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Abstract In this paper, a systematic algorithm is provided to determine the
sharp upper bound on the number of nontrivial rational solutions for the Abel
differential equations dy/dx = fm(x)y2 + gn(x)y

3, where fm(x) and gn(x) are
real polynomials of degree m and n respectively. As an application, we present
a thorough study for an important case, (m,n) = (4, 9).
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1. Introduction
The analysis of exact solutions such as polynomial and rational solutions of the
differential equations

a(x)y′ = b0(x) + b1(x)y + b2(x)y
2 + · · ·+ bl(x)y

l, (1.1)

where a(x), bi(x), with 0 ≤ i ≤ l are real polynomials, is one of the most classical
topics in ordinary differential equations and has attracted much attention for almost
one hundred years. Such a study is of particular importance to understand the whole
set of solutions and the dynamical properties of the system. For example, it is well-
known that once we know one solution of the classical Riccati equation, where
a(x) ≡ 1 and l = 2 in (1.1), then we can know the whole set of its solutions in an
explicit way. More and more study reveals that exploration of the exact solutions,
esp. the polynomial and rational ones, already begins to exert deep influence in the
related fields such as algebraic structure and geometric properties of the systems.

Speaking about the these special kinds of solutions, in 1936, Rainville in [19]
proved the existence of one or two polynomial solutions for the Riccati equation
(1.1). Campbell and Golomb [7] in 1954 provided an algorithm for finding all the
polynomial solutions for the equation (1.1) with a(x) ≡ 1 and l = 2. Bhargava and
Kaufman in 1960s in ( [2,3]) give some sufficient conditions for the Riccati equation
to have polynomial solutions. In 2011, Giné etc. in [13] considered the case a(x) ≡ 1
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in (1.1) and proved that the system has at most l polynomial solutions. Gasull etc.
in 2016 in [12] investigated the case, l = 2 and a(x) a polynomial, in (1.1) and
obtained the upper bound of the number of polynomial solutions of the systems.

On the other hand, Behloul and Cheng [1] proved that all the polynomial so-
lutions for equation (1.1) can be computed in a systematic manner. And recently,
the maximum number of polynomial solutions of equation (1.1) for some values of
l, a(x) and bi(x) are estimated in [8,13,16]. For detailed progress in this direction,
one can refer to [12] and the reference therein for more details.

Notice that another important system is the so-called Abel system, i.e., a special
case of (1.1) where a(x) ≡ 1, l = 3, and b0(x) = b1(x) = 0. Namely,

dy

dx
= fm(x)y2 + gn(x)y

3, (1.2)

where fm(x) and gn(x) are real polynomials of degree m and n, respectively, having
the following explicit expressions

fm(x) =

m∑
i=0

aix
i, gn(x) =

n∑
i=0

bix
i, ambn ̸= 0. (1.3)

For simplicity, we shall call such a system the Abel equation of type (m,n). The
Abel equation appears in many theoretical and applied problems ( [10, 14, 17]),
and has been studied intensively with traditional emphasis on the number of limit
cycles (see [9, 11]), or the center problem (see for instance [4–6]). Very recently,
the highlight of the study begins to shift to polynomial limit cycles, and nontrivial
rational limit cycles of the system, expecting to obtain deeper insight of of its
mechanism. For example, the maximum number of polynomial solutions of equation
(1.1) for some values of l, a(x) and bi(x) are estimated in [8, 12, 13, 15, 16, 20]. For
more information, we refer the reader to see these papers and the reference therein.

In this paper, we shall consider the nontrivial rational solutions of equation (1.2).
By a nontrivial rational solution we means that it is a rational but not polynomial
solution. The importance of study of nontrivial rational solutions for (1.2) relies on
the intrinsic relation between (1.2) and other important systems, say the Liénard
system. In fact, the number of nontrivial rational solutions for the equation (1.2)
and the number of the rational invariant curves for Liénard systems coincide. It is
already realized that knowing the number of invariant curves is one of the key ways
to study the integrability of planar polynomial differential systems.

