b1u
2, t > 0, 0 < x < h(t),

ux(t, 0) = u(t, h(t)) = 0, t > 0,

h′(t) = −µ1ux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

(1.2)

where µ1, d1, b1 are given positive constants. The function A1(ξ)(ξ ∈ R) is assumed
to be Lipschitz continuous, strictly increasing on [−l0, 0] and satisfied

A1(ξ) =

a0,1, ξ < −l0,

a1, ξ ≥ 0,

where l0 > 0, a0,1 < 0 and a1 > 0 are constants.
In [22], Z. Guo et al. considered the Leslie-Gower predator-prey model with a

free boundary

∂u

∂t
= uxx + u(1− u)− δuv, t > 0, 0 < x < h(t),

∂v

∂t
= Dvxx + κv

(
1− v

u+ α

)
, t > 0, 0 < x < h(t),

h′(t) = −µ(ux(t, h(t))) + ρvx(t, h(t)), t > 0,

h(0) = h0, ux(t, 0) = vx(t, 0) = u(t, h(t)) = v(t, h(t)) = 0, t > 0,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ [0, h0],

(1.3)
with the positive parameters µ > 0, ρ > 0. The initial data (u0, v0) satisfy

u0, v0 ∈ C2([0, h0]),

u′0(0) = v′0(0) = u0(h0) = v0(h0) = 0,

h0 > 0, u0(x) > 0, v0(x) > 0 for all x ∈ [0, h0).

The model (1.3) describes how two species u(t, x) and v(t, x) evolve if they initially
occupy the bounded region [0, h0]. They have established a spreading-vanishing
dichotomy for the long-time dynamical behavior, which unique solution (u, v, h) is
satisfied one of the following condition.

(i) Spreading: if lim
t→∞

h(t) = +∞, then lim
t→∞

u(t, x) = p0 and lim
t→∞

v(t, x) = q0,
where (p0, q0) is the unique interior equilibrium of (1.3).
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(ii) Vanishing: if lim
t→∞

h(t) < +∞, then

lim
t→∞

∥u(t, x)∥C[0,h(t)] = 0 and lim
t→∞

∥u(t, x)∥C[0,h(t)] = 0.

Free boundary problems with different free boundaries for two-species model
have been studied by many authors. In [32], Wang et al. investigated a free bound-
ary problem for the diffusive Leslie-Gower prey-predator model with double free
boundaries in one space dimension. They also provided a spreading-vanishing di-
chotomy. Liu et al. in [23] discussed the diffusive competition model with two
different free boundaries, and gave some sharper estimates of asymptotic spreading
speeds of two free boundaries when both species spread successfully. Similar works
but for the mutualist model can be found in [38]. In [16], Huang et al. studied a
free boundary problem of the diffusive competition model with different habitats.
At the same time, they investigated the existence, uniqueness, regularity, uniform
estimates and long-time behavior of the global solution. Wang et al. in [34] studied
a diffusive competition model with seasonal succession and different free bound-
aries. In [20], Li et al. investigated some free boundary models with nonlocal
diffusions and different free boundaries. They proved that such kind of nonlocal
diffusion problems has a unique global solution. They also studied the long-time
behavior of global solution and criteria of spreading and vanishing for the classical
Lotka-Volterra competition, prey-predator and mutualist models.

In this paper, we will consider the free boundary problem of Leslie-Gower
predator-prey model with shifting environments, that is the following model

ut − d1uxx = A1(x− ct)u− u2 − βuv, t > 0, 0 < x < h(t),

vt − d2vxx = A2(x− ct)v − v2

u+ α
, t > 0, 0 < x < g(t),

ux(t, 0) = 0, u(t, x) = 0, t > 0, h(t) ≤ x < +∞,

vx(t, 0) = 0, v(t, x) = 0, t > 0, g(t) ≤ x < +∞,

h′(t) = −µ1ux(t, h(t)), t > 0,

g′(t) = −µ2vx(t, g(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), 0 ≤ x ≤ h0,

g(0) = g0, v(0, x) = v0(x), 0 ≤ x ≤ g0,

(1.4)

where di, µi(i = 1, 2), α, β, h0 and g0 are positive constants, A2(ξ) satisfies the same
assumption as A1(ξ) except that (a0,1, a1) is replaced by (a0,2, a2) with a0,2 < 0,
a2 > 0, and the initial functions u0(x) and v0(x) satisfy

u0 ∈ C2([0, h0]), v0 ∈ C2([0, g0]), u
′
0(0) = v′0(0) = 0,

u0 > 0 in [0, h0), u0(h0) = 0,

v0 > 0 in [0, g0), v0(g0) = 0.

(1.5)

By the mathematical analysis in [12], there exist positive constants c0,1 and c0,2,
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which are determined by the following problemsd1p
′′
1 − c0,1p

′
1 + a1p1 − p21 = 0, p1(z) > 0, z > 0,

p1(0) = 0, p1(∞) = a1, c0,1 = µ1p
′
1(0),

(1.6)

and d2p
′′
2 − c0,2p

′
2 + a2p2 −

p22
α

= 0, p2(z) > 0, z > 0,

p2(0) = 0, p2(∞) = a2α, c0,2 = µ2p
′
2(0),

(1.7)

respectively. It is also known c0,i < 2
√
aidi (i = 1, 2).

Next, we will show the main theorems of this paper. Firstly, when c > max{c0,1,
c0,2}, we can prove that both u and v are extinct in their respective environmental
conditions, that is the following theorem.

Theorem 1.1. Let (u, v, h, g) be the solution of (1.4) with initial functions satis-
fying (1.5).
(i) If c ≥ c0,1, then u vanishes, i.e.,

lim
t→∞

h(t) = h∞ < +∞ and lim
t→∞

∥u(t, ·)∥C([0,h(t)]) = 0.

(ii) If c ≥ c0,2, then v vanishes, i.e.,

lim
t→∞

g(t) = g∞ < +∞ and lim
t→∞

∥v(t, ·)∥C([0,g(t)]) = 0.

Secondly, we discuss the case of c ∈ [c0,1, c0,2). In this case, the prey u be-
comes extinct and the long-time behavior of the predator v can be described by a
trichotomy consisting of vanishing, spreading and borderline spreading.

Theorem 1.2. Let (u, v, h, g) be the unique solution of (1.4) with initial functions
satisfying (1.5). Suppose that

c0,2 > c ≥ c0,1, (1.8)

then (u, h) satisfies

lim
t→∞

h(t) = h∞ < +∞, lim
t→∞

∥u(t, ·)∥C([0,h(t)]) = 0, (1.9)

and
(i) vanishing of v: lim

t→∞
g(t) = g∞ < +∞ and

lim
t→∞

[
max

x∈[0,g(t)]
v(t, x)

]
= 0;

(ii) spreading of v: lim
t→∞

[g(t)−c0,2t] = G0 for some G0 ∈ R, and for any c̃ ∈ (c, c0,2),

lim
t→∞

[
max
[0,c̃t]

|v(t, x)− ϕ(x− ct)|
]
= 0,

lim
t→∞

[
max

[c̃t,g(t)]
|v(t, x)− p2(g(t)− x)|

]
= 0,
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where p2 is the unique solution to (1.7) and ϕ(x) is the unique solution ofd2ϕ
′′ + cϕ′ +A2(x)ϕ− ϕ2

α
= 0, x ∈ (−∞,+∞),

ϕ(−∞) = 0, ϕ(+∞) = a2α;
(1.10)

(iii) borderline spreading of v: lim
t→∞

[g(t)− ct] = L∗ and

lim
t→∞

[
max
[0,g(t)]

|v(t, x)− V∗(x− g(t) + L∗)|
]
= 0,

where L∗, V∗ are uniquely determined byd2V
′′
∗ + cV ′

∗ +A2(x)V∗ −
V 2
∗
α

= 0, V∗ > 0, x ∈ (−∞, L∗),

V∗(−∞) = V∗(L∗) = 0,−µ2V
′
∗(L∗) = c.

(1.11)

In order to better understand the trichotomy described in Theorem 1.2, we treat
µ2 as a parameter and fix all the other parameters in (1.4) as well as the initial
functions u0, v0 satisfying (1.5).

Theorem 1.3. Suppose that c0,1 ≤ c < 2
√
a2d2, and (u, v, h, g) is the solution of

(1.4) with initial functions u0, v0 satisfying (1.5). Then (1.9) always holds, and
there exists µ̃ ∈ (0,+∞) such that,
(i) vanishing of v happens if µ2 ∈ (0, µ̃);
(ii) borderline spreading of v happens if µ2 = µ̃;
(iii) spreading of v happens if µ2 > µ̃.

The rest of this paper is organized as follows. In Section 2, we will show that
some preliminaries which are either known or easily obtained from existing results.
In Section 3, we will study the long-time dynamical behavior of u and v. In this
section, we are devote to the proof of Theorems 1.1-1.2. In Section 4, we will prove
Theorem 1.3.

