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Abstract In this paper, the global dynamics and existence of positive peri-
odic solutions in a general delayed nonautonomous chemostat model are in-
vestigated. The positivity and ultimate boundedness of solutions are firstly
obtained. The sufficient conditions on the uniform persistence and strong per-
sistence of solutions are established. Furthermore, the criterion on the global
attractivity of trivial solution is also established. As the applications of main
results, the periodic delayed chemostat model is discussed, and the necessary
and sufficient criteria on the existence of positive periodic solutions, and uni-
form persistence and extinction of microorganism species are obtained. Lastly,
the numerical examples are presented to illustrate the main conclusions.
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1. Introduction
The chemostat is an experimental device invented in the 1950s, first used by mi-
crobiologists to study the growth of a given species of microorganisms, its usage
greatly diversified with the time going on (see [26, 27, 33]). It is a standard tool
for microbiologists to study relationships between microbial growth and environ-
ment parameters, and it is also the focus of great interest of theoretical ecology
and mathematical ecology (see [10, 15, 38, 43] and the references cited therein). It
is also used nowadays in analysis of antibiotic (see [18]) and to study recombinant
problems related to genetically altered microorganisms (see [12,20]).

It is precisely because of its importance that many scholars study the dynamical
properties of chemostats by establishing dynamical models of differential equations,
including the nonnegative boundedness of solutions, the extinction and persistence
of microorganisms (see [7, 21, 29]), the stability of equilibrium (see [30, 31]), the
existence of periodic solutions (see [1, 2]), the occurrence of bifurcations (see [32])
and the dynamical complexity (see [8, 9, 16,41]), etc.
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We all know that in autonomous chemostat models, the parameters, input and
output are all constants. However, the chemostat is a dynamic system with contin-
uous material inputs and outputs, thus simulating the open system characteristics
and temporal continuity of nature (see [33]). On the other hand, in the field of
ecology the chemostat is often viewed as a model of a simple lake system, of the
wastewater treatment process, or of biological waste decomposition (see [6,17]). In
the field of environment, various factors such as climate and environment change
dynamically, making it impossible for the parameters, input and output of the
model to remain constant and change over time, which are more properly charac-
terized by nonautonomous models (see [4,14,25]). If only seasonal periodic changes
are considered, then the dynamics of chemostats are studied using periodic mod-
els (see [1, 2]). Moreover, when using chemostat models to study the growth of
phytoplankton(see [29, 40]) and the cultivation of microorganisms in natural lakes
(see [5,15,43]), the results obtained in a time-fluctuating environment can better ex-
plain the population dynamics. On this account, Rehim and Teng in [28] considered
the following single-species nonautonomous chemostat model:


ds(t)

dt
=a(t)− b(t)s(t)− x(t)P (t, s(t))

dx(t)

dt
=x(t)(−d(t) +Q(t, s(t))).

(1.1)

A series of interesting criteria on persistence, average persistence and extinction of
solutions were established.

It is generally agreed that time delay can have a considerable impact on the
nature of the ecosystem. In fact, in population models it may well become neces-
sary to have lags, such as a generation lag coming after a lag of the kind considered
in the Volterra model (see [22]). Without exception, the influence of time delay is
inevitable in the chemostat model. Because microorganisms cannot immediately
convert into their own biomass after absorbing nutrients, but there is a time delay.
Therefore, the chemostat model with time delay can more clearly show that the
absorption of nutrients by microorganisms is not instantaneous. Moreover, consid-
ering the time delay in the chemostat model can better explain some non-stationary
situations, such as periodic fluctuations and instability. In order to better simulate
these actual natural phenomena, many scholars incorporated time delay into the
model to study its consequences (see [1, 3, 11, 13, 19, 23, 24, 37, 39, 42]). Especially,
Amster et al. in [1] studied a single-species chemostat model with periodic nutrient
supply and delay in the growth as follows:


ds(t)

dt
=Ds0(t)−Ds(t)− γ−1µ(s(t))x(t)

dx(t)

dt
=x(t)(µ(s(t− τ))−D).

(1.2)

The necessary and sufficient conditions for the existence of positive periodic solu-
tion were established by constructing Poincare type mapping and using Whyburn’s
lemma and Leray-Schauder’s degree. Further, the criterion on the extinction of
microorganism species x is also obtained.

Motivated by above work, in this article we propose a nonautonomous chemostat



158 N. Ye, L. Zhang & Z. Teng

model with general delay in microorganism growth as follows:
ds(t)

dt
=a(t)− b(t)s(t)− x(t)P (t, s(t))

dx(t)

dt
=x(t)(−d(t) +Q(t, st)),

(1.3)

where s(t) and x(t) are the concentrations of nutrient and microorganism when time
is t, respectively, and st = s(t+θ) with θ ∈ [−τ, 0]. P (t, s) is the per capita nutrient
absorption rate of the microorganism at the concentration s and time t. Q(t, st)
is the growth rate of the microorganism at time t, which shows that the growth of
microorganisms in biomass depends on the amounts of the nutrient consumed in
whole interval [t − τ, t], where τ ≥ 0 is a constant. Functions a(t), b(t) and d(t)
denote, respectively, the input nutrient concentration, the dilution rate and the
removal rate of microorganism.

We can easily see that the following delayed nonautonomous chemostat models
are special cases of model (1.3):

ds(t)

dt
=a(t)− b(t)s(t)− x(t)P (t, s(t))

dx(t)

dt
=x(t)(−d(t) +Q(t, s(t− τ(t))),

(1.4)

where τ(t) is nonnegatively bounded and continuously differentiable for all t ≥ 0
and satisfies maxt≥0 τ

′(t) < 1, and
ds(t)

dt
=a(t)− b(t)s(t)− x(t)P (t, s(t))

dx(t)

dt
=x(t)(−d(t) +Q(t,

∫ 0

−τ
c(t, θ)s(t+ θ)dθ)),

(1.5)

where c(t, θ) is defined and nonnegative for all (t, θ) ∈ R+× [−τ, 0], and continuous
for t ∈ R+ and integrable for θ ∈ [−τ, 0] with

∫ 0

−τ c(t, θ)dθ ≡ 1. It is clear that
model (1.2) is a special case of model (1.4).

The purpose of this paper is to investigate the global dynamic behavior and
existence of positive periodic solutions of model (1.3). We will establish a series
criteria on the ultimate boundedness of solutions, the uniform persistence and strong
persistence of nutrient and microorganism, and the global attractivity of trivial
solution. Particularly, when model (1.3) degrades into the periodic case, we will
further establish the necessary and sufficient conditions for the existence of positive
periodic solutions and, the uniform persistence and extinction of microorganism,
respectively. The main methods used in this research are the differential inequality
principle, the inequalities analysis techniques and the reduction to absurdity.

This paper is organized as follows. In Section 2, as the preliminaries, we first
introduce some basic assumptions for model (1.3). Then, some useful lemmas are
given, and the positivity of solutions for model (1.3) with positive initial values is
proved. Section 3 is devoted to demonstrate that the solutions of model (1.3) are
ultimately bounded. In Section 4, the sufficient conditions on the uniform persis-
tence and strong persistence of nutrient and microorganism are stated and proved.
In Section 5, a criterion on the global attractivity of trivial solution of microorgan-
isms vanishing is established. In allusion to time-periodic model (1.3), the necessary
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and sufficient conditions for the existence of positive periodic solutions, the uniform
persistence and extinction of microorganism are stated in Section 6, respectively.
In Section 7, the numerical experiments are presented to illustrate the main con-
clusions established in this paper. Finally, in Section 8, a brief conclusion is given,
and some new interesting problems are proposed for the future research.

2. Preliminaries
We denote R+ = [0,∞), R2

+ = R+ × R+ and by C = C([−τ, 0], R) the Banach
space of real valued continuous functions ϕ defined in [−τ, 0] with the supreme
norm ∥ϕ∥ = supθ∈[−τ,0] |ϕ(θ)|, and its positive cone as C+ = C([−τ, 0], R+). For
any ϕ1, ϕ2 ∈ C+, we define ϕ1 > ϕ2 if ϕ1(s) ≥ ϕ2(s), and ϕ1(s) ̸≡ ϕ2(s) for any
s ∈ [−τ, 0].

The initial condition for any solution of model (1.3) is as follows:

s(θ) = ϕ(θ), x(0) = x0 for all θ ∈ [−τ, 0], (2.1)

where ϕ ∈ C+, ϕ(0) > 0 and x0 > 0.
We introduce the following assumptions for model (1.3).
(A1) a(t), b(t) and d(t) are bounded continuous functions defined for all t ≥

0, and a(t) ≥ 0 for t ≥ 0. There are constants ωi > 0 (i = 1, 2) such that
lim inft→∞

∫ t+ω1

t
b(ξ)dξ > 0 and lim inft→∞

∫ t+ω2

t
d(ξ)dξ > 0.

(A2) P (t, s) and Q(t, ϕ) are continuous functions for (t, s) ∈ R2
+ and (t, ϕ) ∈

R+×C+, respectively. P (t, 0) = Q(t, 0) ≡ 0 for any t ≥ 0. For any positive constant
H there exists a K = K(H) > 0 such that |P (t, s1)−P (t, s2)| ≤ K|s1 − s2| for any
(t, si) ∈ R2

+ with 0 ≤ si ≤ H (i = 1, 2) and |Q(t, ϕ1) − Q(t, ϕ2)| ≤ K|ϕ1 − ϕ2| for
any (t, ϕi) ∈ R+ × C+ with |ϕi| ≤ H (i = 1, 2).

