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ON STRONGLY INDEFINITE SCHRÖDINGER
EQUATIONS WITH NON-PERIODIC

POTENTIAL∗
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Abstract This paper is concerned with the non-periodic superlinear Schrödi-
nger equation −∆u + V (x)u = f(x, u), u ∈ H1(RN ). Here, the Shrödinger
operator −∆+V is strongly indefinite, that is, possesses a infinite dimensional
negative space, which leads to more difficulty in verifying the compactness
conditions. We prove the existence, as well as multiplicity provided f(x, t) is
odd in t, of solutions via variational methods.

Keywords Schrödinger equations, superlinear, variational methods, strongly
indefinite functionals.

MSC(2010) 35J20, 35J60, 58E05.

1. Introduction and main results
In this paper, we consider the semilinear Schrödinger equation of the form−∆u+ V (x)u = f(x, u),

u ∈ H1(RN ),
(1.1)

where N ⩾ 3. In what follows, we denote by S := −∆+V the Schrödinger operator,
by σ(S) the spectrum of S, by σpp(S) its pure point spectrum and by σess(S) its
essential spectrum. Set F (x, t) :=

∫ t

0
f(x, s)ds.

Problems of the form (1.1) have received growing attention in recent years. There
is a great deal of literature on existence and multiplicity results. It fall broadly into
three categories according to the location of 0 relative to σ(S). For the case where
inf σ(S) > 0, the variational functional has the mountain pass geometry. There
are many papers giving various assumptions on V and f ; for related researches,
see, e.g., [4, 6, 8, 10, 12–14, 21, 23] and references therein. For the case where 0 is a
boundary point of a gap of σ(S), precisely, 0 ∈ σ(S) and (0, ξ)∩ σ(S) = ∅ for some
constant ξ > 0, Bartsch and Ding [3], Willem and Zou [22] obtained the existence
and multiplicity results. For the case where 0 lies in a gap of σ(S), that is,

sup (σ(S) ∩ (−∞, 0)) < 0 < inf (σ(S) ∩ (0,∞)) ,
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the variational functional is indefinite, then it has the linking structure. In par-
ticular, if σess(S) ∩ (−∞, 0] ̸= ∅, the problem is strongly indefinite. With periodic
assumptions on V and f , Troestler and Willem [20] and Kryszewski and Szulkin [9]
obtained the existence and multiplicity of solutions of (1.1) by establishing a new
degree theory and a infinite dimensional linking theorem.

In this current paper, we do not assume any compactness conditions on the po-
tential function V . It is well known that a main difficulty in studying (1.1) in RN is
the lack of compactness. This difficulty can be avoided for (1.1) in bounded domains
or if the potential function V possesses some compactness conditions. For example,
if lim|x|→∞ V (x) = ∞ or u is radially symmetric, one can get some compactness
embedding and then the Palais–Smale condition can be proved. Refer to [16] in
this direction. In the strongly indefinite case, the Schrödinger operator S possesses
a infinite dimensional negative space, which leads to more difficulty in verifying
the compactness conditions. Moreover, the embedding H1(RN ) ↪→ L2(RN ) is not
compact. To overcome this, most papers consider the periodic problem. Under
periodic assumptions, the variational functional is invariant under translations, so
one can construct multi-bump solutions up to a suitable translation (see, for exam-
ple, [1,3,7,9,11,17,19]). Without periodic assumptions, there are not many studies
for now. Liu, Su and Weth [15] and Zhao, Zhao and Ding [24] obtained the existence
and multiplicity of solutions of (1.1) with asymptotically linear nonlinearity.

In this paper, we consider the non-periodic superlinear problems. For the po-
tential V , we assume
(V1) V ∈ Lq

loc(RN ), V − := min {V, 0} ∈ L∞(RN ) + Lq(RN ), for some q ∈ [2,∞) ∩
(N/2,∞);

(V2) b := sup{(−∞, 0) ∩ σess(S)} < 0 < a := inf{(0,∞) ∩ σess(S)}.
Assumption (V1) ensures that the Schrödinger operator S is self-adjoint and

semi-bounded on L2(RN ) (see [18, Theorem A.2.7]). Since eigenvalues may also
appear in gaps of the essential spectum σess(S), (V2) induces that 0 ∈ σpp(S) is
possible. So (V2) is a more general spectral assumption.