2. Some preliminaries
The existence and uniqueness conclusion for (1.4) can be obtained by simple modi-
fication of the proof of Proposition 2 in [15](with some corrections as given in [13]),
or follow the argument in [33], which are rather different from those in [15].

Theorem 2.1. For any given (u0, v0) satisfied (1.5) and any ϖ ∈ (0, 1), there exists
T > 0 such that the problem (1.4) admits a unique bounded solution

(u, v, h, g) ∈ C
1+ϖ

2 ,1+ϖ(IT )× C
1+ϖ

2 ,1+ϖ(JT )× C1+ϖ
2 ([0, T ]).

Moreover,

∥u∥
C

1+ϖ
2

,1+ϖ(IT )
+ ∥v∥

C
1+ϖ

2
,1+κ(JT )

+ ∥h∥
C1+ϖ

2 ([0,T ])
+ ∥g∥

C1+ϖ
2 ([0,T ])

≤ c,

where
IT = {(t, x) ∈ R2 : t ∈ [0, T ], x ∈ [0, h(t)]},
JT = {(t, x) ∈ R2 : t ∈ [0, T ], x ∈ [0, g(t)]},

and c, T only depend on h0, g0, ϖ, ∥u0∥C2([0,h0]), ∥v0∥C2([0,g0]).
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By similar arguments as in the proof of Theorem 1 of [15], we have the following
global existence result.

Theorem 2.2. The unique solution (u, v, h, g) in Theorem 2.1 can be extended to
all t > 0, and there exist positive constants M1, M2, M3, M4 such that

0 < u(t, x) ≤M1, for t ∈ (0,+∞), 0 ≤ x < h(t),

0 < v(t, x) ≤M2, for t ∈ (0,+∞), 0 ≤ x < g(t),

0 < h′(t) ≤M3, 0 < g′(t) ≤M4, for t ∈ (0,+∞).

Next, we state a comparison principle, which is extracted from Lemma 4.1 and
Lemma 4.2 of [28] with minor modifications.

Lemma 2.1. Suppose that T ∈ (0,∞), h̄, h, ḡ, g ∈ C1([0, T ]) and h̄, h, ḡ, g > 0
in [0, T ]. Denote by

Ω1 = (t, x) : t > 0, x ∈ [0, h̄(t)],

Ω2 = (t, x) : t > 0, x ∈ [0, h(t)],

Ω3 = (t, x) : t > 0, x ∈ [0, ḡ(t)],

Ω4 = (t, x) : t > 0, x ∈ [0, g(t)].

Let ū ∈ C(Ω̄1) ∩ C1,2(Ω1), v̄ ∈ C(Ω̄3) ∩ C1,2(Ω3), u ∈ C(Ω̄2) ∩ C1,2(Ω2), v ∈
C(Ω̄4) ∩ C1,2(Ω4). Assume that

0 < ū, u ≤M1 and 0 < v̄, v ≤M2,

(ū, v̄, h̄, ḡ) satisfies

ūt − d1ūxx ≥ A1(x− ct)ū− ū2, t > 0, 0 < x < h̄(t),

v̄t − d2v̄xx ≥ A2(x− ct)v̄ − v̄2

M1 + α
, t > 0, 0 < x < ḡ(t),

ūx(t, 0) ≤ 0, ū(t, x) = 0, t > 0, h̄(t) ≤ x < +∞,

v̄x(t, 0) ≤ 0, v̄(t, x) = 0, t > 0, ḡ(t) ≤ x < +∞,

h̄′(t) ≥ −µ1ūx(t, h̄(t)), t > 0,

ḡ′(t) ≥ −µ2v̄x(t, ḡ(t)), t > 0,

(2.1)

the couple (u, h) satisfies



ut − d1uxx ≤ u[A1(x− ct)− u− βM2], t > 0, 0 < x < h(t),

ux(t, 0) ≥ 0, t > 0, h(t) ≤ x < +∞,

u(t, x) = 0, t > 0, h(t) ≤ x < +∞,

h′(t) ≤ −µ1ux(t, h(t)), t > 0,

(2.2)
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and the couple (v, g) satisfies

vt − d2vxx ≤ v
[
A2(x− ct)− v

α

]
, t > 0, 0 < x < g(t),

vx(t, 0) ≥ 0, t > 0, g(t) ≤ x < +∞,

v(t, x) = 0, t > 0, g(t) ≤ x < +∞,

g′(t) ≤ −µ2vx(t, g(t)), t > 0.

(2.3)

Assume that the initial data of (2.1) satisfy

h̄(0) ≥ h0, ḡ(0) ≥ g0, ū(0, x) ≥ 0, v̄(0, x) ≥ 0 on [0, h̄(0)],

ū(0, x) ≥ u0(x), v̄(0, x) ≥ v0(x) on [0, h(0)],

and the initial data of (2.2) and (2.3) satisfy

h(0) ≤ h0, g(0) ≤ g0, 0 < u(0, x) ≤ u0(x), 0 < v(0, x) ≤ v0(x) on [0, h(0)].

Then, the solution (u, v, h, g) of (1.4) satisfies

h(t) ≤ h(t) ≤ h̄(t), g(t) ≤ g(t) ≤ ḡ(t) on [0,+∞),

u ≤ ū for all t ≥ 0, 0 ≤ x ≤ h(t),

v ≤ v̄ for all t ≥ 0, 0 ≤ x ≤ g(t),

u ≥ u for all t ≥ 0, 0 ≤ x ≤ h(t),

v ≥ v for all t ≥ 0, 0 ≤ x ≤ g(t).

The proof of Lemma 2.1 is very similar to the proofs of Lemma 5.1 of [14],
Lemma 4.1 and Lemma 4.2 of [28]. Hence, we omit the details here.

For any constants L > 0 ≥ −l, we consider the following problemd2V
′′ + cV ′ +A2(x)V − V 2

α
= 0, V (x) > 0 for − l < x < L,

V (−l) = V (L) = 0.
(2.4)

Lemma 2.2. Suppose 0 < c < c0,2. Then the following conclusions hold.
(i) For each l ≥ 0, there is a unique L(l) such that (2.4) with L = L(l) has a unique
positive solution Vl(x) satisfying −µ2V

′
l (L(l)) = c.

(ii) The function l → L(l) is decreasing, denote L∗ := lim
l→∞

L(l) > −l0. Moreover,
V∗(x) := lim

l→∞
Vl(x) exists and (L∗, V∗) satisfiesd2V

′′
∗ + cV ′

∗ +A2(x)V∗ −
V 2
∗
α

= 0, V∗ > 0, x ∈ (−∞, L∗),

V∗(−∞) = V∗(L∗) = 0,−µ2V
′
∗(L∗) = c.

(2.5)

Lemma 2.3. Let L∗ be given as in Lemma 2.2, and M2 be given as in Theorem
2.2. For any given L < L∗ and −l < L, the following problemd2W

′′ + cW ′ +A2(x)W − W 2

α
= 0,W (x) > 0 for − l < x < L,

W (−l) =M2,W (L) = 0,
(2.6)
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has a unique positive solution Wl,L. Moreover, for all sufficiently large l, we have

− µ2W
′
l,L(L) < c. (2.7)

Lemmas 2.2 and 2.3 are minor modifications of Lemma 2.5 and Lemma 2.8
in [12].

3. The long-time dynamical behavior
3.1. The dynamical behavior for c > max{c0,1, c0,2}
In this section, we will prove Theorem 1.1. Proof. We first prove part (i). Since
v ≥ 0 from (1.4), we can obtain

ut − d1uxx ≤ uA1(x− ct)− u2, t > 0, 0 < x < h(t),

ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µ1ux(t, h(t)), t > 0,

u(0, x) = u0(x), 0 ≤ x ≤ h0.

By the comparison principle, we have

h(t) ≤ h̄(t) and u(t, x) ≤ ū(t, x) for t ≥ 0, 0 < x < h(t), (3.1)

where (ū, h̄) is the unique solution of

ūt − d1ūxx = ūA1(x− ct)− ū2, t > 0, 0 < x < h̄(t),

ūx(t, 0) = 0, ū(t, h̄(t)) = 0, t > 0,

h̄′(t) = −µ1ūx(t, h̄(t)), t > 0,

ū(0, x) = u0(x), h̄(0) = h0, 0 ≤ x ≤ h0.

Since c ≥ c0,1, by Theorem 1.2 in [12], we can conclude that

lim
t→∞

h̄(t) = h̄∞ < +∞ and lim
t→∞

∥ū(t, ·)∥C([0,h̄(t)]) = 0.

Combining this with (3.1), we can obtain that

lim
t→∞

h(t) = h∞ < +∞ and lim
t→∞

∥u(t, ·)∥C([0,h(t)]) = 0.

