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SOME INTEGRAL REPRESENTATION
FORMULAS AND SCHWARZ LEMMAS

RELATED TO PERTURBED DIRAC
OPERATORS∗

Longfei Gu1,†, Yuanyuan Liu2,† and Rihang Lin1

Abstract In this paper, we first obtain some integral representations for
perturbed Dirac operators by using the fundamental solutions of the modi-
fied Helmholtz equation and Clifford calculus approach. Second, based on the
exhaustion of arbitrary open subsets and integral representations, we investi-
gate generalized Cauchy type integral representation formulas. Moreover, we
establish Schwarz lemmas for the null solutions of perturbed Dirac operators
in R3. Finally, as applications, we solve a kind of Dirichlet boundary value
problem for perturbed Dirac operators and give the explicit representation of
the solution.
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1. Introduction
The importance of integral representations formulas in classical complex analysis
was recognized at least as early as 1831, when Augustin-Louis Cauchy discovered
the famous formula which carries his name. Integral representations in complex
analysis, quaternion analysis and Clifford analysis have been systematically de-
veloped in [2, 5, 7, 8, 10, 11, 13–17, 19, 24, 26]. These integral representations are
powerful mathematical tools for the treatment of many different types of bound-
ary value problems for partial differential equations, for instance Dirichlet prob-
lems, Neumann problems and Riemann-Hilbert problems, and so on. We refer
to [1, 3, 4, 9, 16–18, 20]. The Schwarz lemma is one of the central results in com-
plex analysis (see [6], [12], [22, 23, 25, 27, 28, 30–34]). It concerns holomorphic self-
mappings of the unit disk in the complex plane and obtains general sharp estimates
of the values of bounded analytic (holomorphic) functions on the open unit disk of
the complex plane. It is natural and important to generalized the classical Schwarz
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Lemma to a higher dimension. Clifford analytic functions theory can be considered
as a generalization to higher dimension of the theory of holomorphic functions in
the complex plane and is centered around the notion of a regular function, which
is a null solution of a Dirac operator, which is factorizes the Laplace operator in
the Euclidean spaces Rn. Clifford function theory has been systematically studied
in [13–15]. The Schwarz lemma for regular functions in outside the unit ball in Rn

was established by Qian and Yang in [32]. Based on integral representations for
harmonic functions and regular functions with value in Clifford algebra Cl(Vn,0)
Zhang proved for the first time Schwarz lemma for harmonic functions and regu-
lar functions in inside the unit ball in Rn which are similar to the classical results
in [33,34].

In this article, motivated by [20, 21, 32–34], under framework of the Clifford
algebra Cl(V3,3), we obtain Borel-Pompeiu integral representations associated to
perturbed Dirac operators by Clifford calculus, Stokes formula and the fundamen-
tal solution of the modified Helmholtz operators. With the help of these integral
representation formula, we obtain generalized Cauchy integral formulas related to
perturbed Dirac operators using a compact exhaustion technique about integral do-
mains in R3. Using integral representation formulas and integral inequalities, we
establish Schwarz Lemmas related to perturbed Dirac operators in R3. As another
application about these integral representation, we solve a kind of Dirichlet bound-
ary value problem for perturbed Dirac operators. The explicit representation of the
solution is also given.

2. Preliminaries
Let A := R(e1, e2, e3) denote the free R-algebra with n indeterminants {e1, . . . , e3}.
Let J be the two-sided ideal in A generated by the elements

{e2i − 1, i = 1, . . . , s; e2i + 1, i = s+ 1, . . . , n; eiej + ejei, 1 ≤ i < j ≤ 3}.

The quotient algebra Cl(V3,s) := A/J is called the Clifford algebra with parameters
3, s. Without risk of ambiguity, we take the usual practice of using the same symbol
to denote an indeterminant ei in A and its equivalent class in A/J . Therefore,
e1, · · · , e3 considered as elements of A/J have the following relations:

e2i = 1, i = 1, . . . , s,

e2i = −1, i = s+ 1, . . . , 3,

eiej + ejei = 0, i 6= j.

Set

el1...lr := el1 · · · elr , while 1 ≤ l1 < · · · < lr ≤ 3.