For the nonlinearity f , we assume
(f1) f ∈ C1(RN × R) and there exist constants p ∈ (2, 2∗) and c > 0 such that

|f(x, t)| ⩽ c(1 + |t|p−1) for (x, t) ∈ (RN ,R), where 2∗ = 2N/(N − 2);
(f2) f(x, t) = o(t) as t → 0 uniformly in x ∈ RN ;
(f3) there exist µ > 2 such that 0 < µF (x, t) ⩽ tf(x, t) for x ∈ RN and t ̸= 0;
(f4) f∗ := lim sup|x|→∞ sup|t|≤r

f(x,t)
t < a for all r > 0.

Our main result is the following theorem.

Theorem 1.1. Under assumptions (V1)-(V2) and (f1)-(f4), problem (1.1) possesses
at least one nontrivial solution. Moreover, if f(x, t) is odd in t, problem (1.1)
possesses infinitely many solutions.

2. Preliminaries
By virtue of (V2), we know that 0 is at most an eigenvalue of finite multiplicity of
S. Moreover, (V2) induces the orthogonal decomposition

L2 ≡ L2(RN ) = L− ⊕ L0 ⊕ L+, u = u− + u0 + u+
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according to the spectrum of S such that S is negative definite (resp. positive
definite) in L− (resp. in L+) and L0 = kerS. Let E = D(|S|1/2) be the Hilbert
space equipped with the inner product

(u, v) = (|S|1/2u, |S|1/2v)2 + (u0, v0)2

and norm ∥u∥ = (u, u)1/2, where (·, ·)2 denotes the inner product of L2. We have
the decomposition

E = E− ⊕ E0 ⊕ E+, where E± = E ∩ L± and E0 = L0.

It is orthogonal with respect to both (·, ·) and (·, ·)2. It is easy to see that E embeds
continuously into H1(RN ), and then continuously into Ls(RN ) for s ∈ [2, 2∗] and
compactly into Ls

loc(RN ) for s ∈ [2, 2∗). Consequently, there exists a constant τs > 0
such that

|u|s ⩽ τs ∥u∥ , ∀u ∈ E, (2.1)
where |·|s denotes the Ls norm.

Define a functional Φ : E → R by

Φ(u) =
1

2

∥∥u+
∥∥2 − 1

2

∥∥u−∥∥2 −Ψ(u), where Ψ(u) =

∫
RN

F (x, u)dx. (2.2)

Under our assumptions, it is easy to see that Φ ∈ C1(E,R) and for u, v ∈ E,

Φ′(u)v = (u+, v+)− (u−, v−)−
∫
RN

f(x, u)vdx.

It is well known that the critical points of Φ are solutions of problem (1.1).
We turn next recall some abstract critical point theorems, which will be used

in the proof of our main result. Recall that a sequence {un} ⊂ E is called a (PS)c
sequence, if

Φ(un) → c and ∥Φ′(un)∥ → 0. (2.3)
We say that Φ satisfies the (PS) condition if any (PS)c sequence of Φ contains a
convergent subsequence for all c ∈ R. Let R > r > 0 and let φ ∈ E+\ {0} with
∥φ∥ = 1. Define

M :=
{
u ∈ E− ⊕ E0 ⊕ R+φ | ∥u∥ ⩽ R

}
, N :=

{
u ∈ E+ | ∥u∥ = r

}
. (2.4)

Denote by ∂M the boundary of M .

