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UNIFORM ISOCHRONOUS CENTER OF
HIGHER-DEGREE POLYNOMIAL
DIFFERENTIAL SYSTEMS*

Zhengxin Zhou®'

Abstract In this paper, we study the uniform isochronous center of a class
of more general higher-degree of polynomial differential systems and give the
necessary and sufficient conditions for the origin point to be a center. At
the same time, we illustrate that under some restrictions, the composition
conjecture about these differential systems is valid. As corollaries, the previous
results can easily be derived from the current conclusion.
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1. Introduction

Consider differential systems of the form

= —y+ F(z,y),
y+ F(z,y) (L1)
Y =z+G(v,y),

where F(z,y) and G(z,y) are real polynomial functions of degree n + 1 without
constant and linear terms. If every orbit in a punctured neighbourhood of O is a
nontrivial cycle then the origin point O(0,0) is said to be a center. The center-focus
problem consists in determining necessary and sufficient conditions on F(x,y) and
G(z,y) such that system (1.1) has a center at the origin. This problem has attracted
the attention of many authors. Up to now, only for quadratic systems and some
special systems the center-focus problem has been solved e.g. [2,15,17,19,23-25].
But for the more higher degree polynomial differential systems, the corresponding
results are very few.

In particular, if every cycle in a punctured neighbourhood of O has the same
period then this origin point is said to be an isochronous center. The interest in the
isochronous centers started in the XVII century with the works of [3,8,11,16] and
references therein. The isochronous phenomena appear in many physical problems
[14]. Aside from its interest in physical applications, isochronicity is strictly related
to the existence and uniqueness of solutions of some boundary value, bifurcation
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or perturbation problems. Moreover, isochronicity has a strong relationship to
stability: a periodic solution of the central region is Liapunov stable if and only
if the neighbouring periodic solutions have the same period. In literature [22], the
authors have proved that if the system (1.1) has a center at O(0, 0), then this center
is an uniform isochronous center if and only if doing a linear change of variables
and a scaling of the time it can be written as the rigid system:

' = —y+aP(z,y),
y (z,y) (1.2)

y =z +yP(z,y),

where P(z,y) = >, _, Pu(z,y), Pe(z,y) (k = 1,2,...,n) are homogeneous polyno-
mials in z and y of degree k.
In polar coordinates the system (1.2) becomes

% =rYy_ P(0)", (1.3)

where Py (6) = Pi(cos,sin8). By [2,5,23] we see that the system (1.2) has a center
at O(0,0) if and only if all the solutions r(f) of equation (1.3) near r = 0 are
periodic. In such case it is said that equation (1.3) has a center at r = 0.

Alwash and Lloyd [6,7,9] give the following simple sufficient condition for the

Abel equation

dr
w0 r(R1(0)r + Ry (0)r?) (1.4)

to have a center, where Ry (6) and R2(f) are continuous 27-periodic functions.

Theorem 1.1 ( [7,9]). If there exists a differentiable function u(6) of period 2w
such that 5 i
Ryi(0) = w/(0) R1(u(9)), R2(0) = u'(0) Ra(u(0))

for some continuous functions Ry and Rs, then the Abel equation (1.4) has a center
atr=0.

The following statement presents a generalization of Theorem 1.1.

Theorem 1.2 ( [6,28]). If there exists a differentiable function w(0) of period 2w
such that §
P(0) =W Bi(w), (i = 1,2,..,m)

for some continuous functions P; (i=1,2,...,n), then the equation (1.3) has a center
at r=0.

The condition in Theorem 1.1 (or Theorem 1.2) is called the Composition
Condition. When an Abel equation (1.2) (or (1.3)) has a center because its co-
efficients satisfy the composition condition we will say that this equation has a
Composition Center. Obviously, the composition condition is the sufficient con-
dition for » = 0 to be a center. A counterexample was presented in [9, 10] to
demonstrate that composition condition is not a necessary condition of a center.
Whether the composition condition is the necessary and sufficient conditions for
r = 0 to be a center? This problem is called Composition Conjecture, which
first appeared in [7]. What kind of differential system is this conjecture right?
Studying this problem has attracted the interest of many scholars. In [15,18,21]
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the authors have proved that for some Abel differential equations the composition
conjecture is valid. The authors of [2] studied the system (1.2) with P = P, + P,
or P = Py, + Ps,,, m is an arbitrary natural number, having polynomial commu-
tator and their centers are reversible. In [27,28] we used different methods to get
the center conditions and demonstrate that the composition conjecture is correct
for this system. In literatures [2,8,12,20,29] the authors using different methods
study the system (1.2) with P = P; + P5 + Ps, for which the composite conjecture
is correct, and analyze its global behavior. In [26,30,31], we have prove that for
system (1.2) with P = Py + Py, 4+ Pomy1, (P1 #0), (m = 2,3, ....) the composition
conjecture is valid under several restrictions conditions.