Next we establish part (ii). Since u ≤M1 from (1.4), we will obtain

vt − d2vxx ≤ vA2(x− ct)− v2

M1 + α
, t > 0, 0 < x < g(t),

vx(t, 0) = 0, v(t, g(t)) = 0, t > 0,

g′(t) = −µ2vx(t, g(t)), t > 0,

v(0, x) = v0(x), 0 ≤ x ≤ g0.
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Due to the comparison principle, we can deduce that

g(t) ≤ ḡ(t) and v(t, x) ≤ v̄(t, x) for t ≥ 0, 0 < x < g(t), (3.2)

where (v̄, ḡ) is the unique solution of

v̄t − d2v̄xx = v̄A2(x− ct)− v̄2

M1 + α
, t > 0, 0 < x < ḡ(t),

v̄x(t, 0) = 0, v̄(t, ḡ(t)) = 0, t > 0,

ḡ′(t) = −µ2v̄x(t, ḡ(t)), t > 0,

v̄(0, x) = v0(x), ḡ(0) = g0, 0 ≤ x ≤ g0.

Due to c ≥ c0,2 and Theorem 1.2 in [12], then we have

lim
t→∞

ḡ(t) = ḡ∞ < +∞ and lim
t→∞

∥v̄(t, ·)∥C([0,ḡ(t)]) = 0.

Thus by (3.2), we can obtain

lim
t→∞

g(t) = g∞ < +∞ and lim
t→∞

∥v(t, ·)∥C([0,g(t)]) = 0.

3.2. The dynamical behavior for c0,2 > c ≥ c0,1

Let (u, v, h, g) be the unique solution of (1.4) with initial functions satisfied (1.5).
In this section, we assume c ∈ [c0,1, c0,2). Denote

G∗ := lim sup
t→∞

[g(t)− ct] (3.3)

and L∗ be given by Lemma 2.2. We break the proof of Theorem 1.2 into three main
steps:
Step 1. G∗ < L∗ implies vanishing of v;
Step 2. G∗ = L∗ implies borderline spreading of v;
Step 3. G∗ > L∗ implies spreading of v.

Proof of Step 1. G∗ < L∗ implies vanishing of v.

Lemma 3.1. If G∗ < L∗, then G∗ = −∞ and hence lim
t→∞

[g(t)− ct] = −∞.

Proof. Fix L1 ∈ (G∗, L∗). By Theorem 1.1 (i), we know h∞ < +∞. Hence due
to G∗ < L1, we can choose T0 > 0 such that ct − l > h∞ and g(t) − ct < L1

for all t ≥ T0. Since ct − l > h∞ for t ≥ T0, we see that u(t, x) = 0 for t ≥ T0,
x > ct−l. From Lemma 2.3, there exists l > 0 large enough such that −µ2W

′
l,L1

< c,
where Wl,L1(x) is the unique positive solution of (2.6) with L replaced by L1. For
M0 > M2, L0 > L1, denote ϕc as the unique positive solution ofd2ϕ

′′ + cϕ′ +A2(x)ϕ− ϕ2

α
= 0, −l < x < L0,

ϕ(−l) =M0, ϕ(L0) = 0.
(3.4)

By the continuous dependence of ϕc on M0 and L0, if (M0, L0) is close to (M2, L1),
then ϕc is close to Wl,L1

. Hence, −µ2ϕ
′
c(L0) < c if (M0, L0) is close enough to
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(M2, L1). Fix (M0, L0), then the above inequality holds. According to the compar-
ison principle, we can obtain that ϕc(x) > Wl,L1

(x) for x ∈ [−l, L1]. Then we can
find ε0 > 0 such that

ϕc(x) > Wl,L1(x) + 2ε0 for x ∈ [−l, L1].

Applying the continuous dependence of ϕc on c, there exists σ > 0 such that

ϕc−σ(x) > Wl,L1
(x) + ε0 for x ∈ [−l, L1] and − µ2ϕ

′
c−σ(L0) < c− σ,

where ϕc−σ is the unique positive solution of (3.4) with c replaced by c− σ.
Define Φ(t, x) as the unique positive solution of

Φt = d2Φxx + cΦx +A2(x)Φ− Φ2

α
, t > T0,−l < x < L1,

Φ(t,−l) =M2,Φ(t, L1) = 0, t > T0,

Φ(L0, x) =M2, −l < x < L1.

By the properties of logistic type equations, Φ(t, ·) → Wl,L1(·) in C2([−l, L1]) as
t→ ∞.

Denote
V (t, x) := v(t, x+ ct) and G(t) = g(t)− ct.

Then from (1.4), we can deduce that
Vt = d2Vxx + cVx +A2(x)V − V 2

α
, t > T0,−l < x < G(t) < L1,

V (t,−l) ≤M2, V (t, G(t)) = 0, t > T0,

V (L0, x) ≤M2, −l < x < G(T0),

where we have used V ≤M2, which is guaranteed by Theorem 2.2. We may apply
the standard comparison principle to conclude that

Φ(t, x) ≥ V (t, x) = v(t, x+ t) for t > T0,−l < x < G(t).

Since Φ(t, ·) →Wl,L1(·) in C2([−l, L1]) as t→ ∞, then for the above given ε0, there
exists T1 > T0 such that

ϕc−σ(x) > Wl,L1
(x) + ε0 > Φ(T1, x) ≥ v(T1, x+ cT1) for − l ≤ x ≤ G(T1).

Define

v̄(t, x) = ϕc−σ(x− cT1 − (c− σ)t),

η1(t) = cT1 + (c− σ)t− l, η2(t) = cT1 + (c− σ)t+ L0.

By direct calculation, we have

v̄(t, η1(t)) = ϕc−σ(−l) =M0 > M2 ≥ v(t+ T1, η1(t)), t > 0,

v̄(t, η2(t)) = ϕc−σ(L0) = 0, t > 0,

v̄(0, x) = ϕc−σ(x− cT1) ≥ v(T1, x), x ∈ (η1(0), η2(0)),
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η′2(t) = c− σ > −µ2ϕ
′
c−σ(L0) = −µ2v̄x(t, η2(t)), t > 0,

η2(0) = cT1 + L0 > cT1 + L1 > g(T1).

In addition, for t > 0, η1(t) < x < η2(t), we have

v̄t = d2v̄xx +A2(x− cT1 − (c− σ)t)v̄ − v̄2

α
≥ d2v̄xx +A2(x− c(t+ T1))v̄ −

v̄2

α
.

Since u(t+T1, x) ≡ 0 for t ≥ 0 and x ≥ η1(t), from (1.4), we can see that (v̄, η2)
is a super solution of the equation satisfied by (v(T1+ t, x), g(T1+ t)) over the range
t > 0, η1(t) ≤ x ≤ η2(t). Thus by the comparison principle for the free boundary
problems, we can deduce that

g(t+ T1) ≤ η2(t) = cT1 + (c− σ)t+ L0 for t > 0.

Obviously, this implies G∗ = −∞ and lim
t→∞

(g(t)− ct) = −∞.

Lemma 3.2. For M > 0, define

ϵ(M) = lim sup
t→∞

[
sup

0≤x≤ct−M
v(t, x)

]
.

Then lim
M→∞

ϵ(M) = 0. Here we have used the convention that v(t, x) = 0 for
x ≥ g(t).

Proof. Since u(t, h(t)) ≤M1, then we have
vt ≤ d2vxx + v

[
A2(x− ct)− v

M1 + α

]
, t > 0, 0 < x < g(t),

vx(t, 0) = 0, v(t, gh(t)) = 0, t > 0,

g′(t) = −µ2vx(t, g(t)), t > 0.

(3.5)

By the comparison principle, we can establish that

v(t, x) ≤ v̄(t, x), g(t) ≤ ḡ(t) for t > 0, 0 ≤ x ≤ g(t),

where (v̄, ḡ) is the solution of

v̄t = d2v̄xx + v̄

[
A2(x− ct)− v̄

M1 + α

]
, t > T0,−l < x < ḡ(t) < L1,

v̄(t, 0) = 0, v̄(t, ḡ(t)) = 0, t > 0,

ḡ′(t) = −µ2v̄x(t, ḡ(t)), t > 0,

ḡ(0) = g0, v̄(0, x) = v0(x), 0 < x < g0.

By Lemma 3.10 of [12], we have

lim
M→∞

[
lim sup
t→∞

(
sup

0≤x≤ct−M
v̄(t, x)

)]
= 0.

It follows that lim
M→∞

ϵ(M) = 0.
From Lemma 3.1 and Lemma 3.2, we obtain the following conclusion.
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Corollary 3.1. If G∗ < L∗, then lim
t→∞

[
max

x∈[0,g(t)]
v(t, x)

]
= 0.

To establish the proof of Step 1, it only to obtain that g∞ < +∞, which will
follow from Corollary 3.1 and the following result.

Lemma 3.3. If lim
t→∞

[
max

x∈[0,g(t)]
v(t, x)

]
= 0, then g∞ = lim

t→∞
g(t) <∞.

Proof. This is a simple variant of the proof of Lemma 3.11 in [12]. Here omit the
details.

Proof of Step 2. G∗ = L∗ implies borderline spreading of v.
Denote

G(t) := g(t)− ct.

First, we claim that lim
t→∞

G(t) = L∗. If this is not true, then

G∗ := lim inf
t→∞

G(t) < L∗.

