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FLIP BIFURCATION WITH RANDOM
EXCITATION∗

Diandian Tang1 and Jingli Ren1,†

Abstract In this paper, flip bifurcation with random excitation is studied
by employing the methods of normal forms, Picard iterations and orthogonal
polynomial approximation. For the codimension one case, a Neimark-Sacker
bifurcation, a 1:2 resonance and a fold-flip bifurcation are detected. It is found
that the system undergoes heteroclinic bifurcation and homoclinic bifurcation
near 1:2 resonance point, a hopf bifurcation and a cusp bifurcation near fold-
flip bifurcation point. For the codimension two case, the system undergoes only
a flip bifurcation when random excitation is imposed on the nonlinear term.
In addition, numerical simulations are given to show the disparity between the
codimension one and two cases.
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1. Introduction
Flip bifurcation is also called period doubling bifurcation [11]. As the name suggests,
period doubling means the cycle of period two which comes from the second iteration
of its general map. Tracing the period-two cycle, it is found that there is an infinite
sequence of bifurcation values Ffj , where fj = 2j is the period of cycle. Observing
the relationship among these values, the ratio

Ffj −Ffj−1

Ffj+1
−Ffj

approaches to Feigenbaum constant [7]. At the limit of Ffj , the orbits turn to be
irregular, nonperiodic and the system becomes chaotic. This phenomenon exists in
many different systems where a cascade of flip bifurcations occurs. This universality,
which has a deep reasoning, makes researchers to explore further in theoretical
analysis [2,4,26] and applications in fields as biology, chemistry, physics and others
[10,13,17,21].

Around the 1990s, Collet et al. [6] gave rigorous proof of the strong universality
of analytic map for flip bifurcations. Combining with other bifurcation, Giraldo
et al. [8] studied a specific bifurcation called a homoclinic flip bifurcation, which
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exhibited saddle periodic orbits, chaotic attractor. Afterwards, Ashish et al. [3]
analyzed the chaotic behavior of the standard logistic map in superior orbit by
using period doubling and time-series representations,

xn = (1− α)xn−1 + αfλ(xn−1), fλ(xn−1) = λxn−1(1− xn−1),

where α ∈ (0, 1) and λ is a positive constant parameter. In 2019, Ashish and
Cao [1] proposed a more superior fixed point iterative strategy, which allows the
freedom of two control parameters α, λ to establish the three dynamical phases for
the above map. In 2020, Ma et al. [15] investigated an improved discrete Leslie-
Gower predator-prey model with prey refuge and fear factor and explored when
flip bifurcation and Neimark-Sacker bifurcation occur. In addition, these classical
achievements in the deterministic system, systems with periodic excitation and ran-
dom excitation draw more attention of people. For the first case, Li and Ren [14]
considered a system which undergoes a cusp bifurcation and explored the effect of
periodic perturbation by the Lyapunov-Schmidt method. Later on, He et al. [9]
investigated an ecological system with state-dependent feedback control and peri-
odic forcing, and revealed the complex dynamic behaviors of the system, including
period-doubling bifurcations, period-halving bifurcations and others. For the second
case, Ma et al. [16] introduced a known continuous random variable as bifurcation
parameter in double-well Duffing system and their numerical results indicated the
existence of flip bifurcation even in stochastic Duffing system.

The existing research about random excitation focus on specific systems which
undergo flip bifurcation and uses numerical simulations to demonstrate the phe-
nomenon. Due to the lack of research for the general flip bifurcation system with
random excitation, we intend to make a theoretical analysis of its stochastic dynam-
ics. It is self-evident that systems which undergo flip bifurcation can be covered by
our system. However, it is hard to deal with the general flip bifurcation system with
random excitation when the bifurcation parameter is replaced by a discrete random
variable. Hence, we try to obtain its equivalent system based on the theory of
functional analysis. Then we suppose a generalized orthogonal polynomial instead
of some known orthogonal polynomial, such as Legendre orthogonal polynomials,
Chebyshev orthogonal polynomials, Laguerre orthogonal polynomials, Hermite or-
thogonal polynomials [18, 19, 22], which is more general than specific polynomials.
At the end, we give numerical simulations to visualize the theoretical results through
using the Hermite orthogonal polynomials as an application.

Interestingly enough, codimension two bifurcations [20, 25] emerge after adding
random excitation into codimension one flip bifurcation system, while there is only a
flip bifurcation after adding random excitation into codimension two flip bifurcation
system. More precisely, there is a wide gap when random parameter locates before
the linear term and nonlinear term for codimension two flip bifurcation system. Its
behaviors are similar to stochastic codimension one flip bifurcation when random
excitation is affiliated with linear term, but it undergoes only a flip bifurcation when
random excitation is imposed on nonlinear term. On the other hand, some obsta-
cles arise during the process of exploring dynamics because the normal form is the
most concise polynomial [24]. At fold-flip bifurcation point, we calculate its normal
form without quadratic terms, which is essentially different from the equation (9)
in Proposition 2.1.1 [12]. In the later reflection iteration of the map, we deal with
a four-dimensional system when treating parameters as constants and obtain the
dynamical behaviors of the approximate flow.
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The paper is organized as follows. Section 2 includes some basic definitions and
a lemma, which our study is based upon. In Section 3, we deduce the equivalent
system for codimension one flip bifurcation with random excitation and investigate
the dynamical behaviors of the system. At Neimark-Sacker point, we calculate the
critical coefficient, which can ensure the stability of closed invariant curve. Then
we acquire heteroclinic and homoclinic bifurcation curves as well as the uniqueness
of limit cycle for the second iteration of 1:2 resonance point. At the fold-flip bi-
furcation point, we obtain the expressions of a hopf bifurcation curve and a cusp
bifurcation curve. In Section 4, we study the stochastic codimension two flip bi-
furcation with random excitation and make simulations to illustrate the disparity
between codimension one and two cases.

2. Preliminaries
In this section, we give some basic definitions and a lemma which our study is based
upon.

Definition 2.1 (A weight standard orthogonal polynomial [5]). Suppose the poly-
nomial sequence

Fi(u) =

i∑
k=0

aiku
k(aii 6= 0), i = 0, 1, 2, · · · ,

satisfies
N∑
u=0

w(u)Fi(u)Fj(u) =

{
1, i = j,

0, i 6= j,

where w(u) is a weight function and has the following properties
(1) w(u) ≥ 0, u ∈ N,

(2)
N∑
u=0

w(u) > 0,

(3)
N∑
u=0

w(u)un exists, n = 0, 1, 2, · · · .

Then Fi(u) is called weight standard orthogonal polynomial in N.

Definition 2.2 (A complete orthonormal sequence [23]). An orthonormal sequence
{ei} in a Hilbert space H is complete if 〈x, ei〉 = 0 for all i imply x = 0. A complete
orthonormal sequence is also called orthonormal basis in H.

Lemma 2.1 (Theorem 7.3 in [23]). Let S be an orthonormal set in a Hilbert space
H, and let M be the closed linear manifold generated by S. The following statements
are equivalent:

• S is complete(i.e., maximal).
• M = H.
• If x ⊥ S, then x = 0.
• x =

∑
u∈S

〈x, u〉u for all x ∈ H.