(A3) For any s > 0, lim inft→∞ P (t, s) > 0. For any t ≥ 0, P (t, s) is nonde-
creasing for s ∈ R+, and Q(t, ϕ1) ≤ Q(t, ϕ2) for any ϕ1, ϕ2 ∈ C+ with ϕ1 ≤ ϕ2.

(A4) For any constants H > β > 0 there exists a continuous function h(t)

defined for t ≥ 0 satisfying lim inft→∞
∫ t+α
t

h(ξ)dξ > 0 for some constant α > 0
such that for any ϕ1, ϕ2 ∈ C+ with ϕi ≤ H (i = 1, 2) and ϕ1 − ϕ2 ≥ β, one has
Q(t, ϕ1)−Q(t, ϕ2) ≥ h(t) for any t ≥ 0.

Remark 2.1. Assumptions (A1) and (A2) are fundamental. The Lipschitz condi-
tions of P (t, s) and Q(t, ϕ) are given to assure the existence, uniqueness and con-
tinuability of solutions of model (1.3). For assumption (A3), P (t, s) is increasing
for s ≥ 0 to show that the increase of nutrient s will result in that microorganism
x acquires more many nutrient. Q(t, ϕ) is increasing for ϕ ≥ 0 to show that the
increase of nutrient s will make that microorganism x acquires greater growth. The
condition lim inft→∞ P (t, s) > 0 for any s > 0 will be used in the proof of ultimate
boundedness of solutions (See Theorem 3.1 below). Assumption (A4) will be used
in the proof of extinction of microorganism x (See Theorem 5.1 below).

We see that for special models (1.4) and (1.5) assumptions (A2) − (A4) will
degenerate into the following forms.

(A′
2) P (t, s) and Q(t, s) are continuous for any (t, s) ∈ R2

+. P (t, 0) = Q(t, 0) ≡ 0
for any t ≥ 0. For any positive constant H there exists a K = K(H) > 0 such that
|P (t, s1) − P (t, s2)| ≤ K|s1 − s2| and |Q(t, s1) − Q(t, s2)| ≤ K|s1 − s2| for any
(t, si) ∈ R2

+ with 0 ≤ si ≤ H (i = 1, 2).
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(A′
3) lim inft→∞ P (t, s) > 0 for any s > 0. For any t ≥ 0, P (t, s) and Q(t, s) are

nondecreasing for s ∈ R+.
(A′

4) For any constants H > β > 0 there exists a continuous function h(t)

defined for t ≥ 0 satisfying lim inft→∞
∫ t+α
t

h(ξ)dξ > 0 for some constant α > 0
such that for any t ∈ R+ and s1, s2 ∈ R+ with si ≤ H (i = 1, 2) and s1 − s2 ≥ β,
one has Q(t, s1)−Q(t, s2) ≥ h(t).

Now, we consider the following nonautonomous linear equation:

dv(t)

dt
= c(t)− l(t)v(t), (2.2)

where c(t) and l(t) are continuous bounded functions defined on t ≥ 0 and c(t) ≥ 0
for all t ≥ 0. We have the following lemma.

Lemma 2.1. Assume that there is a constant α > 0 such that lim inft→∞
∫ t+α
t

l(η)dη
> 0. Then, we have

(i) Each fixed solution v∗(t) of equation (2.2) is bounded on t ≥ 0 and globally
uniformly attractive;

(ii) Let v(t) be the solution of equation (2.2) and v̄(t) be the solution of equation
(2.2) after replacing c(t) with another continuous function c̄(t). If v̄(0) =
v(0), then there exists a constant L > 0 that only depends on l(t), such that
supt∈R+

|v(t)− v̄(t)| ≤ L supt∈R+
|c(t)− c̄(t)|;

(iii) If there exists a constant k > 0 such that lim inft→∞
∫ t+k
t

c(η)dη > 0, then
m−1

2 e−r2k ≤ lim inft→∞ v(t) ≤ lim supt→∞ v(t) ≤ m−1
1 er1α for any solution

v(t) of equation (2.2), where the positive constants m1 and m2 satisfy

lim inf
t→∞

∫ t+α

t

(l(η)− c(η)m1)dη > 0, lim sup
t→∞

∫ t+k

t

(l(η)− c(η)m2)dη < 0,

and r1 = supt≥0 {|l(t)|+ c(t)m1} and r2 = supt≥0 {|l(t)|+ c(t)m2}.

Lemma 2.1 can be proved by using the similar method given in [34], we hence
omits it here.

For the convenience of narrations, we denote the functions g1(t, s, x) = a(t) −
b(t)s− P (t, s)x and g2(t, st) = −d(t) +Q(t, st).

Lemma 2.2. Assume that (A1) and (A2) hold. Then the solution (s(t), x(t)) of
model (1.3) with initial condition (2.1) exists and is positive for all t ≥ 0.

Proof. Firstly, according to the fundamental theory of functional differential
equations, model (1.3) has a unique solution (s(t), x(t)) satisfying initial condition
(2.1) defined on some interval [0, T ) with T ≤ ∞.

The proof of positivity of solution (s(t), x(t)) is simple. In fact, integrating the
second equation of model (1.3) from 0 to any t ∈ (0, T ) we directly have

x(t) = x(0)e
∫ t
0
g2(ξ,sξ)dξ > 0. (2.3)

Suppose that there is a t1 > 0 such that s(t1) = 0 and s(t) > 0 for any t ∈ [0, t1).
Assumption (A2) implies that P (t, s(t)) ≤ Ks(t) for any t ∈ [0, t1]. From the first
equation of model (1.3) it follows that

ds(t)

dt
= g1(t, s(t), x(t)) ≥ −s(t)[b(t) + x(t)K]



A delayed nonautonomous chemostat model 161

for all t ∈ [0, t1]. From this, we directly get s(t1) ≥ s(0)e−
∫ t1
0 [b(t)+x(t)K]dt > 0,

a contradiction. Therefore, solution (s(t), x(t)) of model (1.3) is positive on its
existence interval.

Now, we prove that the solution of model (1.3) is defined for all t ∈ [0,∞).
Suppose that solution (s(t), x(t)) is defined only on [0, T ) with T < ∞. Then,
(s(t), x(t)) is unbounded when t→ T . By the first equation of model (1.3), one gets

ds(t)

dt
= g1(t, s(t), x(t)) ≤ a(t)− b(t)s(t).

From conclusion (i) of Lemma 2.1 and the comparison principle, we easily obtain
the boundedness of s(t) on [−τ, T ). Then, by assumption (A2), −d(t) +Q(t, st) is
also bounded for t ∈ [0, T ). Accordingly, (2.3) indicates that x(t) is bounded on
[0, T ), a contradiction. Consequently, (s(t), x(t)) is defined for all t ∈ [0,∞). The
proof is completed.

3. Ultimate boundedness
In this section, we investigate the ultimate boundedness of solutions of model (1.3).
If there exists a constant C > 0 such that any positive solution (s(t), x(t)) of model
(1.3) satisfies lim supt→∞ s(t) < C and lim supt→∞ x(t) < C, then we say that the
solution of model (1.3) is ultimately bounded.

For model (1.3), if x(t) ≡ 0, i.e., there is no microorganism, then the subsystem
of nutrient species is given as follows:

ds(t)

dt
= a(t)− b(t)s(t). (3.1)

Let s∗(t) be some fixed solution of equation (3.1) with initial value s∗(0) = s∗0 > 0.
Obviously, model (1.3) has a trivial solution (s∗(t), 0), which shows that microor-
ganisms species x vanishes. From assumption (A1) and conclusion (i) of Lemma
2.1, it follows that s∗(t) is defined for all t ∈ R+ and is positive, bounded and
globally attractive for equation (3.1).

Theorem 3.1. Assume that (A1)–(A3) hold. Then the solution (s(t), x(t)) of
model (1.3) with initial condition (2.1) is ultimately bounded.

Proof. Let (s(t), x(t)) be any solution of model (1.3) with initial condition (2.1).
From the first equation of model (1.3), one has

ds(t)

dt
= g1(t, s(t), x(t)) ≤ a(t)− b(t)s(t).

By the comparison principle, for any constant ε > 0 there exists a T = T (ε) > 0
such that

s(t) < s∗(t) + ε for all t ≥ T. (3.2)
Hence, there exists a large T0 > 0 such that s(t) ≤ H1 for all t ≥ T0, where the
constant H1 > supt≥0 s

∗(t). Consequently, s(t) is ultimately bounded.
Now, we prove the ultimate boundedness of x(t). Assumptions (A1) and (A2)

imply that there is a constant ε0 > 0 small enough such that

lim sup
t→∞

∫ t+ω2

t

g2(ξ, 2ε0)dξ < 0. (3.3)
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From this, it follows that for any t0 ≥ 0

lim
t→∞

∫ t

t0

g2(ξ, 2ε0)dξ = −∞. (3.4)

Then, from assumption (A3) we can choose an enough large constant H > 0 such
that

aM

bm +mint≥0{P (t, ε0)} H
H1

<
1

2
ε0,

where aM = maxt≥0 a(t) and bm = mint≥0 b(t).
We first prove

lim inf
t→∞

x(t) ≤ H. (3.5)

Suppose that lim inft→∞ x(t) > H. Then, there exists a T1 ≥ T0 such that x(t) > H
for all t ≥ T1. If s(t) ≥ ε0 for all t ≥ T1, then since ε0 ≤ s(t) ≤ H1 for all t ≥ T1,
we can get that for all t ≥ T1,

ds(t)

dt
= g1(t, s(t), x(t)) ≤ aM − (bm +min

t≥0
{P (t, ε0)}

H

H1
)s(t).