For any L ∈ (G∗, L∗), the function G(t) − L changes sign infinitely many times as
t → ∞. In the following, we are going to drive a contradiction by using the zero
number argument.

Since the fact G∗ = L∗ implies g∞ = +∞ and h∞ < +∞, then for all large
t ≥ T̃ > 0, we have that

g(t) > h∞ and u(t, x) = 0 for x ∈ [h∞, g(t)].

Hence from (1.4), we have
vt − d2vxx = vA2(x− ct)− v2

α
, t > T̃ , h∞ < x < g(t),

v(t, h∞) ∈ (0,M2], v(t, g(t)) = 0, t > T̃ ,

g′(t) = −µ2vx(t, g(t)), t > T̃ ,

(3.6)

where M2 is given in Theorem 2.2. Now using the same argument as in the proof of
Lemma 3.6 in [12], we can show that G(t) − L can only change sign finitely many
times for t > T̃ . This is a contradiction. Thus

lim
t→∞

G(t) = L∗.

Next, we prove

lim
t→∞

[
max

x∈[0,g(t)]
|v(t, x)− V∗(x− g(t) + L∗)|

]
= 0. (3.7)

Choosing a sequence tn satisfied tn → ∞ as n→ ∞. Define

w(t, x) := v(t, x+ g(t)), wn(t, x) = w(t+ tn, x),

Gn(t) := G(t+ tn), gn(t) := g(t+ tn).
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By (3.6), we have
∂wn

∂t
− d2

∂2wn

∂x2
− [G′

n(t) + c]
∂wn

∂x
= wnA2(x+Gn(t))−

w2
n

α
,

t > T̃ − tn, h∞ − gn(t) < x < 0,

wn(t, 0) = 0,−µ2
∂wn

∂x
(t, 0) = c+G′

n(t), t > T̃ − tn.

Using the proof of Lemma 3.5 in [12], we can find a subsequence of wn, for conve-
nience, still denoted by wn, such that wn → w̃ in C

1+κ
2 ,1+κ

loc (R×(−∞, 0]), G′
n(t) → 0

in C
κ
2

loc(R), and w̃ satisfies
∂w̃

∂t
− d2

∂2w̃

∂x2
− c

∂w̃

∂x
= w̃A2(x+ L∗)−

w̃2

α
, t ∈ R,−∞ < x < 0,

w̃(t, 0) = 0,−µ2
∂w̃

∂x
(t, 0) = c, t ∈ R.

Following the proof of Theorem 3.13 in [12], we can conclude that

w̃(t, x) ≡ V∗(x+ L∗).

Thus (3.7) holds. This completes the proof of Step 2.
Proof of Step 3. G∗ > L∗ implies spreading of v.
When G∗ > L∗, g∞ = ∞ and hence (3.6) holds. This allows us to obtain the

same properties for g(t) as in Section 3.1 in [12]. Here we list these properties for
g(t) and omit their proof.
(i) (Lemma 3.2 of [12]) G∗ = ∞ implies lim

t→∞
[g(t)− ct] = ∞;

(ii) (Lemma 3.3 of [12]) G∗ = ∞ implies lim
t→∞

g(t)

t
= c0,2;

(iii) (Lemma 3.4 of [12]) G∗ ∈ (L∗,∞) implies lim
t→∞

[g(t)− ct] = G∗;
(iv) (Lemma 3.5 of [12]) G∗ <∞ implies G∗ ≤ L∗.

From the last two properties, we can see that G∗ > L∗ implies G∗ = ∞. Hence
by the first two properties, we can obtain the following result.

Lemma 3.4. If G∗ > L∗, then lim
t→∞

[g(t)− ct] = ∞ and lim
t→∞

g(t)

t
= c0,2.

According to the proof of Theorem 3.9 in [12], we can establish the following
lemma.

Lemma 3.5. Assume G∗ > L∗. Then for any given small ϵ > 0,

lim
t→∞

[
sup

(c+ϵ)t≤x≤(1−ϵ)g(t)

|v(t, x)− a2α|

]
= 0.

To complete this step, we need to prove the following refined results.

Theorem 3.1. Assume G∗ > L∗. Then lim
t→∞

[g(t)− c0,2t] = G0 for some G0 ∈ R,
and for any c̃ ∈ (c, c0,2),

lim
t→∞

[
max
[0,c̃t]

|v(t, x)− ϕ(x− ct)|
]
= 0,

lim
t→∞

[
max

[c̃t,g(t)]
|v(t, x)− p2(g(t)− x)|

]
= 0.
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In order to prove Theorem 3.1, we need the following lemmas.

Lemma 3.6. For any M > 0,

lim
t→∞

[
max

−M≤x−ct≤M
|v(t, x)− ϕ(x− ct)|

]
= 0.

Proof. By Proposition 1 in [17], (1.10) has a unique solution ϕ. Fix ϵ ∈ (0, c̃− c)
and define

w(t, y) := v(t, y + ct) for t > 0, y ∈ [−ϵt, ϵt].

Since h∞ < ∞, there exists T > 0 such that u(t, y + ct) = 0 for t ≥ T and
y ∈ [−ϵt, ϵt]. Therefore, w satisfieswt = d2wyy + cwy +A2(y)w − w2

α
, t > T,−ϵt < y < ϵt,

w(t,±ϵt) = w(t, ct± ϵt) = 0, t > T.

Next the discussion can be followed by the proof of (11) in [17]. So we omit the
details.

Lemma 3.7. Let c̃ ∈ (c, c0,2). Then

lim
t→∞

[
max
[0,c̃t]

|v(t, x)− ϕ(x− ct)|
]
= 0.

Proof. For M > 0 and c̃ ∈ (c, c0,1), define

ϵ̃(M) := lim sup
t→∞

[
max

ct+M≤x≤c̃t
|v(t, x)− a2α|

]
.

By the proof of (13) in [17], we have

lim
M→∞

ϵ̃(M) = 0. (3.8)

By Lemma 3.2 and (3.8), for any given ϵ > 0, we can find B1 > 0 large enough
such that

ϵ(M) <
ϵ

3
, ϵ̃(M) <

ϵ

3
for M ≥ B1.

Therefore, for each M ≥ B1, there exists T1 = T1(M) > 0 such that

|v(t, x)| < 2ϵ

3
for t ≥ T1, 0 ≤ x ≤ ct−M,

and
|v(t, x)− a2α| <

2ϵ

3
for t ≥ T1, ct+M ≤ x ≤ c̃t.

Since ϕ(−∞) = 0 and ϕ(+∞) = a2α, we can find B2 > 0 such that for M ≥ B2,

|ϕ(x− ct)| < ϵ

3
when x ≤ ct−M, |ϕ(x− ct)− a2α| <

ϵ

3
when x ≥ ct+M.

Therefore, for M ≥ max{B1, B2} and t ≥ T1(M) > 0, we have

|v(t, x)− ϕ(x− ct)| < ϵ for x ∈ [0, ct−M ] ∪ [ct+M, c̃t].
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Fix M ≥ max{B1, B2} and applying Lemma 3.6, we can find T2 = T2(M) such that

|v(t, x)− ϕ(x− ct)| < ϵ for t ≥ T2(M), x ∈ [ct−M, ct+M ].

Therefore,

|v(t, x)− ϕ(x− ct)| < ϵ for x ∈ [0, c̃t], t ≥ T := max{T1(M), T2(M)}.

The proof is completed.

Lemma 3.8. For any c̃ ∈ (c, c0,2), there exist σ0 > 0 and B > 0 such that

v(t, c̃t) ≥ a2α−Be−σ0t for all large t. (3.9)

Proof. Choosing ϵ̃ such that [c̃− 2ϵ̃, c̃+ 2ϵ̃] ⊂ (c, c0,2). By Lemma 3.4 and (ii) of
Theorem 1.1 , there exists T0 > 0 such that

ct > h∞, g(t) > (c̃+ 2ϵ̃)t for t ≥ T0,

and
u(t, x) = 0 for t ≥ T0, x ≥ ct.

Denote
ΩT := t ≥ T, (c̃− 2ϵ̃)t ≤ x ≤ (c̃+ 2ϵ̃)t,

then
vt = d2vxx + vA2(x− ct)− v2

α
for (t, x) ∈ ΩT , T ≥ T0.

By Lemma 3.5, for any small υ > 0, there exists T1 ≥ T0 such that

v(t, x) ≥ a2α− υ for (t, x) ∈ ΩT with t ≥ T1. (3.10)

We may proceed as in the proof of Lemma 3.1 in [17] (with obvious modifications)
to show that (3.9) holds.

Lemma 3.9. There exists C > 0 such that

|g(t)− c0,2t| ≤ C for all large t.