• ‖x‖2 =
∑
u∈S

| 〈x, u〉 |2 for all x ∈ H.
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3. Stochastic codimension one flip bifurcation
In this section, we mainly consider codimension one flip bifurcation system which
has the following normal form

x(n+ 1) = −(1 + α)x(n) + x3(n), (3.1)

where α is the bifurcation parameter. After adding random excitation, the bifurca-
tion parameter can be expressed as α = ᾱ+δu, where ᾱ is the statistic parameter of
α, δ is the intensity of α, and u is a discrete random variable in N with probability
distribution function pu = P{u = k}, k = 0, 1, 2, · · · . Then system (3.1) becomes

x(n+ 1, u) = −(1 + ᾱ+ δu)x(n, u) + x3(n, u). (3.2)

In fact, the probability distribution function pu is a weight function according to
the Definition 2.1. For Fi(u) with weight function pu, its recurrent formula is

uFi(u) = ϕiFi+1(u) + φiFi(u) + ψiFi−1(u), F−1(u) = 0, F0(u) = 1, (3.3)

where ϕi, φi, ψi are decided by the form of Fi(u).
Combining with above two Definitions and the Lemma, we make an attempt

to solve system (3.2) with Fi(u), where {Fi(u)} is an orthonormal sequence valued
in N. If {Fi(u)} is complete, then for any discrete function x(n), we have x(n) =∑
i∈N xi(n)Fi(u). Inspired by this, we conceive that whether the expression of finite

terms can solve system (3.2).
Therefore, for a given M ∈ N, we suppose

x(n, u) =

M∑
i=0

xi(n)Fi(u), (3.4)

is the solution of system (3.2), where xi(n) =
∑N
i=0 pux(n, u)Fi(u).

Substituting equation (3.4) into (3.2), we have

M∑
i=0

xi(n+ 1)Fi(u) = −(1 + ᾱ+ δu)

M∑
i=0

xi(n)Fi(u) +

(
M∑
i=0

xi(n)Fi(u)

)3

. (3.5)

By (3.3), the random term with u in (3.5) can be simplified to

u

M∑
i=0

xi(n)Fi(u) =

M∑
i=0

xi(n)uFi(u)

=

M∑
i=0

xi(n)[ϕiFi+1(u) + φiFi(u) + ψiFi−1(u)]

=

M∑
i=0

Fi(u)[ψi+1xi+1(n) + φixi(n) + ϕi−1xi−1(n)] + ϕMxM (n)FM+1(u)

− ϕ−1x−1(n)F0(u) + ψ0x0(n)F−1(u)− ψM+1xM+1(n)FM (u)

=

M∑
i=0

Fi(u)[ψi+1xi+1(n) + φixi(n) + ϕi−1xi−1(n)] + ϕMxM (n)FM+1(u). (3.6)
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On the other hand, the nonlinear term can be expanded into(
M∑
i=0

xi(n)Fi(u)

)3

=

3M∑
i=0

Xi(n)Fi(u). (3.7)

In fact, the expression of Fi(u) is a polynomial with respect to u. For ∀ k ∈ N,
F ki (u) can be expressed as a function of Fik(u), Fik−1(u), . . . , F0(u). Thus (3.7)
holds. From (3.6) and (3.7), system (3.5) turns to

M∑
i=0

xi(n+ 1)Fi(u)

=− (1 + ᾱ)

M∑
i=0

xi(n)Fi(u)− δ

M∑
i=0

Fi(u)[ψi+1xi+1(n) + φixi(n) + ϕi−1xi−1(n)]

− δϕMxM (n)FM+1(u) +

3M∑
i=0

Xi(n)Fi(u).

(3.8)
Multiplying both sides of (3.8) by Fi(u), i = 0, 1, 2, . . . ,M sequentially and taking
expectation with respect to u, we can obtain the system which describes the rela-
tionship among the coefficients xi(n). By exploring dynamics of this system, it can
reflect a profile of properties of the origin system x(n, u).

Next we focus on the analysis of system (3.2) when M = 1. It becomes a
two-dimension system{

x0(n+ 1) = −(1 + ᾱ)x0(n)− δ(ψ1x1(n) + φ0x0(n)) +X0(n),

x1(n+ 1) = −(1 + ᾱ)x1(n)− δ(φ1x1(n) + ϕ0x0(n)) +X1(n),
(3.9)

where
ϕ0 =

1

a11
, φ0 = −a10

a11
,

ϕ1 =
a11
a22

, φ1 =
a10
a11

− a21
a22

, ψ1 =
a10a21 − a11a20

a22
− a210
a11

,

and
X0(n) = β03x

3
1(n) + β12x0(n)x

2
1(n) + β30x

3
0(n),

X1(n) = γ21x
2
0(n)x1(n) + γ12x0(n)x

2
1(n) + γ03x

3
1(n),

β03 =
a311a20a32
a22a33

+
3a210a11a21

a22
+
a10a

2
11a31
a33

− a10a
2
11a21a32
a22a33

− 3a10a
2
11a20

a22

− a311a30
a33

− 2a310,

β12 =
3a10a11a21

a22
− 3a211a20

a22
− 3a210, β30 = 1, γ21 = 3,

γ03 = 3a210 −
3a10a11a21

a22
− a211a31

a33
+
a211a21a32
a22a33

, γ12 = 6a10 −
3a11a21
a22

.

Let x = x0(n), y = x1(n), system (3.9) becomesx

y

 7→

 −(1 + ᾱ+ δφ0)x− δψ1y + β03y
3 + β12xy

2 + β30x
3

−(1 + ᾱ+ δφ1)y − δϕ0x+ γ21x
2y + γ12xy

2 + γ03y
3

 . (3.10)
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In the next section, we mainly study the dynamical behaviors at fixed point
E0 for map (3.10), where E0 is the origin. It is found that map (3.10) undergoes
Neimark-Sacker bifurcation, 1:2 resonance and fold-flip bifurcation.

The characteristic equation at fixed points E0 is given by

µ2 + (2 + P (δ, ᾱ))µ+Q(δ, ᾱ) + P (δ, ᾱ) + 1 = 0,

where
P (δ, ᾱ) = P1(δ, ᾱ) + P2(δ, ᾱ), P1(δ, ᾱ) = ᾱ+ δφ0,

P2(δ, ᾱ) = ᾱ+ δφ1, Q(δ, ᾱ) = P1(δ, ᾱ)P2(δ, ᾱ)− δ2ϕ0ψ1.

The map (3.10) undergoes Neimark-Sacker bifurcation at E0 ifQ(δ, ᾱ) = −P (δ, ᾱ) =
3. Here we choose δ as the bifurcation parameter and have the following theorem.

Theorem 3.1. If d(δ) < 0, there is a unique stable closed invariant curve bifurcated
from E0; If d(δ) > 0, there is a unique unstable closed invariant curve bifurcated
from E0, where

d(δ) =
γ21(3P

3
1 + 16P 2

1 + 27P1 + 15)

2δϕ20
+
γ12(3P

2
1 + 11P1 + 9)

2ϕ0

+
3δγ03(P1 + 2)

2
− δβ12(3P1 + 5)

2
− 3β03δ

2ϕ0
2

− 3β30(P1 + 2)

2ϕ0
.

(3.11)

Proof. If Q = −P = 3, we have µ1 = 1−
√
3i

2 , µ2 = 1+
√
3i

2 and µk1,2 6= 1, k =

1, 2, 3, 4. The eigenvectors satisfying A0q = µ2q, AT0 p = µ1p, 〈p, q〉 = 1 are

p =

(
−
√
3δϕ0i

3
,
1

2
+

√
3 (2P1 + 3) i

6

)T
, q =

(
2P1 + 3−

√
3i

2δϕ0
, 1

)T
.