Concerning the nontrivial rational solutions of equation (1.2), Qian etc. in a
recent paper, [18], gave an estimation of the upper bound of equation (1.2) in all
the cases. More precisely, they proved the following:

Theorem 1.1 (see [18]). Consider equation (1.2). The following statements stand.
(i) If n ≤ m or n = 2m+2k (k ≥ 1), then (1.2) of type (m,n) has no nontrivial

rational solutions.
(ii) If m+1 ≤ n ≤ 2m, or n = 2m+2k+1 (k ≥ 1), then equation (1.2) of type

(m,n) has at most 2 nontrivial rational solutions, and this upper bound is sharp.
(iii) If n = 2m+ 1 (i.e., k = 0 in (ii)), then equation (1.2) of type (m, 2m+ 1)

has at most m+ 3 nontrivial rational solutions. In particular, for m = 1, 2 and 3,
the upper bounds are 4, 5 and 5, respectively, and these bounds are sharp.
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Roughly speaking, the above theorem exhausts all the cases, presenting a sys-
tematic estimation about the number of nontrivial rational solutions of (1.2). More
precisely, except the degenerate case, n = 2m+ 1, the upper bounds together with
their sharpness of the nontrivial rational solutions are completely solved.

The case n = 2m+1 is exceptionally difficult and complicated, all the methods
and algorithm known turn out to either fail or to be inefficient. On the other hand,
it is exact those degenerate cases that admit extra values in understanding the
whole setting of the related problems as many researcher agrees with this, at least
to certain degree. Therefore, it is worthy paying more attention to the degeneracy,
and in this note we shall fully focus on taking one more step to feel the delicacy of
the situation. In other words, we give a careful consideration the type (m, 2m+1).
With some heavy calculation and sophisticated analysis, we prove the following
result.

Theorem 1.2. The equations (1.2) of type (4, 9) have at most 5 nontrivial rational
solutions, and this bound is sharp.

For clarity and a better comparison, we collect all the known cases and put them
into the following table:

(m, 2m+1) type (1,3) (2,5) (3,7) (4,9)
No. Rational Solutions 4 5 5 5

The paper is organized as follows: In Section 2, we develop an algorithm for
finding the rational solutions of the systems, while in Section 3, we present a detailed
proof of Theorem 1.2, where we also give concrete forms of the solutions of type
(4, 9). Our methods yield an efficient way in estimating the sharp upper bound on
the number of such solutions for the Abel equations.

2. The Algorithm
2.1. Preliminary
In this section, we shall present an algorithm for finding the sharp upper bound on
the number of nontrivial rational solutions for Abel equations (1.2). To this end,
we need the following useful lemma.

Firstly, from the proof of Proposition 2.5 in [18], we know that if the equation
(1.2) of type (m, 2m + 1) has more than 2 nontrivial rational solutions, then the
following relations must stand: b2m+1 =

ja2
m

(m+1+j)2 , where am and b2m+1 are the
leading coefficient of fm(x) and g2m+1(x), 1 ≤ j ≤ m. Notice that for different j in
the above relations, one can derive different number of nontrivial rational solutions.

Lemma 2.1. If b2m+1 =
ja2

m

(m+1+j)2 , where 1 ≤ j ≤ m, then the equations (1.2)
of type (m, 2m + 1) have at most [ m+1

m+1−j ] + 2 nontrivial rational solutions. In
particular, for j = m, we have the upper bound m+ 3.

Proof. From [15], we know that to study nontrivial rational solution of equations
(1.2), we need only to consider solution of the form y = 1

R(x) . Now assume that
y = 1

R(x) is a nontrivial rational solution of equations (1.2), where

R(x) = um+1x
m+1 + · · ·+ u1x+ u0, (2.1)
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and um+1 ≠ 0, then it follows that

R(x)R′(x) +R(x)fm(x) = −gn(x). (2.2)

By substituting (2.1) and (1.3) into (2.2) and then comparing the coefficients of
the equation, we obtain the following relations:

−b2m+1 = (am + (m+ 1)um+1)um+1

−b2m = (am + (2m+ 1)um+1)um + am−1um+1

−b2m−1 = (am + 2mum+1)um−1 + (mum + am−1)um + am−2um+1

· · · = · · ·

−bm+j =(am + (m+ 1 + j)um+1)uj · · ·+ ((j + 1)uj+1 + aj)um + aj−1um+1

· · · = · · ·

−b0 = (a0 + u1)u0.

Since b2m+1 =
ja2

m

(m+1+j)2 , we know that the first equation of the above system has
two solutions:

(i). u′
m+1 =

−jam
(m+ 1)(m+ 1 + j)

. (ii). u′′
m+1 =

−am
m+ 1 + j

.