For more information on Cl(V3,s), we refer to [11, 15]. In this article, we only con-
sider s = 3. Thus Cl(V3,3) is a real linear non-commutative algebra. An involution
is defined by 

eA = (−1)
n(A)(n(A)+3)

2 eA, if A ∈ PN,

λ =
∑

A∈PN

λAeA, if λ =
∑

A∈PN

λAeA,
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where

{eA, A = {l1, . . . , lr} ∈ PN, 1 ≤ l1 < · · · < lr ≤ n},

n(A) is the cardinal number of the set A, N stands for the set {1, 2, · · · , n} and
PN denotes the family of all order-preserving subsets of N in the above way. The
norm of λ is defined by ‖λ‖ = (

∑
A∈PN

|λA|2)
1
2 . If Re(λ) denotes the scalar portion

of λ ∈ Cl(V3,3), then it follows

Re(λλ) = Re(λλ) =
∑

A∈PN

|λA|2 = ‖λ‖2.

Lemma 2.1. Suppose that x ∈ R3, y ∈ R3 and λ ∈ Cl(V3,3). Then

‖λx‖ = ‖λ‖‖x‖, (2.1)
‖xλ‖ = ‖λ‖‖x‖, (2.2)
‖λxy‖ = ‖xλy‖ = ‖xyλ‖ = ‖λ‖‖x‖‖y‖. (2.3)

Proof. The equality (2.1) can be directly proved as follows

‖λx‖2 = Re(λxλx) = Re(λxxλ) = ‖x‖2Re(λλ) = ‖x‖2‖λ‖2.

The result equality (2.2) can be similarly proved as (2.1). By (2.1) and (2.2), the
equality (2.3) holds. The proof is finished.

Lemma 2.2. Let x, y ∈ R3 and x 6= y. Then

‖ y − x

‖y − x‖3
− y

‖y‖3
‖ ≤ 2‖y‖+ ‖x‖

‖y − x‖2‖y‖2
‖x‖ (2.4)

and

‖ y − x

‖y − x‖2
− y

‖y‖2
‖ ≤ 1

‖y − x‖‖y‖
‖x‖. (2.5)

Proof. For x, y ∈ R3 and x 6= y, by Lemma 2.1, we have

Γ ≜ y − x

‖y − x‖3
− y

‖y‖3
=

(y − x)[‖y‖y − (y − x)‖y − x‖]y
‖y − x‖3‖y‖3

,

it is easy to check that

Γ ≤ 2‖y‖+ ‖x‖
‖y − x‖2‖y‖2

‖x‖.

Obviously, the inequality (2.4) follows. Using the similar method, we can prove the
inequality (2.5). The proof is done.

Suppose Ω be an open bounded non-empty subset of R3. We now introduce the

Dirac operator D =
3∑

i=1

ei
∂

∂xi
. In particular, we have that DD = ∆ where ∆ is the

Laplacian over R3. A function u : Ω 7→ Cl(V3,3) is said to be left monogenic if it
satisfies the equation D[u](x) = 0 for each x ∈ Ω. A similar definition can be given
for right monogenic functions. Elementary properties of the Dirac operators and
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left monogenic functions can be found in References [11, 15]. In [29], the elliptic
partial differential operator H = (∆ − κ2), for κ ≥ 0, corresponds to the modified
Helmholtz equation:

Hu = (∆− κ2)u = 0,

which has the fundamental solution as follows:

E1(x, κ
2) =

e−κ∥x∥

4π‖x‖
. (2.6)

Denote
Lκu = Du+ κu, L−κu = Du− κu.

Using the above Clifford algebra Cl(V3,3), then the modified Helmholtz equation
may be written as

LκL−κu = L−κLu = 0.

Let

K1(y − x, κ) =
1

4π

(
y − x

‖y − x‖3
+

κ(y − x)
‖y − x‖2

+
κ

‖y − x‖

)
e−κ∥y−x∥, (2.7)

K∗1(y − x, κ) =
1

4π

(
y − x

‖y − x‖3
+

κ(y − x)
‖y − x‖2

− κ

‖y − x‖

)
e−κ∥y−x∥, (2.8)

where y− x =
∑3

i=1(yi − xi)ei. It is clear that K1(y − x, κ) and K∗1(y − x, κ) are

fundamental solutions of Lκ =
3∑

i=1

ei
∂

∂yi
+ κ and L−κ =

3∑
i=1

ei
∂

∂yi
− κ, respectively.