Denoted zq1 + z̄q̄1 = x, zq2 + z̄q̄2 = y and calculating the Taylor expansion of
the inner product between p and map (3.10) at E0, we can obtain the critical
coefficient d(δ) of the only resonance term |z|2z̄, that is (3.11). Therefore, the proof
is complete.

Furthermore, we analyze 1:2 resonance at E0 when choosing δ and ᾱ as bifurca-
tion parameters. If Q(δ, ᾱ) = P (δ, ᾱ) = 0, then µ1,2 = −1. The critical conditions
of bifurcation parameters ᾱ, δ are{

δ20
(
4ϕ0ψ1 + (φ0 − φ1)

2
)
= 0,

2ᾱ0 + δ0(φ0 + φ1) = 0.

Denote P0 = P10 + P20, P10 = P1(δ0, ᾱ0), P20 = P2(δ0, ᾱ0). Let

P 2
10y1 = δ0ϕ0x, y2 = P10y − δ0ϕ0x. (3.12)

Then y1

y2

 7→

−1 + ε10(δ, ᾱ) 1 + ε01(δ, ᾱ)

ϵ10(δ, ᾱ) −1 + ϵ01(δ, ᾱ)

 y1

y2

+

 g(y1, y2, δ, ᾱ)

h(y1, y2, δ, ᾱ)

 ,
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where

ε10(δ, ᾱ) =
δ

δ0
P10 − P1(δ, ᾱ), ε01(δ, ᾱ) =

δ

δ0P10
− 1

P10
,

ϵ10(δ, ᾱ) = (P1(δ, ᾱ)− P2(δ, ᾱ))P
2
10 −

2δP 3
10

δ0
, ϵ01(δ, ᾱ) = 2P10 − P2(δ, ᾱ)−

δP10

δ0
.

Denoted  y1

y2

 =

 1 + ε01 0

−ε10 1

u1

u2

 ,

we haveu1

u2

 7→

 −1 1

ν1(δ, ᾱ) −1 + ν2(δ, ᾱ)

u1

u2

+

 g(u1, u2, δ, ᾱ)

h(u1, u2, δ, ᾱ)

 . (3.13)

Here

ν1(δ, ᾱ) = ϵ01(δ, ᾱ) + ε01(δ, ᾱ)ϵ10(δ, ᾱ)− ε10(δ, ᾱ)ϵ01(δ, ᾱ),

ν2(δ, ᾱ) = ε01(δ, ᾱ) + ϵ01(δ, ᾱ),

g(u1, u2, δ, ᾱ) =
∑
j+k=3

gjk(δ, ᾱ)u
j
1u
k
2 , h(u1, u2, δ, ᾱ) =

∑
j+k=3

gjk(δ, ᾱ)u
j
1u
k
2 .

The coefficients gjk(δ, ᾱ) and hjk(δ, ᾱ) are as follows.

g30(δ, ᾱ) =
β12(1 + ε01)ε

2
10

δ0ϕ0
− 2β12P

2
10(1 + ε01)

2ε10
δ0ϕ0

+
β12P

4
10(1 + ε01)

3

δ0ϕ0

+
β30P

6
10(1 + ε01)

3

δ30ϕ
3
0

+
3β03ε

2
10(1 + ε01)

P10
+ P 3

10β03(1 + ε01)
3

− β03ε
3
10

P 3
10

− 3P10β03(1 + ε01)
2ε10,

g21(δ, ᾱ) =
2β12P

2
10ε

2
01

δ0ϕ0
+

4β12P
2
10ε01

δ0ϕ0
+

2β12P
2
10

δ0ϕ0
− 2β12ε10

δ0ϕ0
− 2β12ε01ε10

δ0ϕ0

+ 6β03P10ε01 + 3β03P10 +
3β03ε

2
10

P 3
10

− 6β03ε10
P10

− 6β03ε01ε10
P10

+ 3β03P10ε
2
01,

g12(δ, ᾱ) =
β12ε01
δ0ϕ0

+
β12
δ0ϕ0

+
3β03ε01
P10

− 3β03ε10
P 3
10

+
3β03
P10

, g03(δ, ᾱ) =
β03
P 3
10

,

h30(δ, ᾱ) =
P 3
10γ21(1 + ε01)

2ε10
δ20ϕ

2
0

+
P 2
10γ12(1 + ε01)

2ε10
δ0ϕ0

− γ12(1 + ε01)ε
2
10

δ0ϕ0

+
P 5
10γ21(1 + ε01)

3

δ20ϕ
2
0

+
P 4
10γ12(1 + ε01)

3

δ0ϕ0
− P10γ12(1 + ε01)

2ε10
δ0ϕ0

+
γ03(1 + ε01)ε

2
10

P10
− 2γ03(1 + ε01)ε

2
10

P10
+
γ03ε

3
10

P 3
10

− 2P10γ03(1 + ε01)
2ε10,
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h21(δ, ᾱ) =
P 3
10γ21(1 + ε01)

2

δ20ϕ
2
0

+
2P 2

10γ12(1 + ε01)
2

δ0ϕ0
− 2γ12(1 + ε01)ε10

δ0ϕ0

+
3γ03ε

2
10

P 3
10

− 6γ03(1 + ε01)ε10
P10

+ 3P10γ03(1 + ε01)
2,

h12(δ, ᾱ) =
γ12ε01
δ0ϕ0

+
γ12
δ0ϕ0

+
3γ03ε01
P10

− 3γ03ε10
P 3
10

+
3γ03
P10

, h03(δ, ᾱ) =
γ03
P 3
10

.

To remove all cubic terms except resonant terms ξ31 and ξ21ξ2, we make a transfor-
mation {

u1 = ξ1 + θ30(δ, ᾱ)ξ
3
1 + θ21(δ, ᾱ)ξ

2
1ξ2 + θ12(δ, ᾱ)ξ1ξ

2
2 ,

u2 = ξ2 + ϑ30(δ, ᾱ))ξ
3
1 + ϑ21(δ, ᾱ)ξ

2
1ξ2 + ϑ12(δ, ᾱ)ξ1ξ

2
2 ,

where

θ30(δ, ᾱ) =
g30(δ, ᾱ)

2
+
g21(δ, ᾱ)

3
+
h21(δ, ᾱ)

6
,

θ21(δ, ᾱ) = g30(δ, ᾱ) +
g12(δ, ᾱ) + g21(δ, ᾱ) + h12(δ, ᾱ) + h03(δ, ᾱ)

2
,

θ12(δ, ᾱ) = g03(δ, ᾱ) +
g30(δ, ᾱ) + g12(δ, ᾱ) + h03(δ, ᾱ)

2
+
g21(δ, ᾱ)− h21(δ, ᾱ)

6
,

ϑ30(δ, ᾱ) = g30(δ, ᾱ), ϑ21(δ, ᾱ) =
3g30(δ, ᾱ) + h12(δ, ᾱ)

2
,

ϑ12(δ, ᾱ) = h03(δ, ᾱ) +
g30(δ, ᾱ) + h12(δ, ᾱ)

2
.