(i). If u′
m+1 = −jam

(m+1)(m+1+j) , for 0 ≤ k ≤ m, then we have

j(m+ 1 + k) ̸= (m+ 1)(m+ 1 + j),

i.e.,
am + (m+ 1 + k)u′

m+1 ̸= 0.

Hence the system can have at most one nontrivial rational solution y = 1
R(x) , where

the leading coefficient of R(x) is u′
m+1.

(ii). If u′′
m+1 = −am

m+1+j , then uj is an independent variable, and we can express
u0, · · · , uj−1 in terms of uj . In fact, we can derive the expression of uj−(m+1−j)k1

in terms of uj from the (1 + (m+ 1− j)(k1 + 1))-th equation. Namely,

uj−(m+1−j)k1
=

ck1,0

u′k1
m+1

uk1+1
j + · · ·+ ck1,k1

,

where 1 ≤ k1 ≤ [ j
m+1−j ] and ck1,0 > 0. In general, from the (1− l+(m+1−j)(k1+

1))-th equation, we have

uj−(m+1−j)k1+l = Rj−(m+1−j)k1+l(uj),

where Rj−(m+1−j)k1+l(uj) is a polynomial of degree at most k1, and 1 ≤ l ≤ m− j.
By substituting u0, · · · , uj−1 into the

(
1 + ([ m+1

m+1−j ] + 1)(m+ 1− j)
)

-th equa-
tion, we obtain an equation of [ m+1

m+1−j ] + 1 degree, where the coefficient of the

highest term is dm ·
(
u′
m+1

)−[ m+1
m+1−j ] where dm > 0. Thus the equation (1.2) has at

most [ m+1
m+1−j ] + 1 nontrivial rational solutions in this case.
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Based on the above discussion of two possibilities, we know that the equation
(1.2) has at most [ m+1

m+1−j ] + 2 nontrivial rational solutions, and the lemma follows.

Recall that the authors of [18] present equations (1.2) of type (m, 2m+1) which
can possess exactly 4 nontrivial rational solutions, where m ≥ 1. Thus the sharp
upper bound on the number of nontrivial rational solutions for equation (1.2) of
type (m, 2m+ 1) must be ≥ 4. By Lemma 2.1, we only have to consider the sharp
upper bound in the case b2m+1 =

ja2
m

(m+1+j)2 , where 2
3 (m+ 1) ≤ j ≤ m.

Now we fix some notation and definitions. First, we set

g2m+1(x) = b2m+1(x− α1)(x− α2) · · · (x− α2m+1),

where b2m+1 =
ja2

m

(m+1+j)2 , 2
3 (m + 1) ≤ j ≤ m. Denote by y = 1

Pi(x)
, i ≥ 1,

solutions of equation (1.2). Denote the greatest common divisor of two polynomials
Pi1(x) and Pi2(x) by Gi1,i2(x). For example, G1,2(x) means the common divisor
of the first polynomial P1(x) and the second one P2(x). In this way, the meaning
of the collection of G1,2(x), G1,3(x) and G2,3(x), denoted by A, is clear. That is,
A = {G1,2(x), G1,3(x), G2,3(x)}. Notice that in the notation Gi1,i2(x), we have
1 ≤ i1 < i2.

To describe the algorithm, we also have to introduce the following two Lemmas
in [18].

Lemma 2.2 ( [18]). Let g2m+1(x) = b2m+1(x− α1)(x− α2) · · · (x− α2m+1), where
b2m+1 =

ja2
m

(m+1+j)2 , and 2
3 (m + 1) ≤ j ≤ m. If y = 1

Pµ(x)
, with 1 ≤ µ ≤ 2, are two

nontrivial rational solutions of equation (1.2), where Pµ(x) = G1,2(x)P̃µ,

G1,2(x) = (x− α1) · · · (x− αi),

P̃1 = (x− αi+1) · · · (x− αm+1), P̃2 = (x− αm+2) · · · (x− α2m+2−i),

with 1 ≤ i ≤ j and gcd(P̃1(x), P̃2(x)) = 1. Then if i = 1, we set H(x) = 1. If
2 ≤ i ≤ j, let H(x) = (x−α2m+3−i) · · · (x−α2m+1). Finally the following equations
hold:

P̃1 − P̃2 = C(x− αi1)
k1 · · · (x− αil)

kl , jH(x)−G′
1,2(x) = G1,2(x)

l∑
v=1

kv
x− αiv

,

where C is an constant, 1 ≤ i1 < i2 < · · · < il ≤ i, kv ≥ 0, 1 ≤ v ≤ l and
k1 + · · ·+ kl = j − i.