In this paper we will study when is the origin point of the more general higher
degree polynomial differential system

= -y + £C(P1($,y) + Pm(may) + Pn(xvy))a
Yy =z +y(Pi(z,y) + Pu(z,y) + Po(z,y))

(1.5)

to be an uniform isochronous center? Where Py(z,y) = >, ., pijT'y’, pij €
R(k =1,m,n), p}y+p3; # 0 and m,n are positive integers. We adopt some simple
transformations and some computational skills to reduce the amount of calculation
and obtain the center condition. As corollaries, from our new conclusions, it is not
difficult to deduce the previous results of [26,30,31]. In addition, we prove that
under several restrictions conditions the composition conjecture is correct for its
corresponding periodic differential equation:

dT‘ . . m : n

0 r(Py(cosf,sin0)r + P, (cos8,sin)r™ + P, (cosf,sin0)r").

In the following we denote

0
S :=sin0; P, = Py(cosf,sinf); P, = / Py (cosT,sinT)dr;
0

m/!

4 T
EkPj :/0 (/0 Pi(cost,sint)dt)* Pj(cos 7,sin 7)dr; CF = m,

[x] express as the integer part of x; Ef() =0, if k <.

2. Main results

For the system (1.5), when m = n or m = 1, n > 1 the center conditions has been
obtained by [27]; When m > 1, n = 2m + 1 the center-focus problem has been
discussed by [31]. In the following we will consider (1.5) with 3 < 2m + 1 <mn.

As p2o + p3; # 0, taking X = p1ox + po1y, Y = —po1= + p1oy, then the system
(1.5) becomes

X'=-Y +X(X + Pp(X,Y) + P,(X,Y)),
Y =X +Y(X 4P, (X,Y)+ P,(X,Y)),

D X—po1Y Y X
where PL(X,Y) = Pu(Pia, e, (e = m.m)
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For convenience, in the following we will discuss the center-focus problem of the
system (1.5) in the form of

' =~y +z(z + Pnlz,y) + Pulz,y)), (2.1)

Y =z +y(z+ Pu(z,y) + Paulz,y)),

where 3 < 2m 41 < n, Py(z,y) = Ziﬂzkpijxiyj, pij € R, (k =m,n), m and n
are positive integers.
In polar coordinates the system (2.1) becomes

d
d—; =r(rcos@ + Py,r™ + P,r"). (2.2)
The origin point (0,0) is a center of system (2.1) if and only if all the solutions of

equation (2.2) near r = 0 are 27 periodic [2].

Lemma 2.1. If
27

SkP,do =0(k=0,1,2,..,m),
0

then
l ‘ l )
Pro=cos0Y XiS¥ ' m=2l; Py =cosf» A1 ST, m=21+1, (23)

i=1 i=0
where \; (1 =0,1,2,...,m) are real numbers and

(=571

Am = Z (—1)"p2is1 m—1-2i- (2.4)
i=0

Proof. In the Lemma 3.4 of [27] taking P; = cosf which implies that the equality
(2.3) is valid and

I
Pu(z,y)= Y pyz'y’ =2 di® '@+ ) m =2l
itj=2l i=1
!
Pr(z,y) = Z pia'y’ = SCZ Aoit1y” (% +y%) 7 m =20 4 1.
i+j=21+1 =0

Equating the corresponding coefficients of the same power of z,y, we obtain

-1

Az = Z(*l)ipmurl 2(1—i)—1, M = 21;
i=0
!