The normal form of map (3.13) is ξ1

ξ2

 7→

 −1 1

ν1(δ, ᾱ) −1 + ν2(δ, ᾱ)

 ξ1

ξ2

+

 0

C(δ, ᾱ)ξ31 +D(δ, ᾱ)ξ21ξ2

 . (3.14)

Here C(δ, ᾱ) = h30(δ, ᾱ), D(δ, ᾱ) = h21(δ, ᾱ) + 3g30(δ, ᾱ).
The second iteration of map (3.14) is ξ1

ξ2

7→
 0 1

4ν1(δ, ᾱ) (−2ν1(δ, ᾱ)−2ν2(δ, ᾱ))

 ξ1

ξ2

+

 0

4Cξ31−(2D+6C))ξ21ξ2

 .

(3.15)

Theorem 3.2. Assume D(δ0, ᾱ0) + 3C(δ0, ᾱ0) < 0, map (3.15) has the following
dynamical behaviors at 1:2 resonance point

(i) If C(δ0, ᾱ0) > 0, there is a heteroclinic bifurcation curve C

C = {(κ1, κ2) : κ2(δ, ᾱ) = −1

5
κ1(δ, ᾱ) + o | κ1(δ, ᾱ) |};

(ii) If C(δ0, ᾱ0) < 0, there is a homoclinic bifurcation curve C̄

C̄ = {(κ1, κ2) : κ2(δ, ᾱ) =
4

5
κ1(δ, ᾱ) + o | κ1(δ, ᾱ) |}.
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Proof. (i) If D(δ0, ᾱ0) + 3C(δ0, ᾱ0) < 0, C(δ0, ᾱ0) > 0, let

ζ1 =
D(δ, ᾱ) + 3C(δ, ᾱ)√

C(δ, ᾱ)
ξ1, ζ2 =

(D(δ, ᾱ) + 3C(δ, ᾱ))2

2
√
C(δ, ᾱ)C(δ, ᾱ)

ξ2,

and

τ =
2C(δ, ᾱ)

D(δ, ᾱ) + 3C(δ, ᾱ)
t.

(3.15) becomes {
ζ̇1 = ζ2,

ζ̇2 = κ1(δ, ᾱ)ζ1 + κ2(δ, ᾱ)ζ2 + ζ31 − ζ21ζ2,
(3.16)

where
κ1(δ, ᾱ) =

(D(δ, ᾱ) + 3C(δ, ᾱ))ν1(δ, ᾱ)

2C2(δ, ᾱ)
,

κ2(δ, ᾱ) =
(D(δ, ᾱ) + 3C(δ, ᾱ))(ν1(δ, ᾱ) + ν2(δ, ᾱ))

C(δ, ᾱ)
.

Making a singular rescaling of the variables, times and parameters,

ς1 =
1√

−κ1(δ, ᾱ)
ζ1, ς2 =

1

−κ1(δ, ᾱ)
ζ2, τ̃ =

√
−κ1(δ, ᾱ)τ,

(3.16) turns to {
ς̇1 = ς2,

ς̇2 = ς1(ς
2
1 − 1) + η2(δ, ᾱ)ς2 − η1(δ, ᾱ)ς

2
1 ς2.

(3.17)

Here
η1(δ, ᾱ) =

√
−κ1(δ, ᾱ), η2(δ, ᾱ) =

κ2(δ, ᾱ)√
−κ1(δ, ᾱ)

.

After substituting ηi(δ, ᾱ) = 0, i = 1, 2, the Hamiltonian function of (3.17) is

S(ς1, ς2) =
ς21
2

+
ς22
2

− ς41
4
.

There is a heteroclinic orbit 4S(ς1, ς2) = 1 connecting the saddles (1, 0) and (−1, 0),
where

ς1(t) =
e
√
2t − 1

e
√
2t + 1

, ς2(t) =
2
√
2e

√
2t

(e
√
2t + 1)2

.

Define an orbit split function ℵ(s, η1, η2) by the difference between the Hamiltonian
values at points (ς1−, ς2−) and (ς1+, ς2+), where (ς1−, ς2−) and (ς1+, ς2+) are the
intersection points of the horizontal axis and orbit Γ, i.e. S(ς1, ς2) = s.

ℵ(s, η1, η2) = S(ς1−, ς2−)− S(ς1+, ς2+).

For (η1, η2) 6= 0, S(ς1, ς2) varies along orbits of (3.17) and satisfies

Ṡ(ς1, ς2) =
∂S(ς1, ς2)

∂ς1
ς̇1 +

∂S(ς1, ς2)

∂ς2
ς̇2 = η2ς

2
2 − η1ς

2
1 ς

2
2 .
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Therefore,

ℵ(s, η1, η2) =
∫ t(ς1−,ς2−)

t(ς1+,ς2+)

Ṡ(ς1, ς2)dt

=− η2

∫
S(ς1,ς2)=s

ς2dς1 + η1

∫
S(ς1,ς2)=o

ς21 ς2dς1 + o(||η1, η2||),

where t(ς1+, ς2+) and t(ς1−, ς2−) mean the time when (ς1, ς2) = (ς1+, ς2+) and
(ς1, ς2) = (ς1−, ς2−), respectively.

Next denote the integrals

Q1(s) =

∫
S(ς1,ς2)=s

ς2dς1, Q2(s) =

∫
S(ς1,ς2)=s

ς21 ς2dς1.

The equation
ℵ(1

4
, 0, 0) = 0

with the constraint η2 > 0 defines a curve C on the (η1, η2)−plane starting at
(1, 0)(or (−1, 0)) along which (3.17) has a heteroclinic orbit. For s ∈ (0, 14 ), define
curve Ts in the upper parameter half-plane η2 > 0 at which (3.17) has a cycle
between (−1, 0) and (1, 0) corresponding to s.

By the implicit function theorem, the curves Th and C exist and have the repre-
sentation

η2 =
Q2(s)

Q1(s)
η1 + o(| η1 |).

Define function
Q(s) =

Q2(s)

Q1(s)
. (3.18)

To get Q( 14 ), we calculate

Q1(
1

4
) =

∫
S(ς1,ς2)=

1
4

ς2dς1 =

∫
S(ς1,ς2)≤ 1

4

dς2dς1

=

∫ 1

−1

∫ ς21
2 +

ς22
2 − ς41

4 = 1
4

0

dς2dς1 =
2
√
2

3
,

Q2(
1

4
) =

∫
S(ς1,ς2)=

1
4

ς21 ς2dς1 =

∫
S(ς1,ς2)≤ 1

4

ς21dς2dς1

=

∫ 1

−1

∫ ς21
2 +

ς22
2 − ς41

4 = 1
4

0

ς21 ς2dς1 =
2
√
2

15
.

Then we obtain Q( 14 ) =
1
5 . For s ∈ [0, 14 ], (3.18) is sufficient to prove the uniqueness

of cycles. Considering ς2 as a function of ς1 and s, define the function

ς21
2

+
ς22
2

− ς41
4

= s.

Differentiating it with respect to s, we get

ς2
∂ς2
∂s

= 1.
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On the other hand, differentiating it with respect to ς1 yields

ς1 + ς2
∂ς2
∂ς1

− ς31 = 0.

Multiplying by ςm1 ς−1
2 and integrating by parts, we acquire∫

S(ς1,ς2)=s

ςm+3
1

ς2
dς1 =

∫
S(ς1,ς2)=s

ςm+1
1

ς2
dς1 −m

∫
S(ς1,ς2)=s

ςm−1
1 ς2dς1.