Proof. Denote F (v) = a2v − v2

α
. For σ0 given by Lemma 3.8 and σ ∈ (0, σ0),

there exists η > 0 such thatσ < −F ′(v), a2α(1− η) ≤ v ≤ a2α(1 + η),

F (v) ≥ 0, 0 ≤ v ≤ a2α.
(3.11)

For η > 0, we define zη ∈ (0,∞) and P ′
η as follows

p2(zη) = a2α(1−
η

2
), P ′

η = min
0≤z≤zη

p′2(z) > 0, (3.12)

where p2 is the solution of (1.6).
Clearly, for small σ given above, there exists M0 > 0 such that

ψ(t) ≤ a2α(1 +M0e
−σt) for t > 0,
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where ψ(t) = a2α · ea2t

ea2t +
(

a2α
∥v0∥∞

− 1
) is the unique solution of

ψ′(t) = a2ψ − ψ2

α
,ψ(0) = ∥v0∥∞.

By the comparison principle, we have that v(t, x) ≤ ψ(t) for t > 0, x ∈ [0, g(t)]. It
follows that v(t, x) ≤ a2α(1 +M0e

−σt) for t > 0 and x ∈ [0, g(t)].
In view of Lemmas 3.2 and 3.4, for ĉ ∈ (0, c), we can find a T ∗ > 0 such that

v(t, ĉt) <
a2α

2
and g(t) > ĉt for t ≥ T ∗. For given B1 > M0, there exists a constant

X0 > 0 such that

(1 +B1e
−σT∗

)p2(x) ≥ a2α(1 +M0e
−σT∗

) and p2(x) ≥
a2α

2
for x ≥ X0.

Define v̄(t, x), η1(t) and η2(t) as follows

η1(t) = ĉt, η2(t) = c0,2(t− T ∗) +mB1(e
−σT∗

− e−σt) + ĉT ∗ +X0 + g(T ∗), t ≥ T ∗,

v̄(t, x) = (1 +B1e
−σt)p2(η2(t)− x) for t ≥ T ∗, η1(t) < x < η2(t),

where m ≥ c0,2
σ is large enough. By the analysis in the proof of Lemma 3.3 in [17],

(v̄(t, x), η2(t)) is an upper solution of the free boundary problem satisfied by (v, g)
over the region with x = η1(t) as a given left boundary. Therefore,

g(t) ≤ η2(t), v(t, x) ≤ v̄(t, x) for t ≥ T ∗, ĉt ≤ x ≤ g(t).

It follows that
g(t) ≤ c0,2t+ C for t ≥ T ∗,

where C > 0 is some constant. Next, we construct a lower solution to show that
g(t)− c0,2t is bounded. For c̃ ∈ (c, c0,2) and σ ∈ (0, σ0), if follows from Lemma 3.8
that

v(t, c̃t) > a2α(1−M0e
−σt) for t ≥ T ∗.

We choose T ∗∗ > T ∗ so that

M0e
−σt ≤ η

2
for t ≥ T ∗∗. (3.13)

By virtue of Lemma 3.4 and (ii) of Theorem 1.1, we can enlarge T ∗∗ such that

g(t) > c̃t for t ≥ T ∗∗, (3.14)

and
u(t, x) = 0 for t > T ∗∗ and x > c̃t.

Thus (v, g) is satisfied
vt − d2vxx = va2 −

v2

α
, t > T ∗∗, c̃t < x < g(t),

v(t, c̃t) > a2α(1−M0e
−σt), v(t, g(t)) = 0, t > T ∗∗,

g′(t) = −µ2vx(t, g(t)), t > T ∗∗.

(3.15)
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Now, we define

ξ1(t) = c̃t, ξ2(t) = c0,2(t− T ∗∗)−mM0

(
e−σT∗∗

− e−σt
)
+ c̃T ∗∗ for t ≥ T ∗∗,

and
v(t, x) = (1−M0e

−σt)p2(ξ2(t)− x) for t ≥ T ∗∗, ξ1(t) ≤ x ≤ ξ2(t),

where m >
c0,2
σ . Since ξ1(T ∗∗) = ξ2(T

∗∗), as in Lemma 3.3 of [17], we can easily
check that (v, ξ2) is a lower solution to (3.15) with x = ξ1(t) as a given boundary.
It follows from the comparison principle that

g(t) ≥ ξ2(t), v(t, x) ≥ v(t, x) for t ≥ T ∗∗, ξ1(t) ≤ x ≤ ξ2(t).

Therefore,
g(t)− c0,2t ≥ −C for t ≥ T ∗∗,

where C > 0 is some constant. Thus we obtain that |g(t)− c0,2t| ≤ C for all large
t.

Lemma 3.10. lim
t→∞

|g(t)− c0,2t| = G0 for some G0 ∈ R.

Proof. Define

g̃(t) := g(t)− c0,2t, l1(t) := (c− c0,2)t,W (t, y) := v(t, y + c0,2t).

Since h∞ is finite, there exists T0 > 0 such that ct > h∞ for t ≥ T0 and

u(t, y + c0,2t) = 0 for t ≥ T0, y ∈ [l1(t), g̃(t)].

Thus W satisfies
Wt = d2Wyy + c0,2Wy + a2W − W 2

α
, t > T0, l1(t) < y < g̃(t),

W (t, g̃(t)) = 0, t > T0,

g̃′(t) = −µ2Wy(t, h̃(t))− c0,2, t > T0.

Since lim
t→∞

l1(t) = −∞ for any given l ∈ R, by enlarging T0 (depending on l), we
can guarantee that l ≥ l1(t) for t ≥ T0.

Further, We follow the proof of Lemma 3.4 in [17] to establish the result by a
zero number argument.

Lemma 3.11. lim
t→∞

g′(t) = c0,2 and for every M > 0,

lim
t→∞

[
max

g(t)−M≤x≤g(t)
|v(t, x)− p2(g(t)− x)|

]
= 0.

Proof. Since u(t, x) = 0 for all large t and x ≥ ct, the conclusions can be directly
established from the proof of Lemma 3.5 in [17].

Lemma 3.12. Let c̃ ∈ (c, c0,2). Then

lim
t→∞

[
max

[c̃t,g(t)]
|v(t, x)− p2(g(t)− x)|

]
= 0.
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Proof. Let σ, ξ2(t), η2(t) be given in the proof of Lemma 3.9. Defining p2(x) = 0
for x ≤ 0, we can see from the proof of Lemma 3.9 that

(1−M0e
−σt)p2(ξ2(t)− x) ≤ v(t, x) ≤ (1 +B1e

−σt)p2(η2(t)− x) (3.16)

for c̃t ≤ x ≤ g(t) and t ≥ T . By Lemma 3.9 and the definitions of ξ2(t) and η2(t),
there exists B2 > 0 such that

|ξ2(t)− g(t)| ≤ B2, |η2(t)− g(t)| ≤ B2 for t ≥ T.

Therefore, for any given ϵ > 0, due to (3.16) and p2(∞) = a2α, we can find M > 0
and T1 > 0 large enough such that

|v(t, x)− a2α| <
ϵ

2
, |p2(g(t)− x)− a2α| <

ϵ

2

for t ≥ T1 and x ∈ [c̃t, g(t)−M ]. It follows that

|v(t, x)− p2(g(t)− x)| < ϵ for t ≥ T1, x ∈ [c̃t, g(t)−M ].

By Lemma 3.11, we can find T2 > 0 such that

|v(t, x)− p2(g(t)− x)| < ϵ for t ≥ T2, x ∈ [g(t)−M, g(t)].

Therefore,

|v(t, x)− p2(g(t)− x)| < ϵ for t ≥ max{T1, T2}, x ∈ [c̃t, g(t)].

This completes the proof.
Obviously, Theorem 3.1 is a consequence of Lemmas 3.7 and 3.12. Then we have

completed the proof of Step 3 and the proof of Theorem 1.2.

4. Trichotomy via the variation of a parameter
In this section, we will discuss that each of the three cases described in Theorem 1.2
happens by varying a certain parameter in (1.4). For this purpose, we can choose
µ2 as the varying parameter, and keep all the others fixed. In order to stress the
dependence of c0,2 on µ2, we will write c0,2 = c0,2(µ2). By Theorem 6.2 in [9] and
its proof, we can deduce that c0,2(µ2) is continuous and strictly increasing in µ2,
with

c0,2(0) = 0, c0,2(∞) = 2
√
a2d2.

Therefore, if c ≥ 2
√
a2d2, then c0,2(µ2) < c for all µ2 > 0. By Theorem 1.1, v will

vanish in this case.
Thus in this section, we assume that

c0,1 ≤ c < 2
√
a2d2. (4.1)

By the properties of c0,2(µ2) described above, there exists a unique µ∗
2 > 0 such

that

c0,2(µ
∗
2) = c, c0,2(µ2) < c for 0 < µ2 < µ∗

2, c0,2(µ2) > c for µ2 > µ∗
2.
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According to (ii) of Theorem 1.1, v will vanish for µ2 ∈ (0, µ∗
2].

Next, we examine the case µ2 > µ∗
2. For such µ2, we have that c0,1 ≤ c < c0,2

holds. Hence Theorem 1.2 gives a trichotomy for the long-time behavior of v.
In order to emphasize the dependence of the solution (u, v, h, g) of (1.4) on the

parameter µ2, we denote them as (uµ2
, vµ2

, hµ2
, gµ2

). For the rest of this section,
we always assume that all the parameters in (1.4) except µ2 are fixed, the initial
functions u0, v0 satisfying (1.5) are also fixed, and (4.1) holds.