Aoiy1 = Z(*l)ipwrl 231—i), m = 2l + 1.
i=0

Therefore, the conclusion of the present lemma is valid. O
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To keep the statement of the following theorem simple, we first give some ex-
pressions to be used below.

d() =€y — ].7 dk = ClljerfQ, € — Cllj+n72, (k = 1,27 ...... )
A
O = dj —=—
m

e (k=0,1,2,....,m—1),

[%]-‘rl m+k—jm

A )
_ m War
Omtk = m(dm+k + J; ; diCr 14
X Z 51‘161‘2 "'6ij)7(k:071>27~~)'
i1+io+...+ij=m+k—jm—i
!
Piim = €mir+ Y Sier_i(n—m—2i+1), 1 =0,1,2,...,m—1), (2.5)
i=0
U2m+l - e27n+l + ’3/71n+l + éll + ﬁll—nu (l = 07 1a 27 sy T — 2m)7 (26)
A A
A1 1 2 m 22 2 m
=T 11 -T B m =Tl ———m],
Vi+m l+m[ ] Hm[jlm—!—Sl _|_Z-1] Yi+ I+ []1m+51 i
. A A
1 m ~1 m ~2
' DA -7 . 7
gl l[j2m+82+i2] Yitm l[m+j2m+52+i1 +i2] Yitm
N A N A
2 m ~ 3 m ~2
=T S . L mo =7 - . ] mo
g l[32m+32+12] Vigm: & l[m+j2m+82+21 +12] Tir
~ )\m = >\m 2
M = —Nom[————] - & = Aioml= . —]- &
Jsm+ s3 +13 Jom —+ Jg3m + S2 + 83 + 12 + 13
Am A
- Al—m[ - - - : - ] : £l3>
(1 + g2+ ja)m + sz + s3 + i1 + iz + i3

2+ (L] 2m4l—jim

Tl = Y > Gl > GriBry - br,

J1=1 i1=0 r1+r2+...+rj1:2m+l—j1m—i1
2+ (L] 2m4l—jim I+2m—j1m—iy
2 E E d. O E ) )
FH—m = JldnCm+1+z‘1 Cl+2m—jim—i1—si
j1:1 i1:0 81:0

X Z 57'1 67'2 e 57‘]'171;

ritre+...+ri —1=51

1+[#] l+m—jam l+m—jom—ia
. E . E J2 § :
T J2 di?cm-i'l-i-iz E : Opy Oy - o - 5Tj2—17
j2:1 i2:0 52:0 T1+T2+~..+Tj271:\92
] I—jsm ) l—jsm—is
. . i J3 N
Memi=> s 3 dyCi s Y 3 Sy - Oy .
Jjs3=1 i3=0 s3=0 Ti1+r2+...+Tj;_1=53

Theorem 2.1. Suppose that [[;_, wi # 0, then r =0 is a center of (2.2), if and

only if ,
S'P,df =0(i=0,1,2,..,m), (2.7)
0
27
SkP,do =0(k=0,1,2,..,n), (2.8)
0
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where p (k=m,m+1,...,n) are expressed by (2.5) and (2.6).

Proof. Taking p = 75, the equation (2.2) becomes
dp _ o m+1 m—1 n+1 n—1
0P (L+7rS)" Py +p" (1 +7rS)" " P,. (2.9)

Applying the Langrange-Biirman formula [1] we have

(1+79)" 71+Z S,

7j=1

thus, the equation (2.9) can be written as

dp

d9 =P, Zd pm+k+15k+P Ze pn+k+15k (210)

k=0

where dy = ¢g = 1, di, = C§+m_2, e = C,’j+n_2, (k =1,2,..... ). Therefore, the
r = 0 is a center of (2.2), if and only if all the solutions of equation (2.10) near
p =0 are 2r— periodic [2].

Let p(6, ¢) be the solution of (2.10) such that p(0,¢) = ¢(0 < ¢ < 1). We write

p(0,¢c) =c Z ar(0)c",
k=0

where ao(0) = 1 and ax(0) = 0 for £ > 1. The p = 0 is a center of (2.10) if and
only if p(0 + 2m,¢) = p(0,¢), i.e., ag(2m) =1, ax(27) =0(k =1,2,3,...) [7].
Substituting p(6, ¢) into (2.10) we obtain

e ai(b)c" = Pn desk Z O™ 4 P Y St S a0y
=0 = k=0 =0
(2.11)
Equating the corresponding coefficients of ¢* of (2.11) yields
ap(0)=1,4a;(0) =0, (1 =1,2,....m—1).
Rewriting p(0, ¢) as following
=c(l+c™h), h =Y hi(0)c',h;(0) =0, (i =0,1,2....).
i=0
Substituting it into (2.10) we get
m+1+k
Zh’ k= mdec’“Sk > ke
k=0 k=0 j=0
n+k+1 4
+ P, Zekcn mARGE N W™ b (0) = 0(k=0,1,2,..).
k=0 7=0