Lemma 2.3 ( [18]). Assume the equation (1.2) with at least three nontrivial rational
solutions y = 1

Pi(x)
, with Pi(0) = 0 and 1 ≤ i ≤ 3. Set

P1(x) = u1,m+1x
m+1 + u1,mxm + · · ·+ u1,n1

xn1 ,

with 1 ≤ n1 ≤ m, and u1,n1 ̸= 0. Then the term Pk(x) of all the other nontrivial
rational solutions y = 1

Pk(x)
with Pk(0) = 0 can be express as

Pk(x) = uk,m+1x
m+1 + uk,mxm + · · ·+ uk,n1

xn1 ,

where k ≥ 2 and uk,n1
̸= 0. Furthermore, uk,n1

with k ≥ 2 can take only two
possible values:
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(i) all the values are the same;

(ii) there exists a natural number k1 such that uk1,n1
̸= u1,n1

and uk,n1
≡ u1,n1

or
uk,n1

≡ uk1,n1
, with k, k1 ≥ 2 and k ̸= k1.

Furthermore, we say that P1(x), · · · , Pi(x) is equivalent to R1(x), · · · , Ri(x) if
there exists σ∈S2m+1, such that αk→ασ(k), and P1(x), · · · , Pi(x)→R1(x), · · · , Ri(x),
where 1 ≤ k ≤ 2m+1 and S2m+1 is the symmetric group on 2m+1 letters. In the
following discussion, we only list a representative of each equivalent class.

2.2. The procedures
We are ready now to describe the algorithm.

(1) Assume there exist a system (1.2) of type (m, 2m + 1) having at least five
nontrivial rational solutions y = 1

Pi(x)
, where the leading coefficient of Pi(x) is 1,

1 ≤ i ≤ 5.
(2) We use the Pigeonhole principle to obtain the form of Pi(x), 1 ≤ i ≤ 5.
(3) When b2m+1 =

ja2
m

(m+1+j)2 , with 3
4 (m + 1) ≤ j ≤ m, then degGi1,i2(x) ≤ j,

where 1 ≤ i1 < i2. We distinguish three cases according to the degrees of G1,2(x),
G1,3(x) and G2,3(x) as follows.

(I): At least two elements of A are of degree j;
(II): One element of A has degree j;
(III): None element of A admits degree j.

(4) Assume P1(x) =
m+1∏
i=1

(x − αi). For each case, we first give all the possible

equivalent classes of P2(x) according to the degree of G1,2(x).
(5) For each equivalent class of P2(x), we give all the possible equivalent classes

of P3(x) according to the degree of G1,3(x) and G2,3(x). Then we delete the
equivalent classes which violate Lemma 2.3. For the remaining equivalent classes,
by Lemma 2.2, we can obtain some algebraic equations. By solving these equa-
tions, we shall delete the equivalent classes which violate the requirement that
P1(x), P2(x), P3(x) are different polynomials.

(6) For each equivalent class of Pi(x), we give the equivalent classes of Pi+1(x)
according to the degree of G1,i+1(x), G2,i+1(x), · · ·Gi,i+1(x), where 3 ≤ i ≤ m+ 2.
Secondly, we delete the equivalent classes of Pi+1 that Pj1 , · · · , Pji−1

, Pi+1 doesn’t
exist from the above discussion, where 1 ≤ j1 < j2 < · · · < ji−1 ≤ i. Then we
delete the equivalent classes of Pi+1(x) which violate Lemma 2.2 and Lemma 2.3.

(7) If the equivalent classes of P5(x) does not exist, then the upper bound on the
number of nontrivial rational solutions for Abel equations (1.2) of type (m, 2m+1) is
5. Based on the concrete forms of P1(x), · · · , P4(x) which exist, determine whether
the solution y = 1

R(x) exist or not, where the leading coefficient of R(x) is j
m+1 . If

R(x) exists, then the sharp upper bound is 5. Otherwise, it is 4.
(8) If the equivalent classes of P5(x) exists, then the upper bound on the number

of nontrivial rational solutions for Abel equations (1.2) of type (m, 2m + 1) is k +
1, with k is the maximum index such that the equivalent classes of Pk(x) exist.
Based on the concrete forms of P1(x), · · · , Pk(x) which exist, determine whether
the solution y = 1

R(x) exists or not, where the leading coefficient of R(x) is j
m+1 . If

R(x) exists, then the sharp upper bound is k + 1. Otherwise, it is k.
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Remark 2.1. For m ≥ 4, theoretically speaking, the sharp upper bound on the
number of nontrivial rational solutions for equations (1.2) of type (m, 2m+ 1) can
be presented by this algorithm, although in practice, the computation can be very
heavy and complicated.