In the following, we will describe the behavior of (uµ2
, vµ2

, hµ2
, gµ2

) as µ2 → ∞.

Lemma 4.1. As µ2 → ∞,

hµ2
(t) → H(t) in C

κ
2

loc([0,+∞)), (4.2)
gµ2

(t) → +∞ for every t > 0, (4.3)

uµ2(t, x) → U(t, x) in C
1+κ
2 ,1+κ

loc (D), (4.4)

vµ2
(t, x) → V (t, x) in C

1+κ
2 ,1+κ

loc ([0,+∞)× [0,+∞)), (4.5)

where D := {(t, x) ∈ R2 : t ≥ 0, 0 ≤ x ≤ H(t)}, κ ∈ (0, 1) and (U, V,H) is the
unique solution to



Ut − d1Uxx = UA1(x− ct)− U2 − βUV, t > 0, 0 < x < H(t),

Vt − d2Vxx = V A2(x− ct)− V 2

U + α
, t > 0, 0 < x < +∞,

H ′(t) = −µ1Ux(t,H(t)),H(0) = H0, t > 0,

Vx(t, 0) = Ux(t, 0) = 0, U(t, x) = 0, t > 0, x ≥ H(t),

U(0, x) = u0(x), 0 ≤ x ≤ h0,

V (0, x) = v0(x), 0 ≤ x ≤ g0.

(4.6)

Proof. We will use two steps to establish the proof of the lemma.
Step 1. We deduce that lim

µ2→∞
gµ2(t) = +∞ for t > 0.

By a simple comparison consideration, we can obtain that

0 ≤ u(t, x) ≤M0, 0 ≤ v(t, x) ≤M0 for t ≥ 0, x ≥ 0,

where M0 := max{a1

β , a2α, ∥u0∥∞, ∥v0∥∞}. Hence, by (1.4), (vµ2
, gµ2

) was satisfied



vt − d2vxx ≥Mv, t > 0, 0 < x < g(t),

vx(t, 0) = 0, v(t, g(t)) = 0, t > 0,

g′(t) = −µ2vx(t, g(t)), t > 0,

g(0) = g0, v(0, x) = v0(x), 0 ≤ x ≤ g0,

(4.7)
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with M := a0,2 − M0

α . Denote (wµ2
, lµ2

) as the unique positive solution of

wt − d2wxx =Mw, t > 0, 0 < x < l(t),

wx(t, 0) = 0, w(t, l(t)) = 0, t > 0,

l′(t) = −µ2wx(t, l(t)), t > 0,

l(0) = g0, w(0, x) = v0(x), 0 ≤ x ≤ g0.

(4.8)

Apply the comparison principle, we can deduce that

lµ2(t) ≤ gµ2(t), wµ2(t, x) ≤ vµ2(t, x) for t > 0, 0 ≤ x ≤ lµ2(t). (4.9)

By the comparison principle, we also easily see that lµ2
(t) is non-decreasing in µ2.

Therefore, we can find l∞(t) ∈ (0,∞] such that lim
µ2→∞

lµ2
(t) = l∞(t) for each t > 0.

Next, we show that l∞(t) = +∞ for every t > 0. Due to the Hopf boundary
lemma, it follows from (4.8) that (wµ2)x(t, lµ2(t)) < 0 for t > 0. This implies that
l′µ2

(t) > 0 for t > 0. Hence for any given δ > 0, we have lµ2(t) > lµ2(δ) for t > δ. By
the same argument used in the proof of Lemma 5.3 in [6], we can prove l∞(δ) = +∞.
Thus lim

µ2→∞
lµ2

(t) = +∞ for t > 0. Then it follows from (4.9) that

lim
µ2→∞

gµ2
(t) = +∞ for t > 0.

Step 2. We will prove that (4.3), (4.4) and (4.5) hold.
Let µn

2 be an increasing positive sequence satisfying lim
n→∞

µn
2 = +∞. Denote

un(t, x) := uµn
2
(t, x), vn(t, x) := vµn

2
(t, x), hn(t) := hµn

2
(t) and gn(t) := gµn

2
(t).

From Step 1, vn(t, x) ≤ M0 for t ≥ 0, x ≥ 0 and all n ≥ 1. By the comparison
principle, we can deduce that

h1(∞) ≥ hn(t) ≥ hn+1(t) ≥ h0, gn(t) ≤ gn+1(t) for t > 0,

un(t, x) ≥ un+1(t, x) > 0 for t > 0, x ∈ [0, hn+1(t)],

0 < vn(t, x) ≤ vn+1(t, x) ≤M0 for t > 0, x ≥ 0.

Therefore, there exists H(t) > 0 for t > 0, V (t, x) > 0 for (t, x) ∈ (0,∞)× [0,+∞)
and U(t, x) ≥ 0 for x ∈ [0,H(t)], t ∈ (0,+∞) such that

lim
n→∞

hn(t) = H(t) for t > 0, (4.10)

lim
n→∞

un(t, x) = U(t, x) for t > 0, x ∈ [0,H(t)], (4.11)

lim
n→∞

vn(t, x) = V (t, x) for t > 0, x ≥ 0. (4.12)

Since vn is satisfied
(vn)t − d2(vn)xx = vn

(
A2(x− ct)− vn

un + α

)
, t > 0, 0 < x < gn(t),

(vn)x(t, 0) = 0, vn(t, gn(t)) = 0, t > 0,
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in view of the conclusion of Step 1, we can apply the interior parabolic Lp estimates
and Sobolev embedding theorem to the above equation for (t, x) ∈ (k, k + 2] ×
[0, R + 1) with every positive integer k, and the estimate up to t = 0 for (t, x) ∈
[0, 2] × [0, R + 1). We can conclude that, for some ι ∈ (0, 1) and C∗(R) > 0
independent of n,

∥vn(t, x)∥
C

1+ι
2

,1+ι([0,∞)×[0,R])
≤ C∗(R) for all large n and every R > 0.

Let κ ∈ (0, ι). By a compactness consideration, we can see that the convergence in
(4.12) can be strengthened to

vn → V in C
1+κ
2 ,1+κ

loc ([0,∞)× [0,∞)). (4.13)

Let y =
x

hn(t)
and wn(t, y) = un(t, hn(t)y). Then wn satisfies

∂twn − d1
h2n
∂yywn − h′n

hn
∂ywn = wn(A1(hn(t)y − ct)− wn − βvn(t, hn(t)y)),

t > 0, 0 < y < 1,

∂ywn(t, 0) = 0, wn(t, 1) = 0, t > 0.

By the estimate (1.11) in [15], we can find M4 > 0 independent of n so that

0 < h′n(t) ≤M4 for t > 0, n ≥ 1.

Applying the Lp estimates and Sobolev embedding theorem, we can deduce that

∥wn∥
C

1+ι
2

,1+ι([0,∞)×[0,1])
≤ C∗, (4.14)

where C∗ > 0 is independent of n, and ι ∈ (0, 1).
By (4.14) and h′n(t) = − µ1

hn(t)
(wn)y(t, 1), we can obtain that

∥hn∥C1+ ι
2
([0,∞)) ≤ C∗∗ (4.15)

for some C∗∗ > 0 independent of n.
Let κ ∈ (0, ι). Due to (4.14) and (4.15), we see that the convergence in (4.10)

can be strengthened to

hn → H in C
1+κ

2

loc ([0,∞) as n→ ∞. (4.16)

By passing to a subsequence, we can deduce

wn →W in C
1+κ
2 ,1+κ

loc ([0,∞)× [0, 1]) as n→ ∞.

Denote Z(t, x) :=W (t, x
H(t) ). We can easily see that

un → Z in C
1+κ
2 ,1+κ

loc (D) as n→ ∞, with D := (t, x) ∈ R2 : t ≥ 0, x ∈ [0,H(t)],
(4.17)

and
H ′(t) = − µ1

H(t)
Wy(t, 1) = −µ1Zx(t,H(t)).

In view of (4.11), we have U ≡ Z. Furthermore, (U, V,H) is satisfied (4.6). From
the proof of Section 2 of [8], (U, V,H) is the unique solution of (4.6). Together
with the uniqueness of (U, V,H), (4.16), (4.17) and (4.13) can imply (4.2), (4.4)
and (4.5). This is completed the proof.
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Lemma 4.2. For all sufficiently large µ2 > 0, the prey vµ2
will spread in the

environment.

Proof. Let λ[a,b]1 be the principle eigenvalue of−cϑ′ − d2ϑ
′′ = A2(x)ϑ+ λϑ, a < x < b,

ϑ(a) = ϑ(b) = 0.

Assume µ2 > µ∗
2. Thus c0,1 < c < c0,2(µ2). For this case, we can use Lemma

2.2 to deduce that (2.4) has a unique positive solution V0 with l = 0 and L = L(0)
satisfied

−µ2V
′
0(L(0)) = c.