Proposition 2.1 ( [9, Theorem 3.4]). Assume that Ψ ∈ C1(E,R) is bounded from
below, weakly sequentially lower semicontinuous and Ψ′ is weakly sequentially con-
tinuous. Let Φ be a functional on E of the form (2.2) satisfying the (PS) condition.
If

inf
N

Φ > sup
∂M

Φ,

then Φ has a nontrivial critical point.

In the proof of the multiplicity result, we will use the following theorem, which
is a generalization of the classical fountain theorem of Bartsch [2] (see also [21,
Theorem 3.6]). Denote by {ej} a total orthonormal sequence in E+. For k ∈ N, let

Yk =
(
E− ⊕ E0

)
⊕ span {e1, . . . ek} , Zk = span {ek, ek+1, . . .}. (2.5)
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Proposition 2.2 ( [5, Theorem 12]). Assume that Ψ ∈ C1(E,R) is even, bounded
from below, weakly sequentially lower semicontinuous and Ψ′ is weakly sequentially
continuous. Let Φ be a functional on E of the form (2.2) satisfying the (PS)
condition. If there exists ρk > rk > 0 such that

(A1) αk = infu∈Zk,∥u∥=rk Φ(u) → ∞, as k → ∞;
(A2) βk = supu∈Yk,∥u∥=ρk

Φ(u) ⩽ 0,

then Φ has a sequence of critical points {uk} such that Φ(uk) → ∞.

3. Proof of Theorem 1.1
Lemma 3.1. Suppose that (V1)-(V2) and (f1)-(f2) are satisfied, then there exists
some r > 0 such that inf Φ(∂Br(0) ∩ E+) > 0.

Proof. It follows from (f1) and (f2) that, for given ε > 0, there is some constant
cε > 0 such that

|F (x, t)| ⩽ ε |t|2 + cε |t|p (3.1)
and

|f(x, t)| ⩽ ε |t|+ cε |t|p−1
. (3.2)

Then for u ∈ E+ we have

Φ(u) =
1

2
∥u∥2 −

∫
RN

F (x, u)dx

⩾ 1

2
∥u∥2 − ε |u|22 − cε |u|pp

⩾
(
1

2
− ετ2

)
∥u∥2 − τpcε ∥u∥p ,

where τ2 and τp are constants in (2.1). Let ε = 1
4τ2

. Since p > 2, we can fix some r
small enough such that

inf
u∈E+,∥u∥=r

Φ(u) > 0.

The proof is completed.

Lemma 3.2. Suppose that (V1)-(V2) and (f1)-(f3) are satisfied, then, for any k ∈
N+, there exists some R > r > 0 such that supΦ (Yk\BR(0)) ⩽ 0 , where Yk is the
subspace of E given in (2.5) and r is the constant given by Lemma 3.1.

Proof. If not, there exists a sequence {un} ⊂ Q with ∥un∥ → ∞ such that
Φ(un) ⩾ 0 for all n. Set vn = ∥un∥−1

un = v0n + v−n + λnφ, then ∥vn∥ = 1. Passing
to a subsequence, we may assume that vn ⇀ v in E, v−n ⇀ v− in E−, v0n → v0 in
E0 and λn → λ in R+. Then

0 ⩽ Φ(un)

∥un∥2
=

1

2
λ2
n − 1

2

∥∥v−n ∥∥2 − ∫
RN

F (x, un)

∥un∥2
dx ⩽ 1

2
λ2
n − 1

2

∥∥v−n ∥∥2 ,
since F (x, t) ⩾ 0 by (f3). This implies that

1

2
λ2
n ⩾ 1

2

∥∥v−n ∥∥2 .
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If v ≡ 0, then v0n → 0 and λn → 0. Hence the above inequality induces that
∥v−n ∥ → 0. Therefore, vn → 0 in E, which contradicts ∥vn∥ = 1.

If v ̸= 0, then the set Θ :=
{
x ∈ RN

∣∣ v(x) ̸= 0
}

has positive measure. Hence

un(x) = vn(x) ∥un∥ → ∞, ∀x ∈ Θ.

By (f3), for any δ > 0 there exists cδ > 0 such that

F (x, t) ⩾ cδ|t|µ − δ|t|2.