3. Application
In this section, we use the above algorithm to prove Theorem 1.2, namely we give
the sharp upper bound on the number of nontrivial rational solutions for equations
(1.2) of type (4, 9).

Proof of Theorem 1.2. By Lemma 2.1, we know that only in the case b2m+1 =
4
81a

2
m, the equations (1.2) of type (4, 9) can have more than 4 nontrivial rational

solutions. Thus we only have to study this case.
Assume there exist a system (1.2) of type (4, 9) having at least five nontrivial

rational solutions y = 1
Pi(x)

, with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 5.
We use the Pigeonhole principle to give the form of Pi(x). Since there are five
nontrivial rational solutions, we have 25 objectives. Moreover, there are 9 boxes
α1, · · · , α9. By putting objectives into these boxes, we obtain that there is a box
with at least three objectives, namely P1(x), P2(x) and P3(x) must have a common
factor (x − α1). Then use the Pigeonhole principle again, we deduce without loss
of generality that P1(x) and P2(x) have a comma factor (x− α2).

Set P1(x) =
5∏

i=1

(x − αi), which will be abbreviated as {12345}. Such kind of

abbreviation will be used throughout this paper. We will distinguish three cases
according to the degrees of G1,2(x), G1,3(x) and G2,3(x).

Case (I) [At least two elements of A are of degree 4]: We can assume without
loss of generality that the degree of G1,2(x) and G1,3(x) is 4. Hence we can choose
P2(x) = {12346} as a representative. Then P3(x) have three equivalent classes,
namely P3(x) = {12347}, or P3(x) = {12356}, or P3(x) = {12357}. By Lemma 2.3,
we obtain that the coefficients of the non-zero term of the smallest degree of Pi(x)
have at most two values, where 1 ≤ i ≤ 3. Hence P3(x) = {12357}.

When P3(x) = {12357}, by Lemma 2.3, we deduce that α2α3α4α6 = α2α3α5α7.
Then by submitting P1(x) and P2(x) , P2(x) and P3(x) into the Lemma 2.2 respec-
tively, we obtain the following equations,

3(α2 + α3 + α4) = 4(α7 + α8 + α9),
∏

2≤i<j≤4

αiαj = 2
∏

7≤i<j≤9

αiαj ,

α2α3α4 = 4α7α8α9, 3(α2 + α3) = 4(α8 + α9),

2α2α3 = 4α8α9, 0 = α4α6 − α5α7.

Hence we have

α2 = α3 = α8 = α9 = 0, α4 =
4

3
α7, α5 =

4

3
α6.

Thus the nontrivial rational solution y = 1
P3(x)

exists.
Now we go on with the study of the existence of the nontrivial rational solution

y = 1
P4(x)

in this case. Firstly, by Lemma 2.3, we deduce that the constant term
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of P4(x) is not zero. Thus the nontrivial rational solution y = 1
P4(x)

doesn’t exist
in this case. As a consequence, there are at most three nontrivial rational solutions
y = 1

Pi(x)
, where the leading coefficient of Pi(x) is 1, 1 ≤ i ≤ 3.

There are two other cases (II) and (III) described below. Since the structure
and techniques involved in the remaining two cases are similar to the discussion of
the case (I), we only give a list of all equivalent classes of P3(x) and P4(x) and
point out the existing cases in the following proof.

Case (II) [One element of A is of degree 4]: We can assume without loss of general-
ity that the degree of G1,2(x) is 4. We choose P2(x) = {12346} as a representative.

If the degree of G1,3(x) is 3, then P3(x) can have at most three equivalent classes.
Namely P3(x) ∈ B1, where

B1 = {{12378}, {12567}, {12578}}.

If the degree of G1,3(x) is 2, then P3(x) can also have at most three equivalent
classes. Namely P3(x) ∈ B2, where

B2 = {{12789}, {15678}, {15789}}.