Since V0 and L(0) depend on µ2, we denote them by V0,µ2 and Lµ2(0), respectively.
It follows that λ[0,Lµ2 (0)]

1 < 0.
Now we establish the limits of Lµ2

(0) and V0,µ2
as µ2 → ∞. We can claim that

lim
µ2→∞

Lµ2
(0) = L∗, lim

µ2→∞
∥V0,µ2

∥∞ = 0, where L∗ > 0 is uniquely determined by

λ
[0,L∗]
1 = 0.

Since A2(x) = a2 for x ≥ 0, Ṽµ2
(x) := V0,µ2

(x− Lµ2
(0)) satisfies

− cṼ ′
µ2

− d2Ṽ
′′
µ2

= a2Ṽµ2
−
Ṽ 2
µ2

α
, − Lµ2(0) < x < 0,

Ṽµ2(−Lµ2(0)) = Ṽµ2(0) = 0, Ṽ ′
µ2
(0) = − c

µ2
.

By the comparison principle, we can deduce that Lµ2(0) is strictly decreasing in
µ2 for µ2 > µ∗

2, and Ṽµ2
(x) > Ṽµ̃2

(x) for x ∈ [−Lµ2
(0), 0) when µ∗

2 < µ2 < µ̃2. It
follows that

L∗ := lim
µ2→∞

Lµ2
(0) ∈ [0,∞), Ṽ (x) := lim

µ2→∞
Ṽµ2

(x) for x ∈ (−L∗, 0]

are both existed, and
λ
[0,L∗]
1 ≤ 0, Ṽ (x) ≥ 0.

Moreover, by elliptic regularity theory, we easily see that Ṽµ2
→ Ṽ in C2

loc((−L∗, 0])

as µ2 → ∞, and Ṽ is satisfied

−cṼ ′ − d2Ṽ
′′ = a2Ṽ − Ṽ 2

α
for x ∈ (−L∗, 0), Ṽ (0) = Ṽ ′(0) = 0.

By the uniqueness of the initial value problem for the above ODE problem, we can
obtain Ṽ ≡ 0. Then we can deduce λ[0,L

∗]
1 = 0. Otherwise λ[0,L

∗]
1 < 0. By the

comparison principle, we have that Ṽµ2
≥ V > 0 for all large µ2, where V is the

unique positive solution of the problem

−cV ′ − d2V
′′ = a2V − V 2

α
for x ∈ (−L∗, 0), V (−L∗) = V (0) = 0.

It is a contradiction. Then the claim is right.
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For some σ > 0, λ[−σ,L∗+σ]
1 < λ

[0,L∗]
1 = 0. Then the elliptic problem−cΦ′ − d2Φ

′′ = A2(x)Φ− Φ2

α
, −σ < x < L∗ + σ,

Φ(−σ) = Φ(L∗ + σ) = 0,
(4.18)

has a unique positive solution Φ.
For any φ0 ∈ C2([−σ,L∗+σ]) satisfied φ0(−σ) = φ0(L

∗+σ) = 0 and φ0(x) > 0
in (−σ,L∗ + σ), we consider the initial-boundary value problem

φt − cφx − d2φxx = A2(x)φ− φ2

α
, t > 0,−σ < x < L∗ + σ,

φ(t,−σ) = φ(t, L∗ + σ) = 0, t > 0,

φ(0, x) = φ0(x), −σ < x < L∗ + σ.

It is well known that

lim
t→∞

φ(t, x) = Φ(x) uniformly in [−σ, L∗ + σ]. (4.19)

Let (U, V,H) be the unique solution of (4.6). Set

z(t, x) = U(t, x+ ct) and w(t, x) = V (t, x+ ct).

Then w satisfies

wt − d2wxx − cwx = w

(
A2(x)−

w

z + α

)
for t > 0,−ct < x < +∞.

From the proof of Lemma 4.1, H(∞) < +∞. We fix some µ̃0 > µ∗
2 and recall from

the proof of Lemma 4.1 that H(∞) ≤ hµ̃0
(∞) <∞ (due to c > c0,1). Then we can

find a constant T0 > 0 such that

ct > hµ̃0
(∞) + σ ≥ H(∞) + σ for t ≥ T0. (4.20)

This implies that z(t, x) ≡ 0 for t ≥ T0, x ≥ −σ. Hence, we have that

wt − d2wxx − cwx = w
(
A2(x)−

w

α

)
for t ≥ T0,−σ < x < +∞.

By the strong maximum principle, we know that w(t, x) > 0 for t ≥ T0 and
x ∈ [−σ,+∞). If we have chosen φ0 small enough such that φ0(x) ≤ w(T0, x)
in [−σ, L∗ + σ], then the comparison principle would yield

φ(t, x) ≤ w(t+ T0, x) for t ≥ T0,−σ ≤ x ≤ σ + L∗.

Choosing φ0 such that the above inequality holds and denote ε := 1

2
min
[0,L∗]

Φ(x). By

(4.19), we can find T1 > 0 such that

φ(T1, x) > Φ(x)− ε

2
in [−σ, σ + L∗].
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Let T := T0 + T1. Then it follows that

V (T, x) = w(T, x− cT ) > Φ(x− cT )− ε

2
in [cT − σ, L∗ + σ + cT ].

By (4.2) and (4.4), we can find µ0 ≥ µ̃0 such that

gµ2
(T ) > cT + L∗ + σ, (4.21)

and

vµ2
(T, x) > V (T, x)− ε

2
> Φ(x− cT )− ε, x ∈ [cT − σ,L∗ + σ + cT ]

for µ2 ≥ µ0. By the definition of ε, we can see that Φ(x − cT ) − ε > 0 for
x ∈ [cT, L∗ + cT ]. Therefore we can find σ0 ∈ (0, σ) small enough such that

Φ(x− cT )− ε > σ0 for x ∈ [cT − σ0, L
∗ + σ0 + cT ].

By the conclusion in the above claim, we can find µ̂0 > µ0 so that

Lµ2
(0) < L∗ + σ0, V0,µ2

(x) ≤ σ0 for x ∈ [0, Lµ2
(0)] and µ2 ≥ µ̂0.

Thus we obtain

hµ2
(T ) > cT + Lµ2

(0), vµ2
(T, x) > V0,µ2

(x− cT )

for µ2 ≥ µ̂0 and x ∈ [cT, cT + Lµ2(0)] ⊂ [cT − σ0, L
∗ + cT + σ0].

Using the comparison principle, we can find that

gµ2(T ) > ct for t ≥ T.

Indeed, if this is not true, then there exists T1 > T such that gµ2(T1) = cT1 and
gµ2(t) > ct for T < t < T1. Due to (4.20) and hµ2(∞) ≤ hµ̃0

(∞) < ∞, we can see
that uµ2

(t, x) = 0 for T ≤ t ≤ T1 and x ∈ [ct, gµ2
(t)]. Hence (vµ2

(t, x), gµ2
(t)) is

satisfied

vt − d2vxx = a2v −
v2

α
, T < t < T1, ct < x < g(t),

v(t, ct) > 0, v(t, g(t)) = 0, T < t < T1,

g′(t) = −µ2vx(t, g(t)), T < t < T1,

g(T ) > cT + Lµ2
(0), v(T, x) > V0,µ2

(x− cT ), cT ≤ x ≤ cT + Lµ2
(0).

(4.22)

Fix µ2 such that (4.22) holds, and define

V (t, x) := V0,µ2(x− ct), g(t) := ct+ Lµ2(0).

It is easily checked that
V t − d2V xx = a2V − V 2

α , t > 0, ct < x < g(t),

V (t, ct) = 0, V (t, g(t)) = 0, t > 0,

g′(t) = −µ2V x(t, g(t)), t > 0.
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Hence we can apply the comparison principle to conclude that

g(t) ≥ g(t), v(t, x) ≥ V (t, x) for T < t ≤ T1, x ∈ [ct, g(t)].

It follows that gµ2
(T1) = g(T1) ≥ cT1 + Lµ2

(0), which is contradicted with our
choice of T1. This implies that gµ2

(t) = g(t) > ct for t ≥ T . Then we can repeat
the above argument to conclude that

g(t) ≥ g(t), v(t, x) ≥ V (t, x) for t > T, x ∈ [ct, g(t)].

Next we want to modify (V , g) by a small perturbation of c. For this purpose, with
fixed µ2 and T such that (4.22) holds, we rewrite (V0,µ2

, Lµ2
(0)) as (V c, Lc). Due

to the continuous dependence of (V c, Lc) on c, the last inequalities in (4.22), which
can be rewritten as

g(T ) > cT + Lc, v(T, x) > V c(x− cT ) for x ∈ [cT, cT + Lc],

still hold if c is replaced by some c̃ > c but very close to c. Fix c̃ and define

Ṽ (t, x) := V c̃(x− c̃t), g̃(t) := c̃t+ Lc̃.