Therefore, the comparison principle implies

lim sup
t→∞

s(t) ≤ aM

bm +mint≥0{P (t, ε0)} H
H1

<
1

2
ε0,

a contradiction. Accordingly, there exists a t1 > T1 such that s(t1) < ε0. Further-
more, we prove s(t) ≤ 2ε0 for all t ≥ t1. Oppositely, there exists a t2 > t1 such
that s(t2) > 2ε0. Due to the continuity of s(t), there exists a t3 ∈ (t1, t2) such that
s(t3) = ε0 and s(t) > ε0 for all t ∈ (t3, t2]. Since ε0 ≤ s(t) ≤ H1 for all t ∈ [t3, t2],
one obtains that for all t ∈ [t3, t2]

ds(t)

dt
= g1(t, s(t), x(t)) ≤ aM − (bm +min

t≥0
{P (t, ε0)}

H

H1
)s(t). (3.6)

Let B = bm + mint≥0{P (t, ε0)} H
H1

. Solving equation (3.6) for t ∈ [t3, t2] by using
the method of variation of constant, we obtain

s(t2) ≤ e−B(t2−t3)(s(t3) +

∫ t2

t3

aMe
B(u−t3)du) ≤ ε0 +

aM
B

< 2ε0,

which is impossible. Hence, s(t) ≤ 2ε0 for all t ≥ t1. Consider the second equation
of model (1.3), we have for any t ≥ t1 + τ

dx(t)

dt
= x(t)g2(t, st) ≤ x(t)g2(t, 2ε0). (3.7)

For any t > t1 + τ integrating (3.7) one obtains x(t) ≤ x(t1 + τ)e
∫ t
t1+τ

g2(ξ,2ε0)dξ.
Then, from (3.4) we further get that x(t) → 0 as t → ∞, a contradiction. This
shows that (3.5) holds.

We further prove that there exists a constant H2 > 0 such that

lim sup
t→∞

x(t) ≤ H2. (3.8)
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Suppose that (3.8) does not hold, then there exists a sequence of initial values
{rn} = {(ϕn, xn)} ⊂ C+ × (0,∞) with ϕn(0) > 0 such that the solution (s(t, rn),
x(t, rn)) of model (1.3) with initial value rn satisfies lim supt→∞ x(t, rn) > (2H+1)n
for n = 1, 2, · · · .

For every n, by the ultimate boundedness of s(t) we first choose a T (n) > T0
such that s(t, rn) ≤ H1 for any t ≥ T (n). Since lim inft→∞ x(t, rn) ≤ H, there exist
two time sequences {u(n)q } and {t(n)q }, satisfying T (n) + τ < u

(n)
1 < t

(n)
1 < u

(n)
2 <

t
(n)
2 < · · · < u

(n)
q < t

(n)
q · · · and limq→∞ u

(n)
q = ∞, such that

x(u(n)q , rn) = 2H, x(t(n)q , rn) = (2H + 1)n (3.9)

and
2H < x(t, rn) < (2H + 1)n for all t ∈ [u(n)q , t(n)q ]. (3.10)

By assumption (A3) we deduce that for t ∈ [u
(n)
q , t

(n)
q ]

x(t(n)q , rn) =x(u
(n)
q , rn)e

∫ t
(n)
q

u
(n)
q

g2(t,st)dt

≤x(u(n)q , rn)e

∫ t
(n)
q

u
(n)
q

g2(t,H1)dt

≤ x(u(n)q , rn)e
L0(t

(n)
q −u(n)

q )

for q = 1, 2, · · · , where constant L0 ≥ supt≥0 g2(t,H1). Hence, t(n)q − u
(n)
q > lnn

L0
for

q = 1, 2, · · · . By (3.3), there exists a constant p > 0 such that∫ t+a

t

g2(ξ, 2ε0)dξ < 0, H1e
−Bp <

1

2
ε0 (3.11)

for all t ∈ R+ and a ≥ p. Then, we can choose an integer N0 > 0 such that
t
(n)
q − u

(n)
q > 2p+ τ for all q = 1, 2, · · · , n ≥ N0.

For all n ≥ N0 and positive integers q, if s(t, rn) ≥ ε0 for any t ∈ [u
(n)
q , u

(n)
q +p],

then from assumption (A3), (3.6) and (3.11) we can obtain

s(u(n)q + p, rn) ≤s(u(n)q , rn)e
−Bp +

∫ u(n)
q +p

u
(n)
q

aMe
B(u−u(n)

q −p)du

≤H1e
−Bp +

aM
B

< ε0,

which leads to a contradiction. Therefore, there is a t1 ∈ [u
(n)
q , u

(n)
q + p] such that

s(t1, rn) < ε0. A similar argument as in the above, we further obtain

s(t, rn) ≤ 2ε0 for all t ∈ [t1, t
(n)
q ]. (3.12)

Finally, from assumption (A3), (3.10), (3.11) and (3.12), for t ∈ [u
(n)
q +p+τ, t

(n)
q ]

it follows that

x(t(n)q , rn) =x(u
(n)
q + p+ τ, rn)e

∫ t
(n)
q

u
(n)
q +p+τ

g2(t,st)dt

≤x(u(n)q + p+ τ, rn)e

∫ t
(n)
q

u
(n)
q +p+τ

g2(t,2ε0)dt

< (2H + 1)n,
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which is contradictory with (3.9). Therefore, (3.8) holds. That is, x(t) is also
ultimately bounded. The proof is completed.

As the consequences of Theorem 3.1, for special models (1.4) and (1.5) we have
the following corollaries.

Corollary 3.1. Assume that (A1), (A′
2) and (A′

3) hold. Then the solution (s(t), x(t))

of model (1.4) with initial condition (2.1) is ultimately bounded.

Corollary 3.2. Assume that (A1), (A′
2) and (A′

3) hold. Then the solution (s(t), x(t))

of model (1.5) with initial condition (2.1) is ultimately bounded.

Remark 3.1. Notice that the condition lim inft→∞ P (t, s) > 0 for any s > 0 in
assumption (A3) is a stronger condition. Accordingly, a meaningful open problem
is whether it is changed to that for s > 0 there exists a constant β > 0 such that
lim inft→∞

∫ t+β
t

P (ξ, s)dξ > 0 to guarantee that the solution (s(t), x(t)) of model
(1.3) with initial condition (2.1) is still ultimately bounded.

4. Persistence
In this section, the persistence of model (1.3) is investigated. Let (s(t), x(t)) be any
positive solution of model (1.3), if lim inft→∞ x(t) > 0, then one says that species x
is strongly persistent. If there exist positive constants L and l with L ≥ l such that
l ≤ lim inft→∞ x(t) ≤ lim supt→∞ x(t) ≤ L for any positive solution (s(t), x(t)) of
model (1.3), then one says that species x is uniformly persistent. It is evident that
if species x is uniformly persistent, then species x is also strongly persistent. The
same concepts can be defined for nutrient s. The main results on the persistence
for model (1.3) are established below.

Theorem 4.1. Assume that (A1)− (A3) hold and lim inft→∞
∫ t+β
t

a(η)dη > 0 for
some constant β > 0. Then nutrient s in model (1.3) is uniformly persistent.

Proof. Let (s(t), x(t)) be any positive solution of model (1.3) with initial point
(ϕ, x0). Since (s(t), x(t)) is ultimately bounded (See Theorem 3.1), there exists a
constant U > 0 such that for any initial point (ϕ, x0) there is a T0 = T0(ϕ, x0) > 0,
one has s(t) ≤ U and x(t) ≤ U for all t ≥ T0. By assumption (A2) we deduce that

ds(t)

dt
= g1(t, s(t), x(t)) ≥ a(t)− (b(t) + UK)s(t).

Combining the comparison principle and conclusion (iii) of Lemma 2.1, it follows
that there exists a constant m > 0 such that lim inft→∞ s(t) ≥ m. This shows that
nutrient s is uniformly persistent. This completes the proof.

Theorem 4.2. Assume that (A1)− (A3) hold and lim inft→∞
∫ t+β
t

a(η)dη > 0 for
some positive constant β. If there exists a constant λ > 0 such that

lim inf
t→∞

∫ t+λ

t

(
−d(ξ) +Q

(
ξ, s∗ξ

))
dξ > 0 (4.1)

then microorganism x in model (1.3) is uniformly persistent.

Proof. Let (s(t), x(t)) be any positive solution of model (1.3) with initial point
(ϕ, x0). From Theorem 3.1 and Theorem 4.1 it follows that there are constants
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0 < m < U such that for any initial point (ϕ, x0) there is a T0 = T0(ϕ, x0) > 0, one
has m ≤ s(t) ≤ U and x(t) ≤ U for all t ≥ T0.

Firstly, by lim inft→∞
∫ t+λ
t

g2(ξ, s
∗
ξ)dξ > 0, there are constants T1 > T0, δ1 > 0

and ε > 0 small enough such that∫ t+λ

t

g2(ξ, s
∗
ξ − ε)dξ > δ1 for all t ≥ T1. (4.2)

We consider the following linear equation:

ds(t)

dt
= a(t)− P (t, U)α− b(t)s(t), (4.3)

where α ∈ (0, α0], and constant α0 > 0 is chosen to satisfy lim inft→∞
∫ t+β
t

(a(ξ)−
P (ξ, U)α0)dξ > 0 since lim inft→∞

∫ t+β
t

a(η)dη > 0. Let sα(t) be the solution of
equation (4.3) with initial value sα(0) = s∗(0). From conclusion (i) of Lemma 2.1
we know that sα(t) is globally uniformly asymptotically stable. Then, conclusion
(ii) of Lemma 2.1 indicates that sα(t) converges to s∗(t) uniformly for t ∈ R+ as
α→ 0. Thus, there exists an enough small constant α > 0 such that

sα(t) > s∗(t)− ε

2
for all t ∈ R+. (4.4)

We first prove lim supt→∞ x(t) ≥ α for any positive solution (s(t), x(t)) of model
(1.3). If the claim does not hold, then there is a positive solution (s(t), x(t)) of model
(1.3) such that lim supt→∞ x(t) < α. Accordingly, there exists a T2 > T1 such that
x(t) ≤ α for all t ≥ T2. Then from the first equation of model (1.3) we get

ds(t)

dt
= g1(t, s(t), x(t)) ≥ a(t)− P (t, U)α− b(t)s(t)

for all t ≥ T2. Combining the comparison principle and the global asymptotic
stability of solution sα(t), one deduces that there exists a T3 > T2 such that

s(t) > sα(t)−
ε

2
for all t ≥ T3. (4.5)

Accordingly, (4.4) and (4.5) yield to

s(t) > s∗(t)− ε for all t ≥ T3. (4.6)

For any t ≥ T3 + τ , from assumption (A3) one deduces that

x(t) = x(T3 + τ)e
∫ t
T3+τ

g2(ξ,sξ)dξ ≥ x(T3 + τ)e
∫ t
T3+τ

g2(ξ,s
∗
ξ−ε)dξ.