Finally, if the degree of G1,3(x) is 1, then we can choose P3(x) = {56789} as a
representative.

Below we shall consider the above 7 cases one by one. In other words, the proof
is done with a case by case study on the form of P3(x).

(II-i) P3(x) = {12378}. Firstly if the degree of G1,4(x) is 3, then P4(x) have the
following equivalent classes, P4(x) ∈ D1, where

D1 =

{12379}, {12478}, {12479}, {12567}, {12569}, {12578},

{12579}, {14567}, {14569}, {14578}, {14579}.


Secondly, if the degree of G1,4(x) is 2, then P4(x) have the following equivalent

classes, P4(x) ∈ D2, where

D2 =

{12789}, {14789}, {15678}, {15789},

{15679}, {45678}, {45679}, {45789}.


Finally if the degree of G1,4(x) is 1, then we choose P4(x) = {56789} as a

representative.
Examining all these cases, we get that P4(x) can only be {12567} and {15679}.

Moreover, when P4(x) = {12567}, By Lemma 2.2, we get that α2 = α9 = 0, namely
{12567} = {15679}. Hence there are at most four nontrivial rational solutions
y = 1

Pi(x)
, where the leading coefficient of Pi(x) is 1, 1 ≤ i ≤ 4.

(II-ii) P3(x) = {12567}. Firstly, if the degree of G1,4(x) is 3, then P4(x) have
the following equivalent classes, namely P4(x) ∈ D3, where

D3 =

{12568}, {12578}, {12589}, {13567}, {13568}, {13578},

{13589}, {34567}, {34568}, {34578}, {34589}.


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If the degree of G1,4(x) is 2, then P4(x) have the following equivalent classes,
namely P4(x) ∈ D4, where

D4 =

{12789}, {13789}, {15678}, {15689}, {15789},

{34789}, {35678}, {35689}, {35789}.


Finally if the degree of G1,4(x) is 1, then we choose P4(x) = {56789} as a

representative.
Examining all these cases, we get that P4(x) can only be {13789}. Hence there

are at most four nontrivial rational solutions y = 1
Pi(x)

, with the leading coefficient
of Pi(x) is 1, and 1 ≤ i ≤ 3.

(II-iii) P3(x) = {12578}. If the degree of G1,4(x) is 3, then P4(x) have the
following equivalent classes, namely P4(x) ∈ D5, where

D5 =

{12579}, {13578}, {13579}, {34567},

{34569}, {34578}, {34579}.


If the degree of G1,4(x) is 2, then P4(x) have the following equivalent classes,

namely P4(x) ∈ D6, where

D6 =

{12789}, {13789}, {15678}, {15679}, {15789},

{34789}, {35678}, {35679}, {35789}.


Finally if the degree of G1,4(x) is 1, then we choose P4(x) = {56789} as a

representative.
Examining all these cases, we get that the nontrivial rational solution y = 1

P4(x)

doesn’t exist. Hence there are at most three nontrivial rational solutions y = 1
Pi(x)

,
with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 3.

(II-iv) P3(x) = {12789}. In this case, the degree of G1,4(x) can be 2, or 1.
Firstly, if the degree of G1,4(x) is 2, then P4(x) have the following equivalent classes,
namely P4(x) ∈ D7, where

D7 =

{13789}, {15678}, {15789},

{34789}, {35678}, {35789}.


If the degree of G1,4(x) is 1, then we choose P4(x) = {56789} as a representative.
Examining all these cases, we get that P4(x) can only be {15678} and {35678}.

Moreover, if P4(x) = {15678}, or P4(x) = {35678}, by Lemma 2.2, we get two nec-
essary systems of equations. From the solutions of these two systems of equations,
we know that {15678} = {35678}. Hence there are at most four nontrivial rational
solutions y = 1

Pi(x)
, with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 4.

(II-v) P3(x) = {15678}. In this case, the degree of G1,4(x) can be 2, or 1. Firstly,
if the degree of G1,4(x) is 2, then P4(x) have the following equivalent classes, namely
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P4(x) ∈ D8, where

D8 =

{15679}, {15789}, {25678},

{25679}, {25789}.