Lemma 2.3. Let E1(y−x, κ2),K1(y−x, κ) and K∗1(y−x, κ) be as in (2.6), (2.7)
and (2.8) respectively. Then

L−κ[E1(y − x, κ2)] = [E1(y − x, κ2)]L−κ = K1(y − x, κ)

Lκ[E1(y − x, κ2)] = [E1(y − x, κ2)]Lκ = K∗1(y − x, κ)

L−κ[K∗1(y − x, κ)] = [K∗1(y − x, κ)]L−κ = 0

Lκ[K1(y − x, κ)] = [K1(y − x, κ)]Lκ = 0.

where y ∈ R3 \ {x}.

3. Some integral representation formulas in Clifford
analysis

Suppose M be a 3-dimensional differentiable and oriented manifold contained in
some open subset Ω of R3. The Cl(V3,3)-value 2-differential form

dσ = e1dx2 ∧ dx3 + e2dx3 ∧ dx1 + e3dx1 ∧ dx2

=

3∑
i=1

(−1)i−1eidx̂
N
i
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is exact, where

dx̂N
i = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dx3.

If dS stands for the classical surface element and

n =

3∑
i=1

eini,

where ni is the i-th component of the outward pointing normal, then the Clifford-
valued surface element dσ can be written as

dσ = ndS. (3.1)

By Stokes’ Theorem in Clifford analysis in [13], we can prove the following the
lemma.

Lemma 3.1. Let u, v ∈ C1(Ω, Cl(V3,3)). Then for any 3-chain C on M ⊂ Ω,∫
∂C

vdσu =

∫
C

[v]LκudV +

∫
C

vL−κ[u]dV

=

∫
C

[v]L−κudV +

∫
C

vLκ[u]dV.

where dV denotes the Lebesgue volume measure.

Proof. By Theorem 2 in [13], we have∫
C

[v]LκudV +

∫
C

vL−κ[u]dV =

∫
C

[v]L−κudV +

∫
C

vLκ[u]dV

=

∫
C

([v]Du+ vD[u])dV

=

∫
∂C

vdσu.

Theorem 3.1. Let Ω̃ be an open nonempty of R3 and Ω ⊂ Ω̃ be a domain with
piecewise C1 boundary. Then, for u ∈ C1(Ω̃, Cl(V3,3))∫

∂Ω

K∗1(y − x, κ)dσyu(y)−
∫
Ω

K∗1(y − x, κ)Lκ[u](y)dV

=

u(x), x ∈ Ω,

0, x ∈ Ω̃ \ Ω,

(3.2)

where K∗1(y − x, κ) is as in (2.8).
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Proof. Let x ∈ Ω̃ \ Ω. By Lemma 3.1 and Lemma 2.3, the left hand side of the
stated formula (3.2) reduces to∫

Ω

[K∗1(y − x, κ)]Lκu(y)dV =

∫
Ω

[K∗1(y − x, κ)]L−κu(y)dV

which apparently equals to zero.
Now take x ∈ Ω and take r > 0 such that B(x, r) ⊂ Ω. Invoking the previous

case, we may then write∫
∂(Ω\B(x,r))

K∗1(y − x, κ)dσyu(y) =

∫
Ω\B(x,r)

K∗1(y − x, κ)Lκ[u](y)dV. (3.3)

Denote

F (r) ≜
∫

Ω\B(x,r)

K∗1(y − x, κ)Lκ[u](y)dV, (3.4)

applying spherical coordinates, 0 < r1 < r2, we find

‖F (r2)− F (r1)‖ ≤
∫

B(x,r2)\B(x,r1)

1

4π
(

1

‖y − x‖2
+

2κ

‖y − x‖
)‖Lκ[u](y)‖dV

=
1

4π

∫
S2

∫ r2

r1

(1 + r)‖Lκ[u](y)‖drdω

≤ C(r2 − r1).

Hence, we obtain that

lim
r→0

∫
Ω\B(x,r)

K∗1(y − x, κ)Lκ[u](y)dV =

∫
Ω

K∗1(y − x, κ)Lκ[u](y)dV.