Utilizing m = 0, 1, 3, we have

s
dQ1(s)

ds
=s

∫
S(ς1,ς2)=s

dς1
ς2
,

=
1

2

∫
S(ς1,ς2)=s

ς21
dς1
ς2

+
1

2

∫
S(ς1,ς2)=s

ς2dς1 −
1

4

∫
S(ς1,ς2)=s

ς41
dς1
ς2
,

=
3

4
Q1(s) +

1

4

dQ2(s)

ds
,

s
dQ2(s)

ds
=s

∫
S(ς1,ς2)=s

ς21
dς1
ς2
,

=
1

2

∫
S(ς1,ς2)=s

ς41
dς1
ς2

+
1

2

∫
S(ς1,ς2)=s

ς21 ς2dς1 −
1

4

∫
S(ς1,ς2)=s

ς61
dς1
ς2
,

=
5

4
Q2(s) +

1

4

dQ2(s)

ds
− 1

4
Q1(s).

Therefore, Q1(s) and Q2(s) satisfy the following system of differential equations:{
s(s− 1

4 )Q̇1(s) = ( 34s−
1
4 )Q1(s) +

5
16Q2(s),

s(s− 1
4 )Q̇2(s) =

5
4sQ2(s)− 1

4sQ1(s).

The function Q(s) satisfies

s(s− 1

4
)Q̇(s) = − 5

16
Q2 + (

s

2
+

1

4
)Q− s

4
. (3.19)

Substituting Q(s) = ιs+O(s2) into (3.19) yields ι = 1
2 .

For all s ∈ (0, 14 ), we have 0 ≤ Q(s) ≤ 1
5 . Suppose s̄ ∈ (0, 14 ) is the first

intersection point of Q(s) with s−axis. Then

s̄(s̄− 1

4
)Q̇(s̄) = − s̄

4
< 0.

This is a contradiction with Q̇(s̄) > 0. If s̄ ∈ (0, 14 ) is the first point of Q(s) = 1
5 ,

then
s̄(s̄− 1

4
)Q̇(s̄) =

3

20
(
1

4
− s̄) > 0.

This is a contradiction with Q̇(s̄) < 0.
From

s̄(s̄− 1

4
)Q̈(s̄) |Q̇(s̄)=0=

1

2
(Q(s̄)− 1

2
) < 0,
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we have Q̈(s̄) > 0 at any point where Q̇(s̄) = 0 which means all extrema are
maximum points. Therefore, Q(0) = 0,Q( 14 ) =

1
5 = max0≤s≤ 1

4
Q(s).

(ii) If D(δ0, ᾱ0) + 3C(δ0, ᾱ0) < 0, C(δ0, ᾱ0) < 0, let

ζ̄1 =
D(δ, ᾱ) + 3C(δ, ᾱ)√

−C(δ, ᾱ)
ξ1, ζ̄2 = − (D(δ, ᾱ) + 3C(δ, ᾱ))2

2
√

−C(δ, ᾱ)C(δ, ᾱ)
ξ2,

and

τ̄ = − 2C(δ, ᾱ)

D(δ, ᾱ) + 3C(δ, ᾱ)
t.

(3.15) becomes {
˙̄ζ1 = ζ̄2,
˙̄ζ2 = κ1(δ, ᾱ)ζ̄1 − κ2(δ, ᾱ)ζ̄2 − ζ̄31 − ζ̄21 ζ̄2.

(3.20)

Making a singular rescaling of the variables, times and parameters,

ς̄1 =
1√

κ1(δ, ᾱ)
ζ̄1, ς̄2 =

1

κ1(δ, ᾱ)
ζ̄2, τ̂ =

√
κ1(δ, ᾱ)τ̃ ,

(3.20) turns to {
˙̄ς1 = ς̄2,

˙̄ς2 = −ς̄1(ς̄21 − 1) + η2(δ, ᾱ)ς̄2 − η1(δ, ᾱ)ς̄
2
1 ς̄2.

(3.21)

After substituting ηi(δ, ᾱ) = 0, i = 1, 2, the Hamiltonian function of (3.21) is

H(ς̄1, ς̄2) = − ς̄
2
1

2
+
ς̄22
2

+
ς̄41
4
.

There is a homoclinic orbit H(ς̄1, ς̄2) = 0 to the saddle (0, 0).

ς̄1(t) =
2
√
2et

e2t + 1
, ς̄2(t) =

2
√
2et(1− e2t)

(e2t + 1)2
.

Define an orbit split function ℵ̄(h, η1, η2) by the difference between the Hamiltonian
values at points (ς̄1−, ς̄2−) and (ς̄1+, ς̄2+), where (ς̄1−, ς̄2−) and (ς̄1+, ς̄2+) are the
intersection points of the horizontal axis and orbit Γ̄, i.e. H(ς̄1, ς̄2) = h.

ℵ̄(h, η1, η2) = H(ς̄1−, ς̄2−)−H(ς̄1+, ς̄2+).

For (η1, η2) 6= 0, H(ς̄1, ς̄2) varies along orbits of (3.17),

Ḣ(ς̄1, ς̄2) =
∂H(ς̄1, ς̄2)

∂ς̄1
˙̄ς1 +

∂H(ς̄1, ς̄2)

∂ς̄2
˙̄ς2 = η2ς̄

2
2 − η1ς̄

2
1 ς̄

2
2 .

Therefore, similarly define ℵ̄(h, η1, η2), Q̄1(h), Q̄2(h). The equation ℵ̄(0, 0, 0) = 0
with the constraint η2 > 0 defines a curve C̄ on the (η1, η2)−plane starting at the
origin along which (3.17) has a homoclinic orbit. For h ∈ (− 1

4 , 0), define curve Th
in the upper parameter half-plane η2 > 0 at which (3.17) has two cycles passing
through a point between (0, 0) and (1, 0)(or (−1, 0)) corresponding to h.
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By the implicit function theorem, curves T̄h and C̄ exist and the representation
is

η2 =
Q̄2(h)

Q̄1(h)
η1 + o(| η1 |).

Define function
Q̄(h) =

Q̄2(h)

Q̄1(h)
.

To get Q̄(0), Q̄(− 1
4 ), we calculate

Q̄1(0) =
4

3
, Q̄2(0) =

16

15
.

Then we obtain Q̄(0) = 4
5 .

For h ∈ [− 1
4 , 0], the function Q̄(h) satisfies

h(h+
1

4
) ˙̄Q(h) = − 1

16
Q̄2 − h

2
Q̄+

h

4
. (3.22)

Substituting Q̄(h) = ῑh + O(h2) into (3.22) yields ῑ = −4 < 0 at h = − 1
4 and

ῑ = 1 > 0 at h = 0. For all h ∈ (− 1
4 , 0), Q̄(h) firstly decrease then increase. It is

not monotonous, which implies that the limit cycle is not unique.
Next, we analyze the fold-flip bifurcation at E0. If P (δ, ᾱ) = −2, Q(δ, ᾱ) = 0,

we have µ1 = −1, µ2 = 1. The critical conditions of bifurcation parameters ᾱ, δ
satisfy {

δ20(4ϕ0ψ1 − (φ0 − φ1)
2) + 4δ0(φ0 + φ1)− 1 = 0,

2ᾱ0 + 2 + δ0(φ0 + φ1) = 0.