Then it follows from the Fatou’s lemma that

1

2
− c+ o(1)

∥un∥2
=

∥u+
n ∥

2 − ∥u−
n ∥

2

2 ∥un∥2
− Φ(un)

∥un∥2

=

∫
RN

F (x, un)

∥un∥
dx ⩾

∫
Θ

F (x, un)

u2
n

v2ndx

⩾
∫
Θ

(
cδ|un|µ−2 − δ

)
v2ndx → ∞. (3.3)

This is a contradiction. The proof is completed.

Lemma 3.3. Suppose that (V1)-(V2) and (f1)-(f3) are satisfied, then the (PS)c
sequence of Φ is bounded for any c ∈ R.

Proof. Let {un} be a (PS)c sequence of Φ. Suppose by contradiction that {un}
is unbounded. Passing to a subsequence, we may assume that

Φ(un) → c, ∥Φ′(un)∥ → 0 and ∥un∥ → ∞. (3.4)

Let vn = ∥un∥−1
un, then ∥vn∥ = 1. Up to a subsequence, we assume that vn ⇀ v

in E, v±n ⇀ v± in E± and v0n → v0 ∈ E0. Let θ ∈ C∞
0 (R,R) be such that 0 ⩽ θ ⩽ 1,

θ(t) = 1 for |t| ⩾ 2 and θ(t) = 0 for |t| ⩽ 1. Define

f1(x, t) = θ(t)f(x, t), f2(x, t) = (1− θ(t))f(x, t) and s = p/(p− 1).

In view of (f1) and (f2), we have that

c1|f1(x, u)|s ⩽ |u|(p−1)(s−1)|f1(x, u)| = uf1(x, u),

c1|f2(x, u)|2 ⩽ |u||f2(x, u)| = uf2(x, u),

for some c1 > 0. For n sufficient large, we obtain from (3.4) that

c+ 1 + ∥un∥ ⩾ Φ(un)−
1

2
⟨Φ′(un), un⟩

=

∫
RN

(
1

2
unf(x, un)− F (x, un)

)
dx

⩾
(
1

2
− 1

µ

)∫
RN

unf(x, un)dx

⩾ c1

(
1

2
− 1

µ

)(
|f1(x, un)|ss + |f2(x, un)|22

)
.
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It follows that

|f1(x, u)|s ⩽ c2 ∥un∥1/s ,

|f2(x, u)|2 ⩽ c2 ∥un∥1/2 ,

for n large enough and some c2 > 0. Therefore, by (2.1), (3.4) and the Hölder’s
inequality, we have

∥u+
n ∥2 = Φ′(un)u

+
n +

∫
RN

f(x, un)u
+
n dx

⩽ ∥u+
n ∥+ |u+

n |p |f1(x, un)|s + |u+
n |2 |f2(x, un)|2

⩽ ∥u+
n ∥+ c2τp

∥∥u+
n

∥∥ ∥un∥1/s + c2τ2
∥∥u+

n

∥∥ ∥un∥1/2

for n large enough. Note that 1/s < 1. Hence we can deduce that

∥∥v+n ∥∥2 =
∥u+

n ∥
2

∥un∥2
→ 0 as n → ∞.

By the similar argument, we also have

∥∥v−n ∥∥2 =
∥u−

n ∥
2

∥un∥2
→ 0 as n → ∞.

Consequently, ∥∥v0n∥∥2 = 1−
∥∥v−n ∥∥2 − ∥∥v+n ∥∥2 → 1 as n → ∞.

Therefore
∥∥v0∥∥ = 1, v0 ̸= 0, and then v ̸= 0. So the set Θ :=

{
x ∈ RN

∣∣ v(x) ̸= 0
}

has positive measure. Hence

un(x) = vn(x) ∥un∥ → ∞, ∀x ∈ Θ.

By (f3), for any δ > 0 there exists cδ > 0 such that

F (x, t) ⩾ cδ|t|µ − δ|t|2.