As to the left hand side of (3.3), we can write the following form∫
∂Ω

K∗1(y − x, κ)dσyu(y)−
∫

∂B(x,r)

K∗1(y − x, κ)dσyu(y), (3.5)

we denote

Θ(x) ≜
∫

∂B(x,r)

K∗1(y − x, κ)dσyu(y),

it follows from the classical Stokes formula that

Θ(x) =
3e−κr

4πr3

∫
B(x,r)

u(y)dV +
3κe−κr

4πr2

∫
B(x,r)

u(y)dV

+
e−κr

4πr3

∫
B(x,r)

(y − x)D[u](y)dV +
κe−κr

4πr2

∫
B(x,r)

(y − x)D[u](y)dV

− κe−κr

4πr

∫
B(x,r)

D[u](y)dV,
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in view of the Lebesgue differential theorem, we have

lim
r→0

Θ(x) = u(x). (3.6)

Using (3.3)-(3.6), the result follows. The proof is done.

Theorem 3.2. Let Ω̃ be an open nonempty of R3 and Ω ⊂ Ω̃ be a domain with
piecewise C1 boundary. Then, for u ∈ C1(Ω̃, Cl(V3,3))∫

∂Ω

K1(y − x, κ)dσyu(y)−
∫
Ω

K1(y − x, κ)L−κ[u](y)dV

=

u(x), x ∈ Ω

0, x ∈ Ω̃ \ Ω,

where K1(y − x, κ) is as in (2.7).

Proof. The result can be similarly proved as Theorem 3.1.
From Theorems 3.1− 3.2, the following results can be directly proved.

Theorem 3.3. Suppose that Ω̃ is an open nonempty of R3, Ω ⊂ Ω̃ is a domain
with piecewise C1 boundary and Lκ[u] = 0 in Ω̃. Then

∫
∂Ω

K∗1(y − x, κ)dσyu(y) =

u(x), x ∈ Ω

0, x ∈ Ω̃ \ Ω,

where K∗1(y − x, κ) is as in (2.8).

Theorem 3.4. Suppose that Ω̃ is an open nonempty of R3, Ω ⊂ Ω̃ is a domain
with piecewise C1 boundary and L−κ[u] = 0 in Ω̃. Then

∫
∂Ω

K1(y − x, κ)dσyu(y) =

u(x), x ∈ Ω

0, x ∈ Ω̃ \ Ω,

where K1(y − x, κ) is as in (2.7).

In order to prove the generalized Cauchy integral formula, we need the following
topological technique. Fix an increasing sequence of compact sets {Kl}, such that

1. K1 ⊂⊂ intK2 ⊂⊂ . . .Kl ⊂⊂ intKl+1 ⊂⊂ . . . ⊂ Ω i.e., Kl is contained in the
interior of Kl+1 for all l = 1, 2, . . . .

2.
+∞⋃
l=1

Kl = Ω.

A sequence {Kl} which satisfies the above conditions (1) and (2) is called a normal
exhaustion of Ω. For more details, we refer to [26].

Lemma 3.2. Any bounded domain Ω with piecewise C1 boundary in R3 has an
exhaustion.
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Proof. Let Kl denote the set of all points in Ω at distance ≥ 1
l from the boundary

of Ω.
For the general case about Theorem 3.3 and Theorem 3.4, by the help of Lemma

3.2, apply Theorem 3.3 and Theorem 3.4 to a suitable exhaustion of Ω by domain
Ωl ⊂⊂ Ω, l = 1, 2, . . ., and pass to the limit k → +∞, we then have the following
results:

Theorem 3.5. If u(x) ∈ C1(Ω, Cl(V3,3))
⋂

C(Ω, Cl(V3,3)) and Lκ[u] = 0 in Ω,
then

∫
∂Ω

K∗1(y − x, κ)dσyu(y) =

u(x), x ∈ Ω

0, x ∈ R3 \ Ω.

where K∗1(y − x, κ) is as in (2.8).

Theorem 3.6. If u(x) ∈ C1(Ω, Cl(V3,3))
⋂
C(Ω, Cl(V3,3)) and L−κ[u] = 0 in Ω,

then

∫
∂Ω

K1(y − x, κ)dσyu(y) =

u(x), x ∈ Ω

0, x ∈ R3 \ Ω

where K1(y − x, κ) is as in (2.7).