Finally, from (4.2) it follows that limt→∞ x(t) = ∞, a contradiction. Therefore,
lim supt→∞ x(t) > α for any positive solution (s(t), x(t)) of model (1.3).

Next, we prove that there is a constant β > 0 such that lim inft→∞ x(t) > β
for any positive solution (s(t), x(t)) of model (1.3). Suppose that the conclusion
does not hold, then there exists a sequence of initial values {rn} = {(ϕn, xn)} ⊂
C+×(0,∞) with ϕn(0) > 0 such that solution (s(t, rn), x(t, rn)) of model (1.3) with
initial value rn satisfies lim inft→∞ x(t, rn) <

α
n for n = 1, 2, · · · .
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For every n, choose a T (n) > 0 such that m ≤ s(t, rn) ≤ U for any t ≥ T (n).

Since lim supt→∞ x(t, rn) ≥ α, there exist two time sequences {u(n)q } and {v(n)q },
satisfying T (n) + τ < u

(n)
1 < v

(n)
1 < u

(n)
2 < v

(n)
2 < · · · < u

(n)
q < v

(n)
q · · · and

limq→∞ u
(n)
q = ∞, such that

x(u(n)q , rn) = α, x(v(n)q , rn) =
α

n+ 1
(4.7)

and
α

n+ 1
< x(t, rn) < α for all t ∈ [u(n)q , v(n)q ]. (4.8)

By assumptions (A1) and (A3) we can choose a positive constant L such that
g2(t, st) ≥ −L for all t ≥ T (n). Hence, from the second equation of model (1.3) one
has

x(v(n)q , rn) = x(u(n)q , rn)e

∫ v
(n)
q

u
(n)
q

g2(t,st)dt

≥ x(u(n)q , rn)e
−L(v(n)

q −u(n)
q )

for all q = 1, 2, · · · . Consequently, v(n)q − u
(n)
q > ln(n+1)

L for q = 1, 2, · · · . By (4.2),
there are positive constants p and l such that∫ t+a

t

g2(ξ, s
∗
ξ − ε)dξ > l (4.9)

for all t ∈ R+ and a ≥ p. Let s̄α(t) be the solution of equation (4.3) with initial value
s̄α(u

(n)
q ) = s(u

(n)
q , rn). From (4.8) we can obtain that for any n, q and t ∈ [u

(n)
q , v

(n)
q ]

ds(t, rn)

dt
= g1(t, s(t, rn), x(t, rn)) ≥ a(t)− P (t, U)α− b(t)s(t, rn).

Accordingly, the comparison principle implies

s(t, rn) ≥ s̄α(t) for all t ∈ [u(n)q , v(n)q ]. (4.10)

Since solution sα(t) is globally uniformly asymptotically stable, there exists a con-
stant T ≥ p, and T does not depend on any n, such that

s̄α(t) ≥ sα(t)−
ε

2
for all t ≥ u(n)q + T. (4.11)

Choose an integer N0 > 0 such that v(n)q − u
(n)
q > 2T + τ as n ≥ N0. Further, from

(4.4) one has s(t, rn) ≥ s∗(t)− ε for all t ∈ [u
(n)
q + T, v

(n)
q ]. Thus, assumption (A3)

and (4.8) yield that

x(v(n)q , rn) =x(u
(n)
q + T + τ, rn)e

∫ v
(n)
q

u
(n)
q +T+τ

g2(t,st)dt

≥x(u(n)q + T + τ, rn)e

∫ v
(n)
q

u
(n)
q +T+τ

g2(t,s
∗
t−ε)dt

>
α

n+ 1
e

∫ v
(n)
q

u
(n)
q +T+τ

g2(t,s
∗
t−ε)dt

>
α

n+ 1
,

a contradiction. This completes the proof.
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Theorem 4.3. Assume that (A1) − (A3) hold and let (s(t), x(t)) be any positive
solution of model (1.3).

(i) If x(t) is strongly persistent, then s(t) is also strongly persistent;
(ii) If x(t) is uniformly persistent, then s(t) is also uniformly persistent.

Proof. Firstly, we prove conclusion (i). Since x(t) is strongly persistent and
solution (s(t), s(t)) is ultimately bounded (See Theorem 3.1), there exist constants
M > m > 0 and T0 > 0 such that m ≤ x(t) ≤ M and s(t) ≤ M for all t ≥ T0.
From assumptions (A1) and (A2) one can choose a constant η > 0 enough small
such that

lim inf
t→∞

∫ t+ω2

t

g2(ξ, η)dξ < 0. (4.12)

We first prove lim supt→∞ s(t) > 0. If the conclusion does not hold, then we
have limt→∞ s(t) = 0. For above η > 0, there exists a T1 > T0 such that s(t) < η
for all t ≥ T1. By assumption (A3) one deduces that

x(t) = x(T1 + τ)e
∫ t
T1+τ

g2(ξ,sξ)dξ ≤ x(T1 + τ)e
∫ t
T1+τ

g2(ξ,η)dξ

for all t ≥ T1 + τ . Thus, (4.12) implies that x(t) → 0 as t → ∞, a contradiction.
Therefore, lim supt→∞ s(t) > 0.

Next, we prove lim inft→∞ s(t) > 0. Let lim supt→∞ s(t) = β > 0. If the
claim does not hold, then there exist two time sequences {un} and {vn}, satisfying
T0 < u1 < v1 < u2 < v2 < · · · < un < vn · · · and limn→∞ un = ∞, such that

s(un) =
β

n
, s(vn) =

β

n2
(4.13)

and
β

n2
< s(t) <

β

n
for all t ∈ [un, vn]. (4.14)

Assumption (A2) implies that there exists a constant c > 0 such that

g1(t, s, x) ≥ −cs (4.15)

for all t ≥ 0, 0 ≤ s ≤ M and m ≤ x ≤ M . From the first equation of model (1.3)
one has for any t ≥ T0

ds(t)

dt
= g1(t, s(t), x(t)) ≥ −cs(t).

Therefore, s(vn) ≥ s(un)e
−c(vn−un) for all n = 1, 2, · · · . Consequently, vn − un >

lnn
c for n = 1, 2, · · · . From (4.12) we can choose a constant p > 0 such that

Me
∫ t+a
t

g2(ξ,η)dξ < m (4.16)

for all t ≥ 0 and a ≥ p. Accordingly, there is an integer N0 > 0 such that β
N0

< η
and vn − un ≥ 2p + τ for all n ≥ N0. For any n ≥ N0, integrating the second
equation of model (1.3), by assumption (A3) and (4.16) we obtain

x(vn) = x(un + p+ τ)e
∫ vn
un+p+τ

g2(t,st)dt ≤Me
∫ vn
un+p+τ

g2(t,η)dt < m.
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This leads to a contradiction. Consequently, lim inft→∞ s(t) > 0.
Now, we prove conclusion (ii). Since x(t) is uniformly persistent and solution

(s(t), x(t)) is ultimately bounded, there are constants M1 > m1 > 0 and T0 > 0
such that m1 ≤ x(t) ≤ M1 and s(t) ≤ M1 for all t ≥ T0. We first show that
lim supt→∞ s(t) > η for any positive solution (s(t), x(t)) of model (1.3), where
constant η > 0 is given in (4.12). Indeed, if the claim does not hold, then there is
a T ∗ > T0 such that s(t) ≤ η for all t ≥ T ∗. By assumption (A3) one gets

x(t) = x(T ∗ + τ)e
∫ t
T∗+τ

g2(ξ,sξ)dξ ≤ x(T ∗ + τ)e
∫ t
T∗+τ

g2(ξ,η)dξ.

From (4.12) we further get limt→∞ x(t) = 0, a contradiction. Hence, lim supt→∞ s(t)
> η for any positive solution (s(t), x(t)) of model (1.3).