Then it follows from the Fatou’s lemma that

o(1) =
∥v+n ∥

2 − ∥v−n ∥
2

2
− Φ(un)

∥un∥2
=

∫
RN

F (x, un)

∥un∥
dx

⩾
∫
Θ

F (x, un)

u2
n

v2ndx ⩾
∫
Θ

(
cδ|un|µ−2 − δ

)
v2ndx → ∞.

This is impossible. Therefore {un} is bounded in E.

Lemma 3.4. Suppose that (V1)-(V2) and (f1)-(f4) are satisfied, then Φ satisfies
the (PS) condition.

Proof. Suppose {un} is a (PS)c sequence of Φ. By Lemma 3.3, {un} is bounded
in E. Hence we can assume, passing to a subsequence, that un ⇀ u in E. Set
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wn = un − u, then wn ⇀ 0 and |wn|s → 0 in Ls
loc(RN ) for s ∈ [2, 2∗). In order to

establish strong convergence, it suffices to show ∥wn∥ → 0. We claim that

f(x, un)P1,3wn

un
⇀ 0 in L2(RN ). (3.5)

Indeed, for ϕ ∈ C∞
0 (RN ), we have∫

RN

f(x, un)P1,3wn

un
ϕdx ⩽

∫
RN

(
1 + c3|un|p−1

)
|P1,3wn| |ϕ|dx

⩽
∫
RN

|P1,3wn||ϕ|dx+ c3 |ϕ|∞
∫
RN

|un|p−1|P1,3wn|dx

⩽ |P1,3wn|L2(suppφ)|ϕ|2 + c3 |ϕ|∞ |un|p−1
p |P1,3wn|Lp(suppφ)

→ 0

for some c3 > 0. Therefore, (3.5) holds.
We next adopt an argument of Liu, Su and Weth [15]. Fix some η > 0 small

enough such that (a− η, a)∩σ(S) = ∅, (b, b+ η)∩σ(S) = ∅ and f∗ < a− η. Let P1

be the projection associated with (a − η,∞), P2 associated with [b + η, a − η] and
P3 associated with (−∞, b + η). Then P1u

+ = P1u, P1u
− = 0, P3u

− = P3u and
P3u

+ = 0. Moreover, in view of (V2), we have

(a− η) |P1wn|22 ⩽ ∥P1wn∥2 and − (b+ η) |P3wn|22 ⩽ ∥P3wn∥2 . (3.6)

Also note that, since wn ⇀ 0 and the projection P2 has finite range, we obtain that
P2wn → 0.

We now prove that ∥P1wn∥ → 0 as n → ∞. Since

Φ′(un)P1wn = (P1un, P1wn)−
∫
RN

f(x, un)P1wndx → 0,

we have

0 ⩽ lim sup
n→∞

∥P1wn∥2

= lim sup
n→∞

(P1un, P1wn) = lim sup
n→∞

∫
RN

f(x, un)P1wndx. (3.7)

Let ε > 0 be arbitrary. For r ⩾ 1, it follows from (f1) that∫
|un|⩾r

f(x, un)P1wndx ⩽ 2c

∫
|un|⩾r

|un|p−1 |P1wn|dx

⩽ 2crp−2∗
∫
|un|⩾r

|un|2
∗−1 |P1wn|dx

⩽ 2crp−2∗ |un|2
∗−1

2∗ |P1wn|2∗ .