Remark 3.1. For κ = 0, Theorem 3.3 and Theorem 3.4 are the classical generalized
Cauchy formula in Clifford analysis.

4. Schwarz lemmas related to perturbed Dirac op-
erators in R3

In this section, we shall consider the Schwarz-type lemma for null solutions of L−κ

and L−κ by the above integral representations in Clifford analysis.

Theorem 4.1. Let B(0, R1) be an open ball with center origin and radius R1 in
R3, u ∈ C1(B(0, R1), Cl(V3,3)), Lκ[u] = 0 in B(0, R1), ‖u(x)‖ ≤ R2, ∀x ∈ B(0, R1)
and u(0) = 0. Then for ∀x ∈ B(0, R1),

‖u(x)‖ ≤


2ϕ(κ)

φ(κ)−
√

φ2(κ)−4ϕ(κ)

R2

R1
‖x‖, 0 ≤ κ < 1

2 ,
2ϕ(κ)

φ(κ)−
√

φ2(κ)−4ϕ(κ)

R2

R1
‖x‖, 1

2 < κ < +∞,

5R2

R1
‖x‖, κ = 1

2 ,

(4.1)

where ϕ(κ) = 2κ2 + κ− 1, φ(κ) = 2κ2 + 3κ+ 3.

Proof. 1. We first investigate a special case when R1 = R2 = 1. For ∀x ∈ B(0, r),
0 < r < 1, by Theorem 3.3

u(x) =

∫
∂B(0,r)

K∗1(y − x, κ)dσyu(y).
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In view of u(0) = 0, we have

u(x) =

∫
∂B(0,r)

[K∗1(y − x, κ)−K∗1(y, κ)]dσyu(y)

=
1

4π

∫
∂B(0,r)

[
y − x

‖y − x‖3
e−κ∥y−x∥ − y

‖y‖3
e−κ∥y∥]dσyu(y)

+
κ

4π

∫
∂B(0,r)

[
y − x

‖y − x‖2
e−κ∥y−x∥ − y

‖y‖2
e−κ∥y∥]dσyu(y)

− κ

4π

∫
∂B(0,r)

[
e−κ∥y−x∥

‖y − x‖
− e−κ∥y∥

‖y‖
]dσyu(y) ≜ I1 + I2 − I3.

We treat I1 first:

I1 =
1

4π

∫
∂B(0,r)

[
y − x

‖y − x‖3
− y

‖y‖3
]e−κ∥y−x∥dσyu(y)

+
1

4π

∫
∂B(0,r)

y
‖y‖3

[e−κ∥y−x∥ − e−κ∥y∥]dσyu(y).

(4.2)

Using (3.1), (4.2), (2.4) in Lemma 2.2 and Poisson integral formula, we have

‖I1‖ ≤ ‖x‖(2r + ‖x‖)
4πr2

∫
∂B(0,r)

1

‖y − x‖2
dS + κ‖x‖

≤ ‖x‖(2r + ‖x‖)
r(r − ‖x‖)

1

4πr

∫
∂B(0,r)

r2 − ‖x‖2

‖y − x‖3
dS + κ‖x‖

=

[
2r + ‖x‖
r(r − ‖x‖)

+ κ

]
‖x‖.

(4.3)

To evaluate I2 second:

I2 =
κ

4π

∫
∂B(0,r)

[
y − x

‖y − x‖2
− y

‖y‖2
]e−κ∥y−x∥dσyu(y)

+
κ

4π

∫
∂B(0,r)

y

‖y‖2
[e−κ∥y−x∥ − e−κ∥y∥]dσyu(y).

In view of (2.5) in Lemma 2.2, we obtain that

‖I2‖ ≤

 κ

4πr

∫
∂B(0,r)

1

‖y − x‖
dS + κ2r

 ‖x‖

≤
[

κr

r − ‖x‖
+ κ2r

]
‖x‖.