Next, we show that there exists a constant m2 > 0 such that lim inft→∞ s(t) >
m2 for any positive solution (s(t), x(t)) of model (1.3). Indeed, from (4.12) there
exists a constant p > 0 such that

M1e
∫ t+a
t

g2(ξ,η)dξ < m1 (4.17)

for all t ≥ 0 and a ≥ p. If the above claim does not hold, then there exists a
sequence of initial values {rn} = {(ϕn, xn)} ⊂ C+ × (0,∞) with ϕn(0) > 0 such
that the solution (s(t, rn), x(t, rn)) of model (1.3) satisfies lim inft→∞ s(t, rn) <

η
n

for n = 1, 2, · · · .
For every n, choose a T (n) > T0 such that s(t, rn) ≤M1 and m1 ≤ x(t, rn) ≤M1

for all t ≥ T (n). Since lim supt→∞ s(t, rn) ≥ η, there exist two time sequences {u(n)q }
and {v(n)q }, satisfying T (n) + τ < u

(n)
1 < v

(n)
1 < u

(n)
2 < v

(n)
2 < · · · < u

(n)
q < v

(n)
q · · ·

and limq→∞ u
(n)
q = ∞, such that

s(u(n)q , rn) = η, s(v(n)q , rn) =
η

n
(4.18)

and
η

n
< s(t, rn) < η for all t ∈ [u(n)q , v(n)q ]. (4.19)

Then, from (4.15) we have s(v(n)q , rn) ≥ s(u
(n)
q , rn)e

−c(v(n)
q −u(n)

q ) for all q = 1, 2, · · · .
Consequently, v(n)q − u

(n)
q > lnn

c for q = 1, 2, · · · . Accordingly, there exists an
integer N0 > 0 such that v(n)q − u

(n)
q ≥ 2p + τ for all n ≥ N0 and q = 1, 2, · · · .

For all n ≥ N0 and q = 1, 2, · · · , integrating the second equation of model (1.3), by
assumption (A3) and (4.17) we can obtain

x(v(n)q , rn) = x(u(n)q + p+ τ, rn)e

∫ v
(n)
q

u
(n)
q +p+τ

g2(t,st)dt

≤M1e

∫ v
(n)
q

u
(n)
q +p+τ

g2(t,η)dt

< m1,

a contradiction. Combining Theorem 3.1, it yields that s(t) is uniformly persistent.
The proof is completed.

Remark 4.1. From the proof of conclusion (i) in Theorem 4.3, we easily find that
conclusion (i) can been extended to the following form. However, conclusion (ii) in
Theorem 4.3 can not be changed.
Proposition 4.1. Assume that (A1)− (A3) hold. Let (s(t), x(t)) be some positive
solution of model (1.3). If x(t) is strongly persistent, then s(t) is also strongly
persistent.
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Remark 4.2. Similarly to Remark 3.1, a meaningful opening question is whether
the condition lim inft→∞ P (t, s) > 0 for any s > 0 in assumption (A3) can be
changed to that for any s > 0 there exists a constant β > 0 such that

lim inf
t→∞

∫ t+β

t

P (ξ, s)dξ > 0

to guarantee that all conclusions in Theorems 4.1-4.3 still hold.

As the consequences of Theorems 4.1-4.3, we have the following corollaries for
special model (1.4).

Corollary 4.1. Assume that (A1) and (A′
2) − (A′

3) hold and there is a constant
β > 0 such that lim inft→∞

∫ t+β
t

a(η)dη > 0. Then any positive solution (s(t), x(t))
of model (1.4) the conclusions given below hold.

(i) s(t) is uniformly persistent;
(ii) If there exists a constant λ > 0 such that

lim inf
t→∞

∫ t+λ

t

(−d(ξ) +Q(ξ, s∗(ξ − τ(ξ)))dξ > 0,

then x(t) is uniformly persistent.

Corollary 4.2. Assume that (A1) and (A′
2) − (A′

3) hold. Let (s(t), x(t)) be any
positive solution of model (1.4). Then the conclusions given below hold.

(i) If x(t) is strongly persistent, then s(t) is also strongly persistent;
(ii) If x(t) is uniformly persistent, then s(t) is also uniformly persistent.

Remark 4.3. Similar conclusions as in Corollaries 4.1 and 4.2 also can be estab-
lished for special model (1.5). We here omit them.

Remark 4.4. It is easy to see that when τ(t) ≡ 0 then model (1.4) degrades into
model (1.1). Clearly, in this case, Corollaries 4.1 and 4.2 become to Theorems
3.2 and 3.3 given in [28]. In addition, we also see that the corresponding results:
Theorems 2 and 3 in [7] and Theorem 5.2.2 in [43] are as the special cases of
Corollaries 4.1 and 4.2.

5. Global attractivity of trivial solution
In this section, we investigate the global attractivity of trivial solution of which
microorganism species x vanishes in model (1.3). We have the following conclusion.

Theorem 5.1. Assume that (A1) − (A4) hold. If there exists a positive constant
λ such that

lim sup
t→∞

∫ t+λ

t

(−d(ξ) +Q(ξ, s∗ξ))dξ ≤ 0,

then trivial solution (s∗(t), 0) of model (1.3) is globally attractive. That is, for any
positive solution (s(t), x(t)) of model (1.3), limt→∞ x(t) = 0 and limt→∞(s(t) −
s∗(t)) = 0.
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Proof. We first prove limt→∞ x(t) = 0. The proof process is divided into the
following two cases.

Case 1. Assume lim supt→∞
∫ t+λ
t

(−d(ξ) + Q(ξ, s∗ξ))dξ < 0. Then, it follows
that lim supt→∞ t−1

∫ t
0
(−d(ξ) + Q(ξ, s∗ξ))dξ < 0. From assumption (A2), we can

choose small enough constants ε > 0, δ > 0 and an enough large T > 0 such that

t−1

∫ t

0

(−d(ξ) +Q(ξ, s∗ξ + ε))dξ < −δ for all t ≥ T. (5.1)

Let (s(t), x(t)) be any positive solution of model (1.3). Due to

ds(t)

dt
≤ a(t)− b(t)s(t) for all t ≥ 0,

then combining conclusion (i) of Lemma 2.1 and the comparison principle, one
deduces that there exists a T1 ≥ T such that

s(t) ≤ s∗(t) + ε for all t ≥ T1. (5.2)

Integrating the second equation of model (1.3), by assumption (A3) we obtain

x(t) = x(T1 + τ)e
∫ t
T1+τ

(−d(ξ)+Q(ξ,sξ))dξ ≤ x(T1 + τ)e
∫ t
T1+τ

(−d(ξ)+Q(ξ,s∗ξ+ε))dξ

for any t > T1 + τ . Hence, (5.1) implies that limt→∞ x(t) = 0.
Case 2. Assume lim supt→∞

∫ t+λ
t

(−d(ξ) +Q(ξ, s∗ξ))dξ = 0. Let (s(t), x(t)) be
any positive solution of model (1.3) with initial condition (2.1). Firstly, Theorem
3.1 shows that there exists a constant K > 0 such that s(t) ≤ K and x(t) ≤ K for
all t ≥ 0.

For any given constant ε > 0, suppose that for any t0 ≥ 0 one has x(t) ≥ ε for
all t ≥ t0, then lim inft→∞ x(t) > 0, i.e., x(t) is strongly persistent. By Proposition
4.1 in Remark 4.1, then s(t) is also strongly persistent. Therefore, there exists a
constant σ > 0, which is independent of any t0, such that s(t) ≥ σ for all t ≥ 0.
Consequently, we obtain

ds(t)

dt
= g1(t, s(t), x(t)) ≤ a(t)− b(t)s(t)− εP (t, σ) (5.3)

for all t ≥ t0. From (5.3) we further deduce that

s(t) ≤ s(t0)e
−

∫ t
t0
b(ξ)dξ

+

∫ t

t0

(a(ξ)− εP (ξ, σ))e−
∫ t
ξ
b(u)dudξ

for any t ≥ t0. Thanks to s∗(t) = s∗(t0)e
−

∫ t
t0
b(ξ)dξ

+
∫ t
t0
a(ξ)e−

∫ t
ξ
b(u)dudξ. We

conclude that

s(t)− s∗(t) ≤(s(t0)− s∗(t0))e
−

∫ t
t0
b(ξ)dξ −

∫ t

t0

(εP (ξ, σ))e−
∫ t
ξ
b(u)dudξ

≤2Ke
−

∫ t
t0
b(ξ)dξ − ε inf

t≥0
{P (t, σ)}

∫ t

t0

e−
∫ t
ξ
b(u)dudξ

≤2Ke
−

∫ t
t0
b(ξ)dξ − ε inf

t≥0
{P (t, σ)}1

b̄
(1− e−b̄(t−t0)),

(5.4)
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where b̄ = supt≥0{b(t)} > 0. Accordingly, (5.4) indicates that there are constants
β > 0 and T0 > 0, which are independent of t0, such that for any t ≥ T0 + t0,
s(t)− s∗(t) ≤ −β. This together with assumption (A4) yields

Q(t, st)−Q(t, s∗t ) ≤ −h(t) for all t ≥ T0 + t0 + τ. (5.5)

By lim inft→∞
∫ t+α
t

h(ξ)dξ > 0, we can choose a positive integer k such that
lim inft→∞

∫ t+kλ
t

h(ξ)dξ > δ, where δ > 0 is a constant. Let constant ε0 > 0 small
enough such that kε0 − δ < 0. Furthermore, there exists a T1 > T0, which does not
depend on t0, such that

∫ t+λ
t

(−d(ξ) + Q(ξ, s∗ξ))dξ < ε0 and
∫ t+kλ
t

h(ξ)dξ > δ for
all t ≥ T1. For any t > T2 ≜ T1 + t0 + τ, we choose an integer p ≥ 0 such that
t ∈ [T2 + pkλ, T2 + (p+ 1)kλ), then we have∫ t

T2

(−d(ξ) +Q(ξ, sξ))dξ

=

∫ t

T2

(−d(ξ) +Q(ξ, s∗ξ))dξ +

∫ t

T2

(Q(ξ, sξ)−Q(ξ, s∗ξ))dξ

≤
∫ T2+pkλ

T2

(−d(ξ) +Q(ξ, s∗ξ))dξ +

∫ t

T2+pkλ

(−d(ξ) +Q(ξ, s∗ξ))dξ

−
∫ T2+pkλ

T2

h(ξ)dξ −
∫ t

T2+pkλ

h(ξ)dξ

≤p(kε0 − δ) + kλ(max
t≥0

{d(t) +Q(t, s∗t )}+max
t≥0

|h(t)|).