If the degree of G1,4(x) is 1, then we choose P4(x) = {56789} as a representative.
Examining all these cases, we get that the nontrivial rational solution y = 1

P4(x)

doesn’t exist. Hence there are at most three nontrivial rational solutions y = 1
Pi(x)

,
with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 3.

(II-vi) P3(x) = {15789}. In this case, the degree of G1,4(x) can be 2, or 1. Then
if the degree of G1,4(x) is 2, we choose P4(x) = {25789} as a representative.

If the degree of G1,4(x) is 1, then P4(x) have the following equivalent classes,
namely P4(x) ∈ D9, where

D9 = {{16789}, {26789}, {56789}}.

Examining all these cases, we get that the nontrivial rational solution y = 1
P4(x)

doesn’t exist. Hence there are at most three nontrivial rational solutions y = 1
Pi(x)

,
with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 3.

(II-vii) P3(x) = {56789}. In this case, all possible forms of P4(x) have been
discussed. Hence there are at most four nontrivial rational solutions y = 1

Pi(x)
,

with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 4.

Case (III) [None of A is of the degree 4]: We can assume without loss of gen-
erality that the degree of G1,2(x) is 3. Hence we choose P2(x) = {12367} as a
representative.

If the degree of G1,3(x) is 3, then P3(x) have the following equivalent classes,
namely P3(x) ∈ B3, where

B3 =

 {12389}, {12468}, {12489},

{14567}, {14568}, {14589}.


If the degree of G1,3(x) is 2, then P3(x) have the following equivalent classes,

namely P3(x) ∈ B4, where

B4 = {{14689}, {45678}, {45689}}.

Finally if the degree of G1,3(x) is 1, then all possible forms of P4(x) have been
discussed in the above cases.

On the other hand, if the degree of G1,2(x) is 2, then we choose P2(x) = {12678}
as a representative, and P3(x) can only have one equivalent class, namely P3(x) =
{34679}. In this case, all possible forms of P4(x) have been discussed in the above
cases. Furthermore, if the degree of G1,2(x) is 1, then all possible forms of P3(x)
have been discussed in the above cases. Hence we only have to consider the case
which the degree of G1,2(x) is 3. The proof is done with a case by case study on
the form of P3(x).
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(III-i) P3(x) = {12389}. Firstly, if the degree of G1,4(x) is 3, then P4(x) have
the following equivalent classes, namely P4(x) ∈ D10, where

D10 = {{12468}, {14567}, {14568}}.

Secondly, if the degree of G1,4(x) is 2, then we choose P4(x) = {45678} as a
representative. Finally, if the degree of G1,4(x) is 1, then all possible forms of P4(x)
have been discussed in the above cases.

Examining all these cases, we obtain that the nontrivial rational solution y =
1

P4(x)
doesn’t exist. Hence there are at most three nontrivial rational solutions

y = 1
Pi(x)

, with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 3.

(III-ii) P3(x) = {12468}. Firstly if the degree of G1,4(x) is 3, then P4(x) have
the following equivalent classes, namely P4(x) ∈ D11, where

D11 =

 {12578}, {12589}, {13469}, {13569}, {13578}, {13579},

{13589}, {14567}, {34567}, {34569}, {34578}, {34579}.


Secondly, if the degree of G1,4(x) is 2, then P4(x) have the following equivalent

classes, namely P4(x) ∈ D12, where

D12 = {{15789}, {35689},{35789}}.

Finally if the degree of G1,4(x) is 1, then all possible forms of P4(x) have been
discussed in the above cases.

Examining all these cases, we get that P4(x) can be {12589}, or {13589}. But
these two solutions cannot exist at the same time, because ∀σ ∈ S9, changing
αk → ασ(k) with 1 ≤ k ≤ 9 we cannot change the solutions of the necessary system
of equations which derive from P4(x) = {12589} into the solution of the necessary
system of equations which derive from P4(x) = {13589}. Hence there are at most
four nontrivial rational solutions y = 1

Pi(x)
, with the leading coefficient of Pi(x) is

1, and 1 ≤ i ≤ 4.
(III-iii) P3(x) = {12489}. Firstly, if the degree of G1,4(x) is 3, then P4(x) have

the following equivalent classes, namely P4(x) ∈ D13, where

D13 = {{14567}, {34567}, {34568}}.

Secondly, if the degree of G1,4(x) is 2, then P4(x) have the following equivalent
classes, namely P4(x) ∈ D14, where

D14 =

{14678}, {15678}, {34678},

{35678}, {35689}.