For all sufficiently near to the neighbourhood of the critical values, the eigenvalues
at E0 are

µ1(δ, ᾱ) =
−2− P (δ, ᾱ)−

√
P (δ, ᾱ)2 − 4Q(δ, ᾱ)

2
,

µ2(δ, ᾱ) =
−2− P (δ, ᾱ)−

√
P (δ, ᾱ)2 + 4Q(δ, ᾱ))

2
.

The eigenvectors satisfying Aᾱ,δq1 = µ1q1, Aᾱ,δq2 = µ2q2, ATᾱ,δp1 = µ1p1, ATᾱ,δp2 =
µ2p2, 〈pi, qi〉 = 1, i = 1, 2, 〈p1, q2〉 = 0, 〈p2, q1〉 = 0 are

q1 =

(
P1 − P2 +

√
P 2 − 4Q

2δϕ0
, 1

)T
, q2 =

(
P1 − P2 −

√
P 2 − 4Q

2δϕ0
, 1

)T
,

p̃1 =

(
P1 − P2 +

√
P 2 − 4Q

2δψ1
, 1

)T
, p̃2 =

(
P1 − P2 −

√
P 2 − 4Q

2δψ1
, 1

)T
,

p1 =
p̃1

〈p̃1, q1〉
, p2 =

p̃2
〈p̃2, q2〉

.

Let
x =

δψ1√
P 2 − 4Q

(〈p̃1, q1〉z1 − 〈p̃2, q2z2〉) ,

y =
P1 − P2

2
√
P 2 − 4Q

(〈p̃2, q2〉z2 − 〈p̃1, q1z1〉) +
〈p̃2, q2〉z2 + 〈p̃1, q1z1〉

2
.
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Denoted 〈p̃1, q1〉 = I1(δ, ᾱ), 〈p̃2, q2〉 = I2(δ, ᾱ), C1(δ, ᾱ) = δψ1√
P 2−4Q

, C2(δ, ᾱ) =

P1−P2

2
√
P 2−4Q

, C3 = 1
2 , system (3.10) becomes z1

z2

 7→

µ1 0

0 µ2

 z1

z2

+

m(z1, z2, δ, ᾱ)

n(z1, z2, δ, ᾱ)

 ,

where

m(z1, z2, δ, ᾱ) =
∑
j+k=3

mjk(δ, ᾱ)z
j
1z
k
2 , n(z1, z2, δ, ᾱ) =

∑
j+k=3

njk(δ, ᾱ)z
j
1z
k
2 ,

and
m30 = β03I

3
1 (C3 − C2)

3 + β12I
3
1C1(C3 − C2)

2 + β30I
3
1C

3
1 ,

m03 = β03I
3
2 (C3 + C2)

3 − β12I
3
2C1(C3 + C2)

2 − β30I
3
2C

3
1 ,

m21 = 3β03I
2
1I2(C3 − C2)

2(C2 + C3) + β12I
2
1I2C1(C

2
3 − 3C2

2 + 2C2C3)

− 3β30I
2
1I2C

3
1 ,

m12 = 3β03I1I
2
2 (C3 − C2)(C2 + C3)

2 + β12I1I
2
2C1(3C

2
2 + 2C2C3 − C2

3 )

+ 3β30I1I
2
2C

3
1 ,

n30 = γ21I
3
1C

2
1 (C3 − C2) + γ12I

2
1I2C1(C3 − C2)

2 + γ03I
3
1 (C3 − C2)

3,

n03 = γ21I
3
2C

2
1 (C3 + C2)− γ12I

3
2C1(C3 + C2)

2 + γ03I
3
2 (C2 + C3)

3,

n21 = γ21I
2
1I2C

2
1 (3C2 − C3) + γ12I

2
1I2C1(C

2
3 − 3C2

2 + 2C2C3)

+ 3γ03I
2
1I2(C2 − C3)

2(C2 + C3),

n12 =− γ21I1I
2
2C

2
1 (3C2 + C3) + β12I1I

2
2C1(3C

2
2 + 2C2C3 − C2

3 )

+ 3γ03I1I
2
2 (C3 − C2)(C2 + C3)

2.

Making the change of variables,

w1 = z1 −
1

2
m21z

2
1z2 −

1

2
m03z

3
2 , w2 = z2 +

1

2
m12z1z

2
2 +

1

2
m30z

3
1 ,

then we obtainw1

w2

 7→

µ1w1 +
1
6 c̃1w

3
1 +

1
2 c̃2w1w

2
2

µ2w2 +
1
2 c̃3w

2
1w2 +

1
6 c̃4w

3
2

+O(||z||4), (3.23)

where

c̃1 = 12(p11(3m30q
3
11 +m21q

2
11 +m12q11 + 3m03) + p12(3n30q

3
11 + n21q

2
11

+ n12q11 + 3n03)),

c̃2 = 4p11(9m30q11q
2
21 +m21q21(2q11 + q21) +m12(q11 + 2q21) + 9m03)

+ 4p12(9n30q11q
2
21 + n21q21(2q11 + q21) + n12(q11 + 2q21) + 9n03),

c̃3 = 4p21(9m30q
2
11q21 +m21q11(q11 + 2q21) +m12(2q11 + q21) + 9m03)

+ 4p22(9n30q
2
11q21 + n21q11(q11 + 2q21) + n12(2q11 + q21) + 9n03),

c̃4 = 12(p21(3m30q
3
21 +m21q

2
21 +m12q21 + 3m03) + p22(3n30q

3
21 + n21q

2
21

+ n12q21 + 3n03)).
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To study the dynamics at fold-flip bifurcation point, we need to make time rescaling

τ = −µ2t and recombine matrix R to map (3.23), where R =

1 0

0 −1

. The new

system isw1

w2

 7→

υ1 + (1 + υ2)w1 + c1(υ1, υ2)w
3
1 + c2(υ1, υ2)w1w

2
2

w2 + c3(υ1, υ2)w
2
1w2 + c4(υ1, υ2)w

3
2

+O(||z||4),

(3.24)
where

υ1(δ, ᾱ) ≡ 0, υ2(δ, ᾱ) =
µ1

µ2
− 1, c1(υ1, υ2) = − c̃1

µ2
,

c2(υ1, υ2) = − c̃2
µ2
, c3(υ1, υ2) =

c̃3
µ2
, c4(υ1, υ2) =

c̃4
µ2
.

Theorem 3.3. The map (3.24) can be represented as

Bυ(z) = φ1
υ(z) +O(||z||4),

where φ1
υ(z) is the flow of a planar system

ż1 = υ1 + υ2z1 − 1
2υ1υ2 +Φ30(z

3
1 − 3

2z
2
1υ1 +

1
2z1υ

2
1 +

1
4υ

3
1)

+Φ12z1z
2
2 + 1

4 (υ
2
1υ2 + υ1υ

2
2)− 1

2υ1υ2z1,

ż2 = Ψ21(z
2
1z2 − z1z2υ1 +

1
6z2υ

2
1) + Ψ03z

3
2 ,

and z = (z1, z2)
T , υ = (υ1, υ2)

T , Φ30 = c1(ᾱ, δ), Φ12 = c2(ᾱ, δ), Ψ21 = −c3(ᾱ, δ),
Ψ03 = −c4(ᾱ, δ).