(5.6)

This combines the second equation of model (1.3) for t ∈ [T2, t), one obtains

x(t) =x(T2)e
∫ t
T2

(−d(ξ)+Q(ξ,sξ))dξ

≤Kep(kε0−δ)+kλ(maxt≥0{d(t)+Q(t,s∗t )}+maxt≥0 |h(t)|).
(5.7)

When t→ ∞ we have p→ ∞ and hence p(kε0 − δ)+ kλ(maxt≥0{d(t)+Q(t, s∗t )}+
maxt≥0 |h(t)|) → −∞. Thus, from (5.7) we finally obtain x(t) → 0 as t→ ∞, which
leads to a contradiction with the fact that x(t) ≥ ε for all t ≥ t0. Therefore, there
is a t1 > 0 such that x(t1) < ε.

Now, we prove x(t) ≤ εeM for all t ≥ t1, where

M = max
t≥0

{d(t) +Q(t,K)}(T1 + τ) + kλ(max
t≥0

{d(t) +Q(t, s∗t )}+max
t≥0

|h(t)|).

In fact, if this conclusion does not hold, then there exists a t2 > t1 such that
x(t2) > εeM . Accordingly, there exists a t3 ∈ (t1, t2) such that x(t3) = ε and
x(t) > ε for all t ∈ (t3, t2]. If t2 − t3 ≤ T1 + τ , then we have

x(t2) = x(t3)e
∫ t2
t3

(−d(ξ)+Q(ξ,sξ))dξ ≤ εemaxt≥0{d(t)+Q(t,K)}(T1+τ). (5.8)

Hence, we have x(t2) ≤ εeM , a contradiction. If t2 − t3 > T1 + τ , then similar to
the previous argument we can get Q(t, st)−Q(t, s∗t ) ≤ −h(t) for all t ≥ T1 + t3 + τ

and
∫ t+kλ
t

h(ξ)dξ > δ for all t ≥ T1. Let T2 = T1 + τ + t3. Using (5.6) and (5.7),
we hence have

x(t2) =x(t3)e
∫ t2
t3

(−d(ξ)+Q(ξ,sξ))dξ ≤ εe
∫ T2
t3

(−d(ξ)+Q(ξ,K))dξ+
∫ t2
T2

(−d(ξ)+Q(ξ,sξ))dξ

≤εe(maxt≥0{d(t)+Q(t,K)}(T1+τ)+kλ(maxt≥0{d(t)+Q(t,s∗t )}+maxt≥0 |h(t)|)) = εeM ,
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which is impossible. Therefore, x(t) ≤ εeM for all t ≥ t1. By the arbitrariness of ε,
we finally get limt→∞ x(t) = 0.

For any enough small constant β > 0, we consider the following equation:
ds(t)

dt
= a(t)− b(t)s(t)− βP (t, s∗(t) + ε). (5.9)

Let s∗β(t) be the positive solution of (5.9) with initial value s∗β(0) = s∗(0). From
conclusions (i) and (ii) of Lemma 2.1, it follows that s∗β(t) is globally uniformly
attractive on t ≥ 0, and for any ε > 0 there exists a β > 0 such that |s∗β(t)−s∗(t)| <
ε
2 for all t ≥ 0. Since limt→∞ x(t) = 0, there exists a T2 > T1 such that x(t) < β
for all t ≥ T2. Thus,

ds(t)

dt
≥ a(t)− b(t)s(t)− βP (t, s∗(t) + ε).

The global uniform attractivity of s∗β(t) and the comparison principle indicate that
there exists a T3 > T2 such that s(t) > s∗β(t)− ε

2 for all t ≥ T3. Thus, s(t) > s∗(t)−ε
for all t ≥ T3. Combining (5.2), it follows that |s(t) − s∗(t)| < ε for all t ≥ T3.
Therefore, we finally have limt→∞(s(t)− s∗(t)) = 0. This completes the proof.

As the consequences of Theorem 5.1, some corollaries on the global attractivity
of trivial solution for special models (1.4) and (1.5) are given as follows.

Corollary 5.1. Assume that (A1), (A′
2)− (A′

4) hold. Provided that there exists a
positive constant λ such that

lim sup
t→∞

∫ t+λ

t

(−d(ξ) +Q(ξ, s∗(ξ − τ(ξ))))dξ ≤ 0,

then trivial solution (s∗(t), 0) of model (1.4) is globally attractive.

Remark 5.1. Similar conclusions to Corollary 5.1 can also be established for special
model (1.5). We omit it here.

Remark 5.2. It is easy to see that when τ(t) ≡ 0, Corollary 5.1 extended and
improved the corresponding result given in [28], that is Theorem 4.3 in [28].

Remark 5.3. On the basis of Case 1 in the proof of Theorem 5.1, where we
used the fact that from lim supt→∞

∫ t+λ
t

(−d(ξ) + Q(ξ, s∗ξ))dξ < 0 it follows that
lim supt→∞ t−1

∫ t
0
(−d(ξ)+Q(ξ, s∗ξ))dξ < 0, we can propose the following open ques-

tion:
Whether the condition lim supt→∞

∫ t+λ
t

(−d(ξ) + Q(ξ, s∗ξ))dξ ≤ 0 in Theorem
5.1 can be weaken to lim supt→∞ t−1

∫ t
0
(−d(ξ) +Q(ξ, s∗ξ))dξ ≤ 0.

Remark 5.4. Similarly to Remark 4.2, a meaningful open question is whether the
condition lim inft→∞ P (t, s) > 0 for any s > 0 in assumption (A3) can be changed to
that for any s > 0 there exists a positive constant β such that lim inft→∞

∫ t+β
t

P (ξ, s)
dξ > 0 to guarantee that the conclusions in Theorem 5.1 still hold.

Remark 5.5. We see that assumption (A4) is added in Theorem 5.1. However,
in Theorems 4.2 and 4.3, only assumptions (A1)–(A3) are required. Therefore, an
interesting open problem is whether assumption (A4) can be removed in Theorem
5.1. That is, whether we also can prove x(t) → 0 as t → ∞ in Case 2 in the
proof of Theorem 5.1 for any positive solution (s(t), x(t)) of model (1.3) only when
assumptions (A1)–(A3) are satisfied.
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6. Periodic system
When a(t), b(t), d(t), P (t, s) and Q(t, ϕ) are ω-periodic functions with respect to
time t, that is, a(t+ω) = a(t), b(t+ω) = b(t), d(t+ω) = d(t), P (t+ω, s) = P (t, s)
and Q(t+ ω, ϕ) = Q(t, ϕ) for any t ∈ R+, then model (1.3) is said to be ω-periodic
model. Particularly, in models (1.4) and (1.5), we further assume that τ(t) and
c(t, θ) are ω-periodic functions with respect to t, then models (1.4) and (1.5) are
also said to be ω-periodic models.

We see that for ω-periodic model (1.3) assumptions (A2)–(A4) degenerate to
the following form:

(B1) a(t), b(t) and d(t) denote ω-periodic continuous functions defined on t ≥ 0
and a(t) ≥ 0 for t ∈ [0, ω],

∫ ω
0
b(ξ)dξ > 0 and

∫ ω
0
d(ξ)dξ > 0.

(B2) P (t, s) and Q(t, ϕ) are continuous functions for (t, s) ∈ R2
+ and (t, ϕ) ∈

R+ × C+ and ω-periodic with respect to t, respectively. P (t, 0) = Q(t, 0) ≡ 0 for
any t ∈ [0, ω]. For any positive constant H, there exists a K = K(H) > 0 such that
|P (t, s1)−P (t, s2)| ≤ K|s1− s2| for any (t, si) ∈ R2

+ with 0 ≤ si ≤ H (i = 1, 2) and
|Q(t, ϕ1)−Q(t, ϕ2)| ≤ K|ϕ1−ϕ2| for any (t, ϕi) ∈ R+×C+ with |ϕi| ≤ H (i = 1, 2).

(B3) For any s > 0, P (t, s) > 0 for any t ∈ [0, ω]. For any t ∈ [0, ω], P (t, s)
is nondecreasing for s ∈ R+, and Q(t, ϕ1) ≤ Q(t, ϕ2) for any ϕ1, ϕ2 ∈ C+ with
ϕ1 ≤ ϕ2.

(B4) For any constants H > β > 0, there exists an ω-periodic continuous
function h(t) defined for t ≥ 0 satisfying

∫ ω
0
h(ξ)dξ > 0 such that for any t ∈ [0, ω],

ϕ1, ϕ2 ∈ C+ with ϕi ≤ H (i = 1, 2) and ϕ1 − ϕ2 ≥ β, one has Q(t, ϕ1)−Q(t, ϕ2) ≥
h(t).

Particularly, for ω-periodic models (1.4) and (1.5) the above assumptions (B2)−
(B4) will degenerate into the following forms.

(B′
2) P (t, s) and Q(t, s) are continuous functions for (t, s) ∈ R2

+ and ω-periodic
with respect to t, respectively. P (t, 0) = Q(t, 0) ≡ 0 for any t ∈ [0, ω]. For any
positive constant H, there exists a K = K(H) > 0 such that |P (t, s1)− P (t, s2)| ≤
K|s1 − s2| and |Q(t, s1) − Q(t, s2)| ≤ K|s1 − s2| for any (t, si) ∈ [0, ω] × R+ with
0 ≤ si ≤ H (i = 1, 2).