(4.4)
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Finally, using the similar method in the proof of I2, we obtain

‖I3‖ ≤
[

rκ

r − ‖x‖
+ κ2r

]
‖x‖. (4.5)

Combining (4.3), (4.4) with (4.5) and taking r → 1, we have

‖u(x)‖ ≤
[
2 + ‖x‖
1− ‖x‖

+
2κ

1− ‖x‖
+ 2κ2 + κ

]
‖x‖. (4.6)

From known conditions, we get

‖u(x)‖ ≤ ‖x‖ 1

‖x‖
when 0 < ‖x‖ < 1. (4.7)

Denote Φ(t) = 2+t
1−t +

2κ
1−t + 2κ2 + κ and Ψ(t) = 1

t , where t = ‖x‖, because κ ≥ 0,
then

Φ′(t) =
2κ+ 3

(1− t)2
> 0 for 0 ≤ t < 1

and

Ψ′(t) = − 1

t2
< 0 for 0 < t ≤ 1.

Since lim
t→1−

Φ(t) = +∞ and lim
t→0+

Ψ(t) = +∞, it can be prove that

sup
0≤t<1

min{Ψ(t),Φ(t)}

=


2(2κ2+κ−1)

2κ2+3κ+3−
√

(2κ2+3κ+3)2−4(2κ2+κ−1)
, 0 ≤ κ < 1

2 ,
2(2κ2+κ2−1)

2κ2+3κ+3+
√

(2κ2+3κ+3)2−4(2κ2+κ−1)
, 1

2 < κ < +∞,

5, κ = 1
2 ,

(4.8)

in view of (4.6), (4.7) and (4.8), the result follows.
2. For the general case, let f(y) := u(R1y)

R2
, ‖y‖ ≤ 1, it is obviously that

L−κ[f ] = 0 in B(0, 1), f(0) = 0 and ‖f(y)‖ ≤ 1, ∀y ∈ B(0, 1). In view of the result
of the step 1, the inequality (4.1) follows. The proof is done.

By Lemma 2.2 and Theorem 3.4, the following theorem can be similarly proved
as Theorem 4.1.

Theorem 4.2. Let B(0, R1) be an open ball with center origin and radius R1 in R3,
u ∈ C1(B(0, R1), Cl(V3,3)), L−κ[u] = 0 in B(0, R1), ‖u(x)‖ ≤ R2, ∀x ∈ B(0, R1)
and u(0) = 0. Then for ∀x ∈ B(0, R1),

‖u(x)‖ ≤


2ϕ(κ)

φ(κ)−
√

φ2(κ)−4ϕ(κ)

R2

R1
‖x‖, 0 ≤ κ < 1

2 ,
2ϕ(κ)

φ(κ)−
√

φ2(κ)−4ϕ(κ)

R2

R1
‖x‖, 1

2 < κ < +∞,

5R2

R1
‖x‖, κ = 1

2 ,

where ϕ(κ) = 2κ2 + κ− 1, φ(κ) = 2κ2 + 3κ+ 3.
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5. An application of the generalized integral repre-
sentation formulas

Integral representation formulas play a very important role in classical complex
analysis and Clifford analysis and are powerful tools to solve many different types
of boundary value problems, for instance, Dirichlet problem, Riemann-Hilbert prob-
lems and so on. As other applications of the above integral representation formulas,
we consider the following Dirichlet boundary value problems:

Theorem 5.1. Let g(x) ∈ C1
c (B(0, 1), Cl(V3,3)). The Dirichlet boundary value

problems: Lκ[u] = g in B(0, 1)

u = 0 on ∂B(0, 1)
(5.1)

has the unique solution

u(x) = −
∫

B(0,1)

K∗1(y − x, κ)g(y)dV.

Proof. By using Theorem 3.1, the solution of (5.1) is formulated as

u(x) =

∫
∂B(0,1)

K∗1(y − x, κ)dσyu(y)−
∫

B(0,1)

K∗1(y − x, κ)Lκ[u](y)dV,

since u = 0 on ∂B(0, 1).For the uniqueness we can prove that the problemLκ[ũ] = 0 in B(0, 1)

ũ = 0 on ∂B(0, 1)

has the only solution ũ = 0. The result follows.
From Theorem 3.2, we also have the following result which can be similarly

proved to Theorem 5.2.

Theorem 5.2. Let g(x) ∈ C1
c (B(0, 1), Cl(V3,3)). The solution of the Dirichlet

boundary value problems: L−κ[u] = g in B(0, 1)

u = 0 on ∂B(0, 1)

is

u(x) = −
∫

B(0,1)

K1(y − x, κ)g(y)dV.
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