(2.12)
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Equating the corresponding coefficients of c* of the equation (2.12) we obtain
= dpS* Py, hi(0) = 0 (k = o, 1,2,...,m—1),
h' —PCHho—i-Pd S™, hy,(0) =0.
Solving these equations we get

hk:dkSkPma(k:O71a2a _1)7

1
By = d,, S Pm+a0,ao_%1ﬂ.

As di #0(k=0,1,2....), from hy(27) =0(k =0,1,2,...,m) follow that
2w
/ S*P,df=0(k=0,1,2,...,m),
0

i.e., the condition (2.7) is a necessary condition for p = 0 to be a center. By Lemma
2.1 which implies that

m 0 m
- Ak
P, = GE:)\ Sk I,Pm:/Pm(w:E:—Sk, 2.13
COS £ k 0 s k ( )

where \;(k = 1,2,...,m) are real numbers and A, is expressed by (2.4). Thus hy
is a polynomial in S of degree m + k£ and

p=0kS™E 4 (k=0,1,2,...,m) (2.14)
Am Am
5k :dkm, (k:O,l,Z,...,mfl), 57" = %(d7n+071n+1d050),

here and below the parts omitted indicate the parts with a lower degree than the
first item.

Equating the corresponding coefficients of ¢™+*

of the equation (2.12) we obtain

[,]fL]+1 m-+k—jm

Wi =PmdmxS™ 4+ Py > Y diS'CY
j=1 1=0

x > hishiy - iy (k=1,2,.,n—2m —1).
t1t+iz+... +ij=m+k—jm—i

Solving these equations we get
Nonake = Ak S™E P, + g, (k=1,2,....,.n—2m —1),
where

+1 m-+k—jm

o = Z Z diC > Sihihiy - hi, Py (2.15)

11+12++112m+k7]m71

From this we see that A+ is a polynomial in S of degree 2m + k and

Pk = Ok sin®?™ R0+ (k=1,2,...,n—2m — 1), (2.16)
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where

[E£]+1 mtk—jm
Am

Ok = 5t (At ooy Ay, > §iyBiy+65)-
j=1 i=0 i1+iot...+ij=mtk—jim—i
(2.17)

Equating the corresponding coefficients of ¢~ of the equation (2.12) we
obtain

! =P,e;S' + dpy_ iy SVHP,,

n—m-+l
[%W]nfm+l7jm
gl A A
+Pn Y > diS'Cl L > hishiy -
j=1 i=0 i1+ig4...Aij=n—m+l—jm—i

(1=0,1,2,....m—1),
solving these equations we get
a1 = e S'P, + 5i(S), (1=0,1,2,...,m — 1), (2.18)

where
Bi(S) = dp— 1S Py + Qn—2mtt = Spem 1 S" T+

Qp—om+i and 0, _,4y are obtained respectively by (2.15) and (2.17) taking k =
n—2m+1. As ) # 0, by (2.18) we see that if hy,_p4i(27) = 0 then

27
S'P,do =0, (1=0,1,2,....,m —1). (2.19)
0

Equating the corresponding coefficients of ¢"*! of equation (2.12) we obtain

l
M1 =PaemitS™ T+ Py Y eiS'Cp iy yihisi + doyi P S
=0
(2] nti—jm ,
+Pn Y > diSIC > hishig -+ - hi,
j=1 =0 i1 +iot...Ai=n+l—jm—i
(1=0,1,2,..,m —1),

solving these equations we obtain
thrl - €m+lsm+lpn + /Berl + Y, (l = 07 17 27 ey M — 1)7

where

l l
N=Pn> €S CpiyyidiiS" P+ P Y diS'Cly 1y se1iST Py,
i=0 i=0
1 l 0
nM= Z diel—z’c;mﬂﬂsipm St=ip, + Z diel—i(cvlri-l-i-l—i - Cvln-‘rl-‘ri)SiPmSl_iPn
=0 1=0
_ ,%1 Sm—i—lpn + ,A},l2Si+mSl—iPn’
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l
—m ‘H 22 1 1
[n+l n+l ]m
Bt = (dnti+ Z Z diC)y 1y > 81y 8y -+ 85, )" Py + ..

i1+ig+...Fij=n+l—jm—i
_ 5 +lSn+m+l +
= 0p, .