(B′
3) For any s > 0, P (t, s) > 0 for any t ∈ [0, ω]. For any t ∈ [0, ω], P (t, s) and

Q(t, s) are nondecreasing for any s ∈ R+.
(B′

4) For any constants H > β > 0, there exists an ω-periodic continuous
function h(t) defined for t ≥ 0 satisfying

∫ ω
0
h(ξ)dξ > 0 such that for any t ∈ [0, ω]

and s1, s2 ∈ R+ with si ≤ H (i = 1, 2) and s1−s2 ≥ β one has Q(t, s1)−Q(t, s2) ≥
h(t).

In addition, for ω-periodic model (1.2) we assume that function µ(s) satisfies
the following assumption (P). Then we can prove that all assumptions (B1) and
(B′

2)− (B′
4) are satisfied for ω-periodic model (1.2).

(P) µ(s) is a continuous differentiable function and µ′(s) > 0 for any s ≥ 0, and
µ(0) = 0.

Consider the above nonautonomous linear equation (2.2), one further assumes
that c(t) and l(t) denote ω-periodic continuous functions defined on t ≥ 0 and
c(t) ≥ 0 for all t ∈ [0, ω]. Based on Lemma 2.1 the result is given as follows.

Lemma 6.1. For ω-periodic equation (2.2), suppose that
∫ ω
0
l(t)dt > 0. Then we

have the following conclusions.

(i) Equation (2.2) has a unique ω-periodic solution v∗(t) which is globally uni-
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formly attractive. Particularly, if
∫ ω
0
c(t)dt > 0, then v∗(t) is also positive;

(ii) Let v(t) be the solution of equation (2.2) and v̄(t) be the solution of equation
(2.2) after replacing c(t) with another ω-periodic continuous function c̄(t). If
v̄(0) = v(0), then there exists a constant L > 0 that only depends on l(t), such
that supt∈R+

|v(t)− v̄(t)| ≤ L supt∈[0,ω] |c(t)− c̄(t)|;

(iii) If
∫ ω
0
c(t)dt > 0, then m−1

2 e−r2ω ≤ lim inft→∞ v(t) ≤ lim supt→∞ v(t) ≤
m−1

1 er1ω for any solution v(t) of equation (2.2), where the positive constants
m1 and m2 are chosen satisfying∫ ω

0

(l(t)− c(t)m1)dt > 0,

∫ ω

0

(l(t)− c(t)m2)dt < 0

and r1 = supt∈[0,ω] {|l(t)|+ c(t)m1} and r2 = supt∈[0,ω] {|l(t)|+ c(t)m2}.

Furthermore, we consider subsystem (3.1) of nutrient species, when assumption
(B1) holds, then by Lemma 6.1 the fixed solution s∗(t) can be chosen as the ω-
periodic solution of subsystem (3.1).

In addition, the periodicity of −d(t) + Q(t, s∗t ), −d(t) + Q(t, s∗(t − τ(t)) and
−d(t) +Q(t,

∫ 0

−τ c(t, θ)s
∗(t+ θ)dθ) yields that

lim inf
t→∞

∫ t+ω

t

(−d(ξ) +Q(ξ, s∗ξ))dξ

= lim sup
t→∞

∫ t+ω

t

(−d(ξ) +Q(ξ, s∗ξ))dξ =

∫ ω

0

(−d(ξ) +Q(ξ, s∗ξ))dξ,

lim inf
t→∞

∫ t+ω

t

(−d(ξ) +Q(ξ, s∗(ξ − τ(ξ))))dξ

= lim sup
t→∞

∫ t+ω

t

(−d(ξ) +Q(ξ, s∗(ξ − τ(ξ))))dξ

=

∫ ω

0

(−d(ξ) +Q(ξ, s∗(ξ − τ(ξ))))dξ

and
lim inf
t→∞

∫ t+ω

t

(−d(ξ) +Q(ξ,

∫ 0

−τ
c(ξ, θ)s∗(ξ + θ)dθ))dξ

= lim sup
t→∞

∫ t+ω

t

(−d(ξ) +Q(ξ,

∫ 0

−τ
c(ξ, θ)s∗(ξ + θ)dθ))dξ

=

∫ ω

0

(−d(ξ) +Q(ξ,

∫ 0

−τ
c(ξ, θ)s∗(ξ + θ)dθ))dξ.

Therefore, based on the main results given in [35, 36] on the existence of positive
periodic solution for general delayed periodic population dynamical models, as the
applications of Theorems 4.1-4.3 and Corollary 4.1, one can obtain the conclusions
for the existence of positive periodic solution for periodic models (1.3)–(1.5) as
follows.

Corollary 6.1. For ω-periodic model (1.3), assume that (B1)–(B4) hold and∫ ω
0
a(η)dη > 0. Then the conclusions given below are equivalent,

(i) model (1.3) has a positive ω-periodic solution;
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(ii) species x in model (1.3) is uniformly persistent;
(iii)

∫ ω
0
(−d(ξ) +Q(ξ, s∗ξ))dξ > 0.

Corollary 6.2. For ω-periodic model (1.4), assume that (B1) and (B′
2)–(B′

4) hold
and

∫ ω
0
a(η)dη > 0. Then the conclusions given below are equivalent,

(i) model (1.4) has a positive ω-periodic solution;
(ii) species x in model (1.4) is uniformly persistent;

(iii)
∫ ω
0
(−d(ξ) +Q(ξ, s∗(ξ − τ(ξ))))dξ > 0.

Let u = ξ − τ(ξ). Since maxξ∈[0,ω] τ
′(ξ) < 1, then u = ξ − τ(ξ) is increasing for

all ξ ≥ 0. Hence, u = ξ − τ(ξ) has the inverse function ξ = ψ(u). When τ(ξ) is
ω-periodic, then τ ′(ξ) is also ω-periodic and ψ(u + ω) = ψ(u) + ω. We can prove
that the condition (iii) in Corollary 6.2 is equivalent to∫ ω

0

(−d(u) + Q(ψ(u), s∗(u))

1− τ ′(ψ(u))
)du > 0. (6.1)

In fact, we have∫ ω

0

(−d(ξ) +Q(ξ, s∗(ξ − τ(ξ))))dξ =

∫ ω

0

(−d(ξ))dξ +
∫ ω

0

Q(ξ, s∗(ξ − τ(ξ)))dξ.

Since the function Q(ψ(u),s∗(u))
1−τ ′(ψ(u)) is ω-periodic, we further have

∫ ω

0

Q(ξ, s∗(ξ − τ(ξ)))dξ =

∫ ω−τ(ω)

−τ(0)

Q(ψ(u), s∗(u))

1− τ ′(ψ(u))
du =

∫ ω

0

Q(ψ(u), s∗(u))

1− τ ′(ψ(u))
du.

Therefore, we finally obtain∫ ω

0

(−d(ξ) +Q(ξ, s∗(ξ − τ(ξ))))dξ =

∫ ω

0

(−d(u) + Q(ψ(u), s∗(u))

1− τ ′(ψ(u))
)du.

Particularly, when τ(t) ≡ τ , we have ψ(u) = u + τ and hence condition (6.1)
becomes into ∫ ω

0

(−d(u) +Q(u+ τ, s∗(u)))du > 0.

Therefore, for periodic model (1.2), from Corollary 6.2 and the above discussions
we can obtain the following result.

Corollary 6.3. For ω-periodic model (1.2), assume that (P) holds and
∫ ω
0
s0(t)dt >

0. Then the conclusions given below are equivalent,

(i) model (1.2) has a positive ω-periodic solution;
(ii) species x in model (1.2) is uniformly persistent;

(iii) ω−1
∫ ω
0
µ(v∗(u))du > D, where v∗(t) is the unique positive ω-periodic solution

of equation ds(t)
dt = Ds0(t)−Ds(t).

Corollary 6.4. For ω-periodic model (1.5), assume that (B1) and (B′
2)–(B′

4) hold
and

∫ ω
0
a(η)dη > 0, then the conclusions given below are equivalent,
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(i) model (1.5) has a positive ω-periodic solution;
(ii) species x in model (1.5) is uniformly persistent;

(iii)
∫ ω
0
(−d(ξ) +Q(ξ,

∫ 0

−τ c(ξ, θ)s
∗(ξ + θ)dθ))dξ > 0.

Furthermore, as the consequences of Theorem 5.1 and Corollary 5.1, we can
get the conclusions for the extinction of solutions for periodic models (1.3)–(1.5) as
follows.

Corollary 6.5. For ω-periodic model (1.3), assume that (B1)–(B4) hold. Then
the following statements are equivalent,

(i)
∫ ω
0
(−d(ξ) +Q(ξ, s∗ξ))dξ ≤ 0;

(ii) Trivial periodic solution (s∗(t), 0) of model (1.3) is globally attractive. That
is, for any positive solution (s(t), x(t)) of model (1.3), limt→∞ x(t) = 0 and
limt→∞(s(t)− s∗(t)) = 0.

Corollary 6.6. For ω-periodic model (1.4), assume that (B1), (B′
2)–(B′

4) hold.
Then the following statements are equivalent,

(i)
∫ ω
0
(−d(ξ) +Q(ξ, s∗(ξ − τ(ξ))))dξ ≤ 0;

(ii) Trivial periodic solution (s∗(t), 0) of model (1.4) is globally attractive.

Remark 6.1. Obviously, the condition (i) in Corollary 6.5 is equivalent to∫ ω

0

(−d(u) + Q(ψ(u), s∗(u))

1− τ ′(ψ(u))
)du ≤ 0. (6.2)

Particularly, when τ(t) ≡ τ , condition (6.2) becomes to
∫ ω
0
(−d(u) + Q(u +

τ, s∗(u)))du ≤ 0. Therefore, for periodic model (1.2), from Corollary 6.6 and Remark
6.1 we can obtain the following conclusions.