Since p < 2∗, we may fix r large enough such that∫
|un|⩾r

f(x, un)P1wndx <
ε

3
(3.8)
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for all n. By (f4) and (3.6), there exists R > 0 such that∫
|x|⩾R
|un|⩽r

f(x, un)

un
(P1wn)

2 dx ⩽ |P1wn|22 sup
|t|⩽r,|x|⩾R

f(x, t)

t

⩽ f∗ |P1wn|22 ⩽ f∗

a− η
∥P1wn∥2

for all n. Moreover, by (3.5), we have that∫
|x|⩾R
|un|⩽r

f(x, un)P1wn

un
udx <

ε

3

for n large enough. Therefore,∫
|x|⩾R
|un|⩽r

f(x, un)P1wndx =

∫
|x|⩾R
|un|⩽r

f(x, un)

un
(P1wn)

2 dx+
∫

|x|⩾R
|un|⩽r

f(x, un)

un
uP1wndx

<
f∗

a− η
∥P1wn∥2 +

ε

3
(3.9)

for n large enough. Finally, since P1wn → 0 in Ls(BR(0)) for s ∈ [2, 2∗), it follows
from (3.2) that∫

|x|⩽R
|un|⩽r

f(x, un)P1wndx ⩽
∫

|x|⩽R
|un|⩽r

|un| |P1wn|dx+ c4

∫
|x|⩽R
|un|⩽r

|un|p−1 |P1wn|dx

⩽ |un|2 |P1wn|L2(BR(0)) + c4 |un|p−1
p |P1wn|Lp(BR(0))

<
ε

3
(3.10)

for n large enough. Combining (3.7)-(3.10) we conclude that

0 ⩽ lim sup
n→∞

(
1− f∗

a− η

)
∥P1wn∥2 ⩽ ε.

Consequently, it follows from the arbitrariness of ε that ∥P1wn∥ → 0 as n → ∞.
The same goes for ∥P3wn∥ → 0. Since

o(1) = −Φ′(un)P3wn

= o(1) + ∥P3wn∥2 +
∫
RN

f(x, un)P3wndx

= o(1) + ∥P3wn∥2 +
∫
RN

f(x, un)

un
(P3wn)

2 dx+

∫
RN

f(x, un)P3wn

un
udx

⩾ o(1) + ∥P3wn∥2 ,

we obtain that ∥P3wn∥ → 0 as n → ∞. Therefore ∥wn∥ → 0 and un → u. The
lemma is proved.

Now we are ready to give the proof of Theorem 1.1.
Proof of Theorem 1.1. (Existence) Assumption (f3) implies Ψ(u) ⩾ 0 for all
u ∈ E. Since f is subcritical, it is easy to check that Ψ is weakly sequentially lower
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semicontinuous and Ψ′ is weakly sequentially continuous. Lemmas 3.1 (with k = 1,
e1 = φ) and 3.2 implies that there exist R > r > 0 such that

inf
N

Φ > 0 ⩾ sup
∂M

Φ.

According to Lemmas 3.3 and 3.4, Φ satisfies the (PS) condition. Therefore, by using
Proposition 2.1, we have that Φ possesses at least one nontrivial critical point.

(Multiplicity) Since f(x, t) is odd in t, Φ is an even functional. To use Proposition
2.2, it suffices to verify (A1) and (A2).

Let Yk and Zk defined as in (2.5). By Lemma 3.2, (A2) holds. Define `k :=
supu∈Zk,∥u∥=1 |u|p. Note that Zk ⊂ E+. Therefore, by (2.1) and (3.1) with ε =

1/4τ22 , we have

Φ(u) ⩾ 1

2
∥u∥2 − 1

4τ22
|u|22 − c5 |u|pp

⩾ 1

2
∥u∥2 − 1

4τ22
|u|22 − c5`

p
k ∥u∥

p

⩾ 1

4
∥u∥2 − c5`

p
k ∥u∥

p
.

Let rk = (2pc5`
p
k)

1/(2−p). Then, for u ∈ Zk with ∥u∥ = rk, we have

Φ(u) ⩾ 1

2

(
1

2
− 1

p

)
(2pc5`

p
k)

1/(2−p)
.

Since `k → 0 as k → ∞ by [21, Lemma 3.8] and p > 2, it follows that

βk = inf
u∈Zk,∥u∥=rk

Φ(u) → ∞.

Hence (A1) is satisfied. Therefore, Φ has infinitely many critical points, which are
solutions of problem (1.1). Theorem 1.1 is proved. □
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