Proof. Consider a four-dimensional system

Z 7→ Θt(Z) =

φ1
υ(z)

υ

 , Z =

 z

υ

 ∈ R4.

This flow is

Ż =W (Z) =MZ +M2(Z) +M3(Z) + · · · , Z ∈ R4, (3.25)

where M =


0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

, Mk(Z) =

Vk(z)

0

, and Vk(z) : R4 → R2 is a homoge-

neous polynomial function with unknown coefficients. Let Nυ be the map (3.24),

then J(Z) =

Nυ

υ

. Next we need to make three times Picard iterations for (3.25).
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First we have Z(1)(t) = (z1 + tυ1, z2, 0, 0)
T , M2(Z) = (A10υ2z1 +A11υ1υ2, 0, 0, 0)

T .
Then

Z(2)(t)

= eMtZ +

∫ t

0

eM(t−s)M2(Z
(1)(s))ds

=


z1 + tυ1

z2

υ1

υ2

+

∫ t

0


1 0 t− s 0

0 1 0 0

0 0 1 0

0 0 0 1




A10υ2(z1 + sυ1) +A11υ1υ2

0

0

0

 ds

=


z1 + tυ1 + z1υ1t− 1

2υ1υ2t

z2

υ1

υ2

 .

Comparing quadratic terms of Nυ and Z(2)(1), we obtain A10 = 1 and A11 = − 1
2 .

DefinedM3(Z)=

( ∑
i+j+k+l=3

Aijklz
i
1z
j
2υ
k
1υ

l
2,

∑
i+j+k+l=3

Bijklz
i
1z
j
2υ
k
1υ

l
2, 0, 0

)T
, then

Z(3)(t)

= eMtZ +

∫ t

0

eM(t−s)(M2(Z
(2)(s)) +M3(Z

(2)(s)))ds

=


z1 + tυ1

z2

0

0

+

∫ t

0

eM(t−s)


A10υ2(z1 + sυ1 + z1υ1s− 1

2υ1υ2s) +A11υ1υ2

0

0

0

 ds

+

∫ t

0

eM(t−s)



∑
i+j+k+l=3Aijkl(z1 + sυ1 + z1υ1s− 1

2υ1υ2s)
izj2υ

k
1υ

l
2∑

i+j+k+l=3Bijkl(z1 + sυ1 + z1υ1s− 1
2υ1υ2s)

izj2υ
k
1υ

l
2

0

0

 ds,

=


z1 + tυ1 + υ2z1t+

1
2υ1υ2t

2 − 1
2υ1υ2t+

1
2υ1υ2z1t

2 − 1
4υ1υ

2
2t

2

z2

υ1

υ2
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+



∫ t
0

∑
i+j+k+l=3Aijkl(z1 + sυ1 + z1υ1s− 1

2υ1υ2s)
izj2υ

k
1υ

l
2)ds∫ t

0

∑
i+j+k+l=3Bijkl(z1 + sυ1 + z1υ1s− 1

2υ1υ2s)
izj2υ

k
1υ

l
2)ds

0

0

 .

Comparing cubic terms of Nυ and Z(3)(1), we obtain

A3000 = Φ30, A2010 = −3

2
Φ30, A0210 = −1

2
Φ12, A1020 =

1

2
Φ30,

A0021 = A0012 =
1

4
, A1011 = −1

2
, A0030 =

1

4
Φ30,

B2100 = Ψ21, B0300 = Ψ03, B1110 = −Ψ21, B0120 =
1

6
Ψ21.

Others Aijkl, Bijkl are zeros. The proof is completed.

Theorem 3.4. Consider system φ1
υ(z) + O(||υ||2) + O(||z||2||υ||) + O(||z||4), that

is {
ż1 = υ1 + υ2z1 +Φ30z

3
1 +Φ12z1z

2
2 ,

ż2 = Ψ21z
2
1z2 +Ψ03z

3
2 .

It has dynamical behaviors near fold-flip bifurcation point as follows.
(i) If the first Lyapunov coefficient is not zero, there is a hopf bifurcation curve

H = {(υ1, υ2) : υ2 =
8(Ψ03Ψ

2
21 − Φ12Ψ

2
21)

Φ12Ψ21
υ21 +O(|υ1|3)}.

(ii) If Φ30 6= 0, there is a cusp bifurcation curve

C = {(υ1, υ2) : 27Φ30υ
2
1 + 4υ32 = 0}.

Proof. (i) A hopf bifurcation occurs at a bifurcation curve H on (υ1, υ2)−plane.
It is given by the projection of the curve

υ1 + υ2z1 +Φ30z
3
1 +Φ12z1z

2
2 = 0,

Ψ21z
2
1z2 +Ψ03z

3
2 = 0,

υ2 + 3Φ30z
2
1 +Φ12z

2
2 +Ψ21z

2
1 + 3Ψ03z

2
2 = 0,

(υ2 + 3Φ30z
2
1 +Φ12z

2
2)(Ψ21z

2
1 + 3Ψ03z

2
2)− 4Φ12Ψ21z

2
1z

2
2 = 1,

onto the parameter plane. Elimination of z1 and z2 gives the curve H.
(ii) A cusp bifurcation occurs at a bifurcation curve C on (υ1, υ2)−plane. It is

given by the projection of the curve{
υ1 + υ2z1 +Φ30z

3
1 = 0,

υ2 + 3Φ30z
2
1 = 0,

onto the parameter plane. Elimination of z1 gives the curve C.
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4. Stochastic codimension two flip bifurcation
The normal form of codimension two flip bifurcation is

x(n+ 1) = −(1 + α1)x(n) + α2x
3(n) + x5(n), (4.1)

where α1 and α2 are bifurcation parameters.
If we choose α1 as the random parameter, it can be expressed as α1 = ᾱ1 + δu,

where ᾱ1 is the statistic parameter, δ is the intensity. Then system (4.1) becomes{
x0(n+ 1) = −(1 + ᾱ1)x0(n)− δ(ψ1x1(n) + φ0x0(n)) + α2X0 + X̄0,

x1(n+ 1) = −(1 + ᾱ1)x1(n)− δ(φ1x1(n) + ϕ0x0(n)) + α2X1 + X̄1.
(4.2)

The dynamical behaviors of system (4.2) at fixed point E0 are analogous to sys-
tem (3.10). It can undergo flip bifurcation, 1:2 resonance and fold-flip bifurcation
through numerical simulations.

We use the following Hermite orthogonal polynomials to make simulations for
systems (3.10) and (4.2). The first six polynomials are

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12,

H4(x) = 16x4 − 48x2 + 12, H5(x) = 32x5 − 160x3 + 120x.

Its coefficients in recurrent formula are

ϕi =
1

2
, φi = 0, ψi = i.

Substituting these values into the representations of βij , γij , β̄ij , γ̄ij , we can get the
explicit systems of (3.10) and (4.2). The results of numerical simulations are shown
in Fig. 1 and Fig. 2. There are some special notations in these figures. The circle,
square and triangle represent flip bifurcation, 1:2 resonance and fold-flip bifurcation,
respectively.

In Fig. 1(a), black, red and green curves are flip bifurcation curves when δ is
the bifurcation parameter and ᾱ = 0.1 in (3.10). Two flip bifurcation points on the
black curves are both the origin when δ = −0.14, δ = −0.65. Flip bifurcation point
on red curve is (−0.90,−0.36) and flip bifurcation point on green curve is (0.90, 0.36)
when δ = 2.83. In Fig. 1(b), 1:2 resonance point appears at the intersection of the
red and black lines with δ = ᾱ = 0. Fold-flip bifurcation turns up on green curve
when δ = 2.43, ᾱ = −0.19.