.oy

where d,,4; can be obtained by (2.17) taking k = n — m + {. Thus, if h,4;(27) = 0,
then piim fo" S™H P,df = 0, where

l

Witm = €mil + Z&el_i(n —-—m—-2i+1), (1=0,1,2,....,m—1).
i=0

By the assumptions, we have ., # 0, thus

27
/ SmHPp.dd =0, (1=0,1,2,...,m —1). (2.21)
0

Equating the corresponding coefficients of ¢"+™*+! of equation (2.12) we obtain

2+[%] 2m—+l—jm
/ _ 2m+1 E : i ]
hn+m+l —PneZerlS mt + Pn Z ei‘sﬂcn—&-l—i—i

=1 i=0

x E hilhiz C hij + dn+m+lsn+m+lpm
i1+ig+...Fij=2m-+l—jm—i

1+[n;:l In4l+m— —jm

+ Py, Z Z d;S'C L Z hiyhiy -+ - By,

i1+io+...Fij=n+l+m—jm—i
(l:0,1,2,...,n—2m).

Rewriting the above equations as the form of

2+[£) 12t
;z+m+l ZPn€2m+l52m+l + Z I + dn+m+l5n+m+lpm + Z K;
j=1 j=
(1=0,1,2,....,n — 2m), (2.22)
where
2m—+l—jm .
I] = Pn Z eiSZCi-',-l-',-i Z hil hiz e hlj
i=0 i14io+t...Hij=2m+l—jm—i
When I =n — 2m,
ml1

I

=

fCl_HPP +Z€Z n+1+76m+l ZSQerlP 4.
1=0
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When I < n —2m,

m+l
1 2 l
= Z ei0n+1+i 5m+l_iS m+ P, + ...
=0
For 7 > 1,
2m+l—jm
L= Y eC) > 8iy0iy -+ 05, S*™H P, +
J 1~n+4141 11 Y12 15 n ceey
=0 i1+io+...Fiy=2m+l—jm—i

where the parts omitted represent these items of S*¥P,, (k < 2m +1).

Rewriting
+H] 2+ %] el
Z Z Ki+ Y Kj=L+Ls.
j=1 = J=3+[%]

As2+ L <j=3+ [l]§3+%,n+l—|—m—jm—i<n—m—i,thusbythe

m
above we get

1[4
> K
j=3+[#]

1+[n+L] n+l+m—jm

= > Z d;S'CY > hiyhig = i, Py

j= 3+[ ] i1+i2+...Fij=ntl+m—jm—i

1+["+l]n+l+m jm

= > Z diCo > 83y 8y - - - 0, ST 4L

j= 34&%] i1+ig+...Fij=ntl+m—jm—i
2+[£]
Li=)Y K
Jj=1
2+[%] n+l+m—jm
_ i g B .
= E d;S Cm+1+i E hihiy -+ hi, P,
Jj=1 =0 i1+iz+...Fij=ntl+m—jm—i
2+[#] l+2m—jm
— Z . . oo hs
= P, E diS'C) 1y E hi, i, hi;
j=1 i1+io+...+ij=n+l+m—jm—i
2+([L n+l+m—jm
i g
+ > P S dS'C S hiyhiy -+ h,
j=1 i=l+2m—jm—+1 21+i2+...+ij:n+l+m—jm—i
- Kjl + KJza
where

2+% n-+l+m—jm

=> > Al > 85, 0iy - -+ 03, S"HEM P

=1 i=l4+2m—j3m+1 i1+io+...+ij=n+l+m—jm—i
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2+[#] l4+2m—jm
— : 1
> iPm Z diS i1y
=1
+2m—jm—i
X ( § (el+2mfjm7ifs Sl+2mfjm7ifs Pn + 52m+lfjm7ifs)
s=0
l+m—jm—1 l—jm—i
X Z Vitm—jm—i—s + Z §i—jm—i—s)
s=0 s=0