Then we can still obtain by the comparison principle that

g(t) ≥ g̃(t), v(t, x) ≥ Ṽ (t, x) for t > T, x ∈ [c̃t, g̃(t)].

Hence
g(t)− ct ≥ (c̃− c)t− Lc̃ → ∞ as t→ ∞.

By Step 3 in the proof of Theorem 1.2, we can conclude that spreading happens for
vµ2

, when µ2 ≥ µ̂0. This completes the proof.
Theorem 1.3 clearly follows from (ii) of Theorem 1.1 and the following result.

Theorem 4.1. There exists µ̃ ∈ (µ∗
2,+∞) such that

(i) vanishing of vµ2
happens if µ2 ∈ (0, µ̃);

(ii) borderline spreading of vµ2
happens if µ2 = µ̃;

(iii) spreading of vµ2
happens if µ2 > µ̃.

Proof. Define

µ∗ := sup{S1}, S1 := {µ2 > 0 : vanishing happens to vµ2
},

and
µ∗ := inf{S2}, S2 := {µ2 > 0 : spreading happens to vµ2

}.

By our analysis, we know that S1 and S2 are both nonempty sets, and µ∗ ≥ µ∗
2. In

view of the comparison principle, it is easily seen that

S1 ⊃ (0, µ∗), S2 ⊃ (µ∗,∞) and µ∗ ≤ µ∗.

We divide the proof below into three steps.
Step 1. We show that µ∗ ̸∈ S1 and µ∗ > µ∗

2.
For any µ0 ∈ S1, due to Lemma 3.3, for some large T0 > 0, we have

3gµ0(T0) < cT0 − (l0 + 1) and vµ0(T0, x) <

√
2m

4
in [0, gµ0(T0)],
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where m =
d2π

9(µ0 + 1)
and l0 appears in the definition of A2(x). By the continuity

of the solution with respect to µ2, we can find a small ε > 0 such that (vµ, gµ) of
the solution (uµ, vµ, hµ, gµ) of (1.4) satisfies

3gµ(T0) < cT0 − l0 and vµ(T0, x) <

√
2m

2
for x ∈ [0, gµ(T0)], µ ∈ [µ0, µ0 + ε].

Define κ =
d2π

2

36g2µ(T0)
and

v̄µ(t, x) = me−κt cos

(
πx

2ξ(t)

)
, ξ(t) = gµ(T0)(3− e−κt).

Then the same argument as in the proof of Lemma 3.3 can imply that

gµ(t+ T0) ≤ ξ(t) ≤ 3gµ(T0) for t > 0.

By Lemma 3.2, we can see that vanishing happens to vµ. It follows that (0, µ0+ε] ⊂
S1. This clearly implies µ∗ ̸∈ S1.
Step 2. We prove that µ∗ ̸∈ S2.

For contradiction, suppose µ∗ ∈ S2. Since µ∗ ≥ µ∗ > µ∗
2, we have c0,1 < c <

c0,2(µ
∗). Then we can apply Theorem 1.2 to conclude that

lim
t→∞

[gµ∗(t)− c0,2(µ
∗)t] = G0 ∈ R, lim

t→∞

[
max

x∈[0,c̃t]
|vµ∗(t, x)− ϕ(x− ct)|

]
= 0 (4.23)

for any c̃ ∈ (c, c0,2(µ
∗)). Therefore, for any M > 0

lim
t→∞

[
max

x∈[c̃t−M,c̃t+M ]
|vµ∗(t, x)− a2α|

]
= 0. (4.24)

Let Vµ∗(x) be the unique positive solution of (2.4) with l = 0, c = c̃ and µ2 = µ∗.
Denote the corresponding L(0) by Lµ∗ , then−d2V ′′

µ∗ − c̃V ′
µ∗ = a2Vµ∗ −

V 2
µ∗

α
, 0 < x < Lµ∗ ,

Vµ∗(0) = Vµ∗(Lµ∗) = 0, − µ∗V ′
µ∗(Lµ∗) = c̃.

By the comparison principle, we can easily see that Vµ∗(x) < a2α in [0, Lµ∗ ]. There-
fore we can find ϵ > 0 such that

Vµ∗(x) + ϵ < a2α in [0, Lµ∗ ].

By (4.23) and (4.24), we can find T > 0 such that

c̃T > hµ∗
2
(∞) ≥ hµ∗(∞), gµ∗(T ) > c̃T + Lµ∗ , (4.25)

and
vµ∗(T, x) + ϵ > a2α for x ∈ [c̃T, c̃T + Lµ∗ ].

Therefore,
vµ∗(T, x) > Vµ∗(x− c̃T ) for x ∈ [c̃T, c̃T + Lµ∗ ]. (4.26)
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Due to the continuous dependence of (vµ2
, gµ2

) and (Vµ2
, Lµ2

) on µ2, we can see
that (4.25) and (4.26) still hold if we replace µ∗ by some µ < µ∗ but very close to
µ∗. Fix such µ, we can find that (vµ, gµ) satisfies

vt − d2vxx = a2v −
v2

α
, t > T, c̃t < x < g(t),

v(t, c̃t) > 0, v(t, g(t)) = 0, t > T,

g′(t) = −µvx(t, g(t)), t > T,

g(T ) > c̃T + Lµ, v(T, x) > Vµ(x− c̃T ), c̃T ≤ x ≤ c̃T + Lµ.

(4.27)

Define
V (t, x) := Vµ(x− c̃t), g(t) := c̃t+ Lµ.

It is easily checked that
V t − d2V xx = a2V − V 2

α
, t > 0, c̃t < x < g(t),

V (t, c̃t) = 0, V (t, g(t)) = 0, t > 0,

g′(t) = −µV x(t, g(t)), t > 0.

Hence we can apply the comparison principle to conclude that

gµ(t) ≥ g(t), vµ(t, x) ≥ V (t, x) for t > T, x ∈ [c̃t, g(t)].

Therefore,
gµ(t)− ct ≥ (c̃− c)t− Lµ → ∞ as t→ ∞.

By Step 3 in the proof of Theorem 1.2, we can obtain that spreading happens for
vµ. Thus µ ∈ S2. Since µ < µ∗, this is a contradiction. Step 2 is completed.
Step 3. We prove that µ∗ = µ∗. Otherwise, we have µ∗ < µ∗. Denote

(u∗, v∗, h∗, g∗) = (uµ∗ , vµ∗ , hµ∗ , gµ∗) and (u∗, v∗, h∗, g∗) = (uµ∗ , vµ∗ , hµ∗ , gµ∗).

By Step 1, Step 2 and Theorem 1.2, we can know that borderline spreading hap-
pens to v∗ and v∗. Moreover, in view of the comparison principle and the strong
maximum principle, we can easily deduce that

g∗(t) < g∗(t) for t > 0, (4.28)
v∗(t, x) < v∗(t, x) for t > 0, 0 ≤ x ≤ g∗(t). (4.29)

Due to (ii) of Theorem 1.1, there exists T > 0 such that

ct− 2l0 > hµ∗(∞) ≥ hµ∗(∞) > h0 for t ≥ T.

Then u∗(t, x) = u∗(t, x) ≡ 0 for t ≥ T , x ≥ ct− 2l0. Thus (v∗, g∗) satisfies vt − d2vxx = A2(x− ct)v − v2

α
, t > T, ct− 2l0 < x < g(t),

v(t, g(t)) = 0, g′(t) = −µ∗vx(t, g(t)), t > T,
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and (v∗, g∗) solves vt − d2vxx = A2(x− ct)v − v2

α
, t > T, ct− 2l0 < x < g(t),

v(t, g(t)) = 0, g′(t) = −µ∗vx(t, g(t)), t > T.

Using the similar argument as in Step 3 of the proof of Theorem 4.3 in [12], we
can show that

lim inf
t→∞

[g∗(t)− ct] > L∗.

It is a contradiction with the fact that borderline spreading happens to v∗. This
contradiction proves µ∗ = µ∗. The proof of the theorem is completed.

5. Conclusions
In this paper, we considered a Leslie-Gower predator-prey model in shifting environ-
ments. The model is studied the invasive predator that initially occupy the region
[0, g0] and has a tendency to expand its territory. We establish several results in
this setting.

(I) Theorem 1.1 is provided that the prey and predator will vanish when the
speed of the shifting habitat edge c is more than the asymptotic speed of the
prey and predator without the shifting environment.

(II) By Theorem 1.2, we can establish a spreading-borderline spreading-vanishing
trichotomy for the predator with c < c0,2.

(III) Finally, Theorem 1.3 is revealed that for c < 2
√
a2d2, there exists a µ̃ ∈

(0,+∞) such that vanishing of v happens if µ2 ∈ (0, µ̃); borderline spreading
of v happens if µ2 = µ̃; spreading of v happens if µ2 > µ̃.

By our discussions, we can provide that the invasive predator can knock aquatic
ecosystems right out of balance and the environment will affect the invasive specie
spread. Studying the spread of an invasive predator, we can give some guidelines,
especially ones that encourage the trade of less invasive and aggressive species, or
protect the prey as food for the predator.
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