In Fig. 2(a), there are two flip bifurcations on the black curve when δ = −0.14
and δ = −0.65, and other parameters value ᾱ1 = 0.1, α2 = 0.1 in (4.2). In Fig.
2(b), 1:2 resonance point appears at δ = 0, ᾱ1 = 0 and fold-flip bifurcation turns
up when δ = 2.43, ᾱ1 = −1.86. Its dynamical behaviors are similar to (3.10).

If we choose α2 as the random parameter, it can be expressed as α2 = ᾱ2 + δu,
where ᾱ2 is the statistic parameter, δ is the intensity. System (4.1) becomes{

x0(n+ 1) = −(1 + α1)x0(n) + ᾱ2X0 + δ(ψ1X1 + φ0X0) + X̄0,

x1(n+ 1) = −(1 + α1)x1(n) + ᾱ2X1 + δ(ψ2X2 + φ1X1 + ϕ0X0) + X̄1.
(4.3)

System (4.3) at fixed point E0 does not undergo any bifurcations with the change of
δ or ᾱ2. But there is only one flip bifurcation at the origin when α1 is the bifurcation
parameter, seeing Fig. 3.
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x

δ

(a)

ᾱ

δ

(b)

Figure 1. The bifurcation diagrams for system (3.10).

x

δ

(a)

ᾱ1

δ

(b)

Figure 2. The bifurcation diagrams for system (4.2) with x = x0(n).

x

α1

Figure 3. The bifurcation diagram for system (4.3) with x = x0(n). There is only one flip bifurcation
at the origin when δ = −0.2, α1 = 0.14 and ᾱ2 = 0.1.
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Here

X2(n) = ζ12x0(n)x
2
1(n) + ζ03x

3
1(n),

X̄0(n) = β̄05x
5
1(n) + β̄14x0(n)x

4
1(n) + β̄23x

2
0(n)x

3
1(n) + β̄32x

3
0(n)x

2
1(n) + β̄50x

5
0(n),

X̄1(n)= γ̄05x
5
1(n)+γ̄14x0(n)x

4
1(n)+γ̄23x

2
0(n)x

3
1(n)+γ̄32x

3
0(n)x

2
1(n)+γ̄41x

4
0(n)x1(n),

ζ03 =
3a10a

2
11

a22
− a311a32
a22a33

, ζ12 =
3a211
a22

,

β̄05 =
10a410a11a21

a22
+

10a310a
2
11a31

a33
+

10a210a
3
11a20a32

a22a33
+

5a210a
3
11a41

a44
+

5a10a
4
11a20a42

a22a44

+
5a10a

4
11a30a43

a33a44
+

5a210a
3
11a21a32a43

a22a33a44
+
a511a20a52
a22a55

+
a10a

4
11a21a32a53
a22a33a55

+
a511a40a54
a44a55

+
a10a

4
11a21a42a54
a22a44a55

+
a10a

4
11a31a43a54
a33a44a55

+
a511a20a32a43a54
a22a33a44a55

− 10a210a
3
11a30

a33
− 10a310a

2
11a21a32

a22a33
− 5a10a

4
11a40

a44
− 5a210a

3
11a21a42

a22a44

− 5a10a
4
11a20a32a43

a22a33a44
− a10a

4
11a21a52
a22a55

− a10a
4
11a31a53
a33a55

− a511a20a32a53
a22a33a55

− a10a
4
11a41a54
a44a55

− a511a20a42a54
a22a44a55

− a511a30a43a54
a33a44a55

− a10a
4
11a21a32a43a54
a22a33a44a55

+
a511a30a53
a33a55

+
a10a

4
11a51
a55

− 10a310a
2
11a20

a22
− 5a210a

3
11a31a43

a33a44
− a511a50

a55
− 4a510,

β̄14 =
30a310a11a21

a22
+

20a210a
2
11a31

a33
+

20a10a
3
11a20a32

a22a33
+

5a10a
3
11a41

a44
+

5a411a20a42
a22a44

+
5a411a30a43
a33a44

+
5a10a

3
11a21a32a43

a22a33a44
− 30a210a

2
11a20

a22
− 20a210a

2
11a21a32

a22a33

− 5a411a40
a44

− 5a10a
3
11a21a42

a22a44
− 5a10a

3
11a31a43

a33a44
− 5a411a20a32a43

a22a33a44

− 20a10a
3
11a30

a33
− 15a410,

β̄23 =
30a210a11a21

a22
+

10a10a
2
11a31

a33
+

10a311a20a32
a22a33

− 30a10a
2
11a20

a22
− 10a311a30

a33
−

10a10a
2
11a21a32

a22a33
− 20a310,

β̄32 =
10a10a11a21

a22
− 10a211a20

a22
− 10a210, β̄50 = 1,

γ̄05 = 5a410 −
10a310a11a21

a22
− 10a210a

2
11a31

a33
+

10a210a
2
11a21a32

a22a33
− 5a10a

3
11a41

a44

+
5a10a

3
11a31a43

a33a44
− 5a10a

3
11a21a32a43

a22a33a44
− a411a51

a55
+
a411a21a52
a22a55

+
a411a31a53
a33a55

+
a411a41a54
a44a55

− a411a21a42a54
a22a44a55

− a411a31a43a54
a33a44a55

+
a411a21a32a43a54
a22a33a44a55

+
5a10a

3
11a21a42

a22a44
− a411a21a32a53

a22a33a55
,
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γ̄14 = 20a310 −
30a11a21a

2
10

a22
− 20a211a31a10

a33
+

20a211a21a32a10
a22a33

− 5a311a41
a44

+
5a311a21a42
a22a44

+
5a311a31a43
a33a44

− 5a311a21a32a43
a22a33a44

, γ̄41 = 5,

γ̄23 = 30a210 −
30a11a21a10

a22
− 10a211a31

a33
+

10a211a21a32
a22a33

, γ̄32 = 20a10 −
10a11a21
a22

,

ϕ2 =
a22
a33

, φ2 =
a21
a22

− a32
a33

, ψ2 =
a20
a11

− a22a31
a11a33

− a221
a11a22

+
a21a32
a11a33

.

5. Conclusion
In this paper, we investigate the dynamics for codimension one and two flip bifur-
cation systems in normal form, when bifurcation parameters in different positions
are randomly disturbed. In either case, the random excitation imposed on linear
term can generate more complex dynamical behaviors: flip bifurcation, Neimark-
Sacker bifurcation, 1:2 resonance and fold-flip bifurcation. We first give the crit-
ical coefficient which determines the stability of closed invariant curve caused by
Neimark-Sacker bifurcation. Then we prove that both systems undergo heteroclinic
bifurcation and homoclinic bifurcation near 1:2 resonance point. Moreover, we cal-
culate hopf bifurcation curve and cusp bifurcation curve near fold-flip bifurcation
point. However, when the random excitation imposed on nonlinear term, the situ-
ation departures from that case for the random excitation imposed on linear term.
It is found that only flip bifurcation occurs in this situation. This interesting phe-
nomenon, which is determined by the positions where random parameter locates,
may have a significance impact on applications in engineering control problems.
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