X Z hi1hi2 cee h¢j71

i1+i2+...+i7‘,j7125

2+[ -] 14+2m— jm
=Y 2 G
j=1
l+2m—jm—i
X ( Z (el+2m—jm—i—s Sl+2m—jm—1’—s Pn + /62m+l—jm—i—s)
s=0
l+m—jm—i l—jm—i
XY Mmegmeics T Y, &mjmeis)
s=0 s=0
x > 85y 8y -+ 05, SUTIMTE P

inint i, =5

Remark: In the above formula and below, when j =1,

l+2m—jm—1i
E €l42m—jm—i—s E 03y 0iy ++ 04y
s=0 il+i2+---+iij71:‘9

:el+2mfjm7ifs|j:1,520 = €l+m—i-
Solving the equation (2.22) we get

hintntt = €2m15? Py + Bomgt + Ymtt + &+ Miem, (1=0,1,2,...,n —2m — 1),
(2.23)

_ 1 —
h2n7m = enSnPn + Bn + Yn—m + §n72m + Mn—3m + §Crlz+1pr%7 (224)

where 7; = 0(i < 0), Bom+i, Ym+i, & and 7m—,, are the solutions, respectively, of
the following equations.

2+[1 l2m+1—jim

’Ym+l Z Z (eil 7jll+1+1'1 Z 57’1 (5 . 5r]1 Szm—HP

i1=0 7‘1+7‘2+...+Tj1:2m+lfj1m7i1

I+2m—jim—ii

+j1d11 Cm+1+11 E €l42m—j1m—iy—s1 E 67"1 51"2 s 5rj1_1

s1=0 rit+ret...+ri —1=8

x S(jl—l)m+sl+i1 P, Sl+2m—jim—ii—s1 Pn)

:Fll-s-m[SQm—HPn} + Flz-i-m [S(jl—l)m+51+i1 PmSl+2m—j1m—i1—sl Pn]’ (2.25)
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where
24+ [L] 2mtl—jim
Dl = > > eCl. > I S
Jji=1 i1=0 r1+re+.. 1 =2mtl—jim—i;
2+[5] 2mti—jim I+2m—j1m—iy
Fl2+m = Z Z Jld21cm+1+11 Z €lt2m—jim—ii—s
s1=0

j1=1 11=0

X > I A S

ritret..4ry —1=81

Solving the equation (2.25) we obtain

Al /\2 s , - e 7
Vol = '7[+ms2l+mpn + ,7i+m5]1ﬂ1+31+21 Sl+2m—jim—s1—iy Pn’ (226)
where
’5/1 - Fl — F2 )\77” 72 — FQ )\77”
I+m I+m l+m]1m+ s+ i1 s l+m l+m]1m+ PRNIN
1+[L] 14m—jam l+m—7jom—is
Z .72 Z dzg +1+22 Z Yi+m—jom—is—ss Z
J2=1 i2=0 s2=0 T1+r2t+.F Ty —1=82

Op Oy - 57«,-2,1S(j2’1)m“2“2Pm — Tl[S(jg71)m+52+i2Pm%er_jzm_h_SQ]’
here

1+ 72] l+m—jam l+m—jam—ig

Z J2 Z dZ2CWL+1+zz Z Z Oy Oy + o+ Oy

Jj2=1 i2=0 s2=0 7‘1+7‘2+..4+T‘j2,1:s2

Solving this equation we get

é‘l :é‘l152m+lpn + 5125327714—824‘12 52m+lfj2m7827i2 Pn

4 é3sj1m+j2m+81+52+i1+i2 §2m+l—jim—jam—si—s2—i1—i2 P, (227)
where
S g2 8 2y Am 1
él - €l £l7 fl - lj2m+$2+7, 'Yler Jam—ig—Sa)

. A
3 _ T m
{i (i Fom=i2=82 G 4 Gom + 81 + 82 + 4y +d2

FAyijerfjgmfirzfm (j = 1,2) are expressed by (2.20) replace [ with [+m—jom—is—ss.