Finally if the degree of G1,4(x) is 1, then P4(x) have the following equivalent

classes, namely P4(x) ∈ D15, where

D15 = {{16789}, {36789}, {56789}}.

Examining all these cases, we get that P4(x) exists when P4(x) ∈ D16, where

D16 = {{14567}, {14678}, {15678}, {35689}}.
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Since ∀σ ∈ S9, changing αk → ασ(k) with 1 ≤ k ≤ 9 we can’t change the
solutions of the necessary system of equations which derive from P4(x) = a, with
a ∈ D16 into the solution of the necessary system of equations which derive from
P4(x) = b, with b ∈ D16 − {a}, we obtain that there are at most four nontrivial
rational solutions y = 1

Pi(x)
, with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 4.

(III-iv) P3(x) = {14567}. In this case, the degree of G1,4(x) can only be 2, then
we choose P4(x) = {24689} as a representative. Examining this case, we get that
the nontrivial rational solution y = 1

P4(x)
doesn’t exist. Hence there are at most

three nontrivial rational solutions y = 1
Pi(x)

, with the leading coefficient of Pi(x) is
1, and 1 ≤ i ≤ 3.

(III-v) P3(x) = {14568}. In this case, the degree of G1,4(x) can be 2, or 1. If
the degree of G1,4(x) is 2, then P4(x) have the following equivalent classes, namely
P4(x) ∈ D17, where

D17 = {{24678}, {24679}, {24789}}.

If the degree of G1,4(x) is 1, then P4(x) can have at most two equivalent classes,
namely P4(x) = {16789}, or P4(x) = {26789}.

Examining all these cases, we get that P4(x) exists when P4(x) ∈ D18, where

D18 = {{24678}, {24679}, {24789}, {26789}}.

Since ∀σ ∈ S9, changing αk → ασ(k) with 1 ≤ k ≤ 9 we cannot change the
solutions of the necessary system of equations which derive from P4(x) = c, with
c ∈ D18 into the solution of the necessary system of equations which derive from
P4(x) = d, with d ∈ D18 − {c}, we obtain that there are at most four nontrivial
rational solutions y = 1

Pi(x)
, with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 4.

(III-vi) P3(x) = {14589}. In this case, the degree of G1,4(x) can only be 1,
then P4(x) can have at most two equivalent classes, namely P4(x) = {16789}, or
P4(x) = {26789}.

Examining all these cases, we get that the nontrivial rational solution y = 1
P4(x)

doesn’t exist. Hence there are at most three nontrivial rational solutions y = 1
Pi(x)

,
with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 3.

(III-vii) P3(x) = {14689}. In this case, the degree of G1,4(x) can only be 2, then
P4(x) have the following equivalent classes, namely P4(x) ∈ D19, where

D19 =

{15789}, {24789}, {25789},

{45678}, {45789}.


Examining all these cases, we get that P4(x) exists when P4(x) ∈ D20, where

D20 = {{24789}, {45678}, {45789}}.

Since ∀σ ∈ S9, changing αk → ασ(k) with 1 ≤ k ≤ 9 we cannot change the
solutions of the necessary system of equations which derive from P4(x) = e, with
e ∈ D20 into the solution of the necessary system of equations which derive from
P4(x) = f , with f ∈ D20 − {e}, we obtain that there are at most four nontrivial
rational solutions y = 1

Pi(x)
, with the leading coefficient of Pi(x) is 1, and 1 ≤ i ≤ 4.
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(III-viii) P3(x) = {45678} or P3(x) = {45689}. In these cases, all possible forms
of P4(x) have been discussed in the above cases.

From the above discussion, we obtain that the equivalent classes of P5(x) does
not exist. Hence the upper bound on the number of nontrivial rational solutions
for Abel equations (1.2) of type (4, 9) is 5.

On the other hand, basing on the concrete forms of P1(x), P2(x), P3(x), P4(x),
we obtain that only in the case (III-v), with the representative of P4(x) is {24789},
there exists an equation (1.2) of type (4, 9) having five nontrivial rational solutions,
namely y = 1

R(x) is also a nontrivial rational solution of this equation, where the
leading coefficient of R(x) is 4

5 . (The explicit example for equation (1.2) of type (4, 9)
having exactly 5 nontrivial rational solutions can be see in Theorem 1.5 in [18].)
Thus the theorem follows.
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