M = Al_m[S(j371)m+83+i3mel_jsm_,;s_s3], (l=m,m+1,...,n—2m)

(] l—jam l—j3m—i3
Al*m E E : d130m+1+13 E : E 6T1 67‘2 e 6Tj3—1'
js=1 i3=0 s3=0 ritret...Frjz_1=s3

Solving this equation we get
2_mSj3m+S3+is Sl+2m—jsm—iz—ss P

M—m :ﬁll—mSQm-HPn + ﬁl
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+ ﬁ?_mSsz+J3m+S2+83+lz+ls S2m+lfj3mfj2m75275372'272'3 Pn

+ﬁl‘limS(jlﬂzﬂs)"l‘i‘81+82+83+’il+’i2-‘t"i3 52m+l—(j1+j2+j3)m—sl—52—53—i1 _i2_i3Pna

(2.28)
here
A .

~2 _ m 1
[ —— Al—mm&—jgm—ig—ss,

. N )\
.3 2 m

A2

i = Mot jom—ia—as Jam + jsm + s + s + iz + i3’

Am
J1+j2+J3)m—+ 51+ so+ 83+ 41 +io i3’
M+ D+ Dy + T = 0.

Bomir = Appm1S™ T Py + Ko + Lo

~4

F3
M—m = Al—mgl—jgm—ig—% (

2+[L] 2m+l—jm I+2m—jm—i
+ Z Z jdic}]n_;,_l_;,_l' Z Bl+2mfjm7ifs
j=1 i=0 s=0
- L
X Z 80 0iy -+ 04, SU—Dmtstip

trtizt..tii; =5

which implies that (B2,,+; is a function on sin6, so it is 27 periodic. Thus, from
(2.23) to (2.28) we deduce that if hyymy1(27) = 0, then
2m
Ham+i S2mHp a9 =0, (1=0,1,2,...,n — 2m),
0
where fiom+1 = €am-41 —i—&}nﬂ —1—511 +7t_,,, by the assumptions we see that pio,,+; # 0,
thus

27
/ S2mH P dp = 0, (1=0,1,2,...,n — 2m). (2.29)
0

By (2.19) and (2.21) and (2.29) we see that under the assumptions of the present
theorem, the (2.7) and (2.8) are the necessary conditions for p = 0 to be a center of
(2.10). Therefore, the necessity has been proved. On the other hand, by Lemma 2.1,
if the conditions (2.7) and (2.8) are satisfied, then P, = cos > 1", \;sin' 16, P, =
cos@Z?Zl G sin= 10, A;, ¢; are real numbers. By Theorem 1.2 we see that p = 0
is a center and composition center of (2.10), thus the origin point is an uniform
isochronous center of system (2.1), this means that the sufficiency is proved.

In summary, the proof is complete. O

Remark 2.1. Duo to the definite integral from 0 to 27 of an odd degree polynomial
in sinf and cos@ is equal to zero, thus, the assumptions of Theorem 2.1 can be
changed to [];_,, m # 0 and the equalities (2.7) and (2.8) are valid when k and n,
i and m, are positive integers with the same parity.

Corollary 2.1. If A\, = 0, then r = 0 is a center of (2.2), if and only if , (2.7)
and (2.8) are satisfied.

Proof. By the proof of Theorem 2.1 we see that if A\,, = 0, then d; = 0, (k =

0,1,2,...) and ux = e = C§+n_2 #0, (k=m,m+1,...,n). Therefore, by the above

theorem implies that the result of the present corollary is valid. O
In Theorem 2.1 taking n = 2m + 1 we deduce the following corollary.
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Corollary 2.2. (1). If m = 2k, k is a positive integer, n = 2m+1 and Hfik Hoit1 7
0, then r =0 is a center of (2.2), if and only if

27 27
S%p,,df =0, (i=0,1,2,.., k), SEHPp A9 =0, (j=0,1,2,...,2k).
0 0

(2). If m = 2k + 1,k is a positive integer, n = 2m + 1 and szi:l p2iv1 # 0,
then r = 0 is a center of (2.2), if and only if

2 27
/ S*HP,,do =0, (i:o,l,...,k),/ S¥HPdo =0, (j =0,1,2,...,2k + 1).
0 O

Where

l
figm = emsr+ Y Sier—i(m+1+1—2i), (1=0,1,2,...,m = 1);

1=0
m+1 2
dmt1-i . o m>+m+1
a1 = Camet +dm 3 g B AN, T

d():e():l, dk:CIICCJmeQ, €k:C]]§+2m717 (]{3:1,2,37 ...... );
)\m. )\m
O = dkm, (k=0,1,2,....m —1); 6, = %(dm + C} 1 1dodo);
1 [252]

Am ,
Om+1 = 5 n 3 g (dma1 + D diCh 1 yib1-0); Am = (=1)'P2it1 m—1-2i-
i=0 i=0

Proof. In (2.24) takingn =2m+1and I =n—2m =1 we get

m4+1 1
At = Z €i0m+1-iCamar; + ZeiC§m+2+i Z 03, s
i=0 i=0 i1 tin=1—1i
m—+1
Amd; Am Am
- T i1 iC} —2doC2 (6 die
; m+ie +1-iChnp144 0Ch 11 ( oery +o01e U ———] +1)
A
—2d,C?, 6 m
1042 0602m+1’
1 . .
1 1 9 m-+1+1 m-—+2—2
= —doC A d;e1—;
& = i L b )
3m+2
—dpegd Ct N2 —— —
0€00 Ym+2 "m(2m+ 1)
Then
H2m+1 =€2m+1 + Vi1 + 5}
m—+1
=C2m+1 + Z €i (Sm+1 1C2m+2+z + Zelc2m+2+z Z 6i16i2
=0 =0 i14t2=1—1
m+1
Amd; 1 Am Am
_ Z o ,L-em“’l—icm-i-l-l-l 2d00m+1(5061 om + d1e €o DY 1)
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2
—2d1cm+250€02 T:—l
m+1-+1 m-+2—-2
(m+i)(2m+i) m(m+i)

—doCL 122, Zdel it )

3m + 2
~dyeod, L o2, T2
000 ¥ m+-2 Tm(2m+ 1)
m+1
Amd;i (5-+5m—4m?) ,
=eam+1+Y (Comiosi€iOmi1—i— 14 €mal—i) A7,
; 2m+2+ mi +1+ m(2m + 1)
m+1

A1 d;
=€am+1+ Am Z #C2m+2+zel _i_icin—‘rl—&-iem-‘rl—i)
i=0

Y m2+m+1
m m
m+1

2
m+1 i o m +m+1
+ E AN ———.
=Camt1+ Am 2m+1 — Zie; A m

Thus, using Theorem 2.1 we see that the conclusion of the present corollary is
valid. O

Remark 2.2. Although, in the literature [31] the center conditions have been ob-
tained. Obviously, the statement of this corollary is much more concise and beau-
tiful than the Theorem 3.1 of [31].

Corollary 2.3. If (30 + 13X2)(84 + 113Xy + 21)\3) # 0, then the origin point of
system

v =—y+z(x+ Pz,y) + Ps(z,y)),
y =z +y(x+ Pz, y) + Ps(z,y))

is a center if and only if
2m ) 2m )
/ S%Pydh =0, (i =0,1), / S#HLpidh =0, (j =0,1,2)
0 0

where Ao = p11.

Proof. When m = 2 and n = 5, by (2.4) we have Ay = p1;. Using Corollary 2.2
and calculating we get

2
s = 5 (30 + 132), pi5 = 284+ 113)a +2113),

thus the present corollary is valid. O

Corollary 2.4. If (42+ X3)(105+23X3)(2970+ 21093 + 65A3) # 0, then the origin
point of system

' = —y+a(x+ Ps(z,y) + Pr(z,y)),
y =x+y(x+ Ps(z,y) + Pr(x,y))
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s a center if and only if

- 27
S Py = 0, (i = 0, 1), S¥HP.de =0, (j =0,1,2,3)
0 0

where A3 = p12 — P3o-
Proof. When m = 3, by (2.4) we get A3 = p12 — p3o. In Corollary 2.2 taking

m = 3, n =7 and calculating we get

4 12 4
Hs = 5 (424 X3), i = (105 + 2323), 7 = (2970 + 2109A + 65)3).

By Corollary 2.2 which implies that the present corollary is valid. O

Remark 2.3. In Corollary 2.3 taking Ay = 2u which implies the Theorem 3.1
of [26]. In Corollary 2.4 taking A3 = 34 we deduce that the Theorem 3.1 of [26] is
valid.
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