Corollary 6.7. For ω-periodic model (1.2), assume that (P) holds. Then the
following statements are equivalent,

(i) ω−1
∫ ω
0
µ(v∗(u))du ≤ D, where v∗(t) is the unique positive ω-periodic solution

of equation ds(t)
dt = Ds0(t)−Ds(t);

(ii) Trivial periodic solution (v∗(t), 0) of model (1.2) is globally attractive.

Corollary 6.8. For ω-periodic model (1.5), assume that (B1), (B′
2)–(B′

4) hold.
Then the following statements are equivalent,

(i)
∫ ω
0
(−d(ξ) +Q(ξ,

∫ 0

−τ c(ξ, θ)s
∗(ξ + θ)dθ))dξ ≤ 0;

(ii) Trivial periodic solution (s∗(t), 0) of model (1.5) is globally attractive.

Remark 6.2. From Corollaries 6.3 and 6.7, we easily see that the main results
Theorem 1 and Theorem 2 established in [1] are extended and improved to general
periodic chemostat model with delayed microorganism growth.

Remark 6.3. Based on Remarks 3.1, 4.2 and 5.4, a meaningful open problem is
whether the condition P (t, s) > 0 for any s > 0 and t ∈ [0, ω] can be changed to
that

∫ ω
0
P (ξ, s)dξ > 0 for any s > 0 to guarantee that all conclusions in Corollaries

6.1, 6.2, 6.4-6.6 and 6.8 still hold.
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Remark 6.4. For periodic models (1.3)–(1.5), as a special case of open problem
proposed in Remark 5.5 we have that whether assumption (B4) or (B′

4) can be
removed in Corollaries 6.1, 6.2, 6.4-6.6 and 6.8, respectively, and to guarantee that
the same conclusions still hold.

7. Numerical examples

In this section, several numerical examples for models (1.4) and (1.5) are given to
illustrate the main conclusions established in the above sections. The numerical
simulations are presented by Matlab.
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Figure 1. (a): the numerical simulation of s∗(t); (b)-(c): the solutions for model (1.4) with the initial
functions (s(η), x(η)) = (0.2+0.01i, 3.6+0.01i) for all η ∈ [−1.1, 0], i = 1, 2, ..., 20 converge to a positive
periodic solution as t → ∞.

Example 7.1. In model (1.4), we take a(t) = 1.3+0.6 sinπt, b(t) = 0.9+0.5 cosπt,
d(t) = 0.6 + 0.4 sinπt, P (t, s) = (1 + cosπt) 1.5s

0.3+s , Q(t, s) = (0.9 + 0.7 sinπt) 1.1s
0.1+s

and τ(t) = 1 + 1
10 sinπt. Obviously, model (1.4) is 2-periodic for time t. We

have ∂P (t,s)
∂s = (1 + cosπt) 0.45

(0.3+s)2 and ∂Q(t,s)
∂s = (0.9 + 0.7 sinπt) 0.11

(0.1+s)2 . It is
evident that all conditions in assumptions (B1) and (B′

2)–(B′
4) hold, except for the

condition “For any s > 0, P (t, s) > 0 for any t ∈ [0, ω]” in (B′
3). However, we have∫ 2

0
P (t, s)dt = 2 1.5s

0.3+s > 0 for any s > 0.

From the equation ds∗(t)
dt = 1.3 + 0.6 sinπt − (0.9 + 0.5 cosπt)s∗(t), we get the

numerical simulation of s∗(t), see Figure 1(a). By numerical calculation we can
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obtain∫ 2

0

Q(t, s∗(t− τ(t)))dt =

∫ 2

0

(0.9 + 0.7 sinπt)
1.1s∗(t− (1 + 1

10 sinπt))

0.1 + s∗(t− (1 + 1
10 sinπt))

dt

≈1.2661 >

∫ 2

0

d(t)dt = 1.2.

The numerical simulations in Figure 1 show that the open problem given in Remark
6.3 corresponding to Corollary 6.2 may be true.

Example 7.2. In model (1.5), we take a(t) = 2+1.9 sin 2πt, b(t) = 1+0.7 cos 2πt,
d(t) = 1+0.9 sin 2πt, P (t, s) = (5+4.5 cos 2πt) s

0.2+s , Q(t, s) = (14+9 sin 2πt) 0.1s
0.1+s

and c(t, θ) = 1+0.45 cos 2πθ for θ ∈ [−1, 0]. Obviously, model (1.5) is 1-periodic for
time t. We have ∂P (t,s)

∂s = (5+ 4.5 cos 2πt) 0.2
(0.2+s)2 , ∂Q(t,s)

∂s = (14+ 9 sin 2πt) 0.01
(0.1+s)2

and
∫ 0

−τ c(t, θ)dθ =
∫ 0

−1
(1 + 0.45 cos 2πθ)dθ=1. It is evident that (B1) and (B′

2)−
(B′

4) hold.
From the equation ds∗(t)

dt = 2 + 1.9 sin 2πt − (1 + 0.7 cos 2πt)s∗(t), we get the
numerical simulation of s∗(t), see Figure 2(a). By numerical calculation we further
obtain ∫ ω

0

Q(t,

∫ 0

−τ
c(t, θ)s∗(t+ θ)dθ)dt

=

∫ 1

0

Q(t,

∫ 0

−1

(1 + 0.45 cos 2πθ)s∗(t+ θ)dθ)dt

=

∫ 1

0

(14 + 9 sin 2πt)
0.1

∫ 0

−1
(1 + 0.45 cos 2πθ)s∗(t+ θ)dθ

0.1 +
∫ 0

−1
(1 + 0.45 cos 2πθ)s∗(t+ θ)dθ

dt ≈ 1.3800

>

∫ 1

0

d(t)dt = 1.

The numerical simulations in Figure 2 indicate that the conclusions in Corollary
6.4 are right.

Example 7.3. In model (1.4), we take a(t) = 7.5 + 6 sinπt, b(t) = 1 + 0.5 cosπt,
d(t) = 1.1+0.8 sinπt, P (t, s) = (1.2+1.2 cosπt) 1.3s

0.4+s , Q(t, s) = (0.9+0.5 sinπt) 1.2s
0.6+s

and τ(t) = 1 + 1
10 sinπt. Obviously, model (1.4) is 2-periodic for time t. We have

∂P (t,s)
∂s = (1.2 + 1.2 cosπt) 0.52

(0.4+s)2 and ∂Q(t,s)
∂s = (0.9 + 0.5 sinπt) 0.72

(0.6+s)2 . It is easy
to see that all conditions in assumptions (B1) and (B′

2)− (B′
4) hold, except for the

condition “For any s > 0, P (t, s) > 0 for any t ∈ [0, ω]” in (B′
3). However, we have∫ 2

0
P (t, s)dt = 2.4 1.3s

0.4+s > 0 for any s > 0.
From ds∗(t)

dt = 7.5+6 sinπt−(1+0.5 cosπt)s∗(t), we get the numerical simulation
of s∗(t), see Figure 3(a). By numerical calculation we further get∫ 2

0

Q(t, s∗(t− τ(t)))dt =

∫ 2

0

(0.9 + 0.5 sinπt)
1.2s∗(t− (1 + 1

10 sinπt))

0.6 + s∗(t− (1 + 1
10 sinπt))

dt

≈1.1035 <

∫ 2

0

d(t)dt = 2.2.

The numerical simulations in Figure 3 imply that the open problem given in Remark
6.3 corresponding to Corollary 6.6 may be true.
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Figure 2. (a): the numerical simulation of s∗(t); (b)-(c): the solutions for model (1.5) with the initial
functions (s(η), x(η)) = (0.1 + 0.01i, 0.2 + 0.01i) for all η ∈ [−1, 0], i = 1, 2, ..., 20 converge to a positive
periodic solution as t → ∞.
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Figure 3. (a): the numerical simulation of s∗(t); (b)-(c): the solutions for model (1.4) with the initial
functions (s(η), x(η)) = (6.2 + 0.2i, 0.5 + 0.2i) for all η ∈ [−1.1, 0], i = 1, 2, ..., 20 converge to (s∗(t), 0)
as t → ∞.

Example 7.4. In model (1.5),we take a(t)=0.5+0.4 sin 1
2πt, b(t)=0.4+0.3 cos 1

2πt,
d(t) = 0.8+0.7 sin 1

2πt, P (t, s) = (1.2+0.8 cos 1
2πt)

1.2s
0.2+s , Q(t, s) = (0.8+0.7 sin 1

2πt)
s

0.2+s , c(t, θ)= 1+0.45 cos 2πθ, θ ∈ [−1, 0]. Obviously, model (1.5) is 4-periodic for
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time t. We have ∂P (t,s)
∂s =(1.2+0.8 cos 1

2πt)
0.24

(0.2+s)2 , ∂Q(t,s)
∂s =(0.8+0.7 sin 1

2πt)
0.2

(0.2+s)2

and
∫ 0

−1
(1+0.45 cos 2πθ)dθ=1. It is evident that (B1), (B′

2)− (B′
4) hold.

From ds∗(t)
dt = 0.5 + 0.4 sin 1

2πt − (0.4 + 0.3 cos 1
2πt)s

∗(t), we get the numerical
simulation of s∗(t), see Figure 4(a). By numerical calculation we obtain∫ 4

0

Q(t,

∫ 0

−1

c(t, θ)s∗(t+ θ)dθ)dt

=

∫ 4

0

Q(t,

∫ 0

−1

(1 + 0.45 cos 2πθ)s∗(t+ θ)dθ)dt

=

∫ 4

0

(0.8 + 0.7 sin t)

∫ 0

−1
(1 + 0.45 cos 2πθ)s∗(t+ θ)dθ

0.2 +
∫ 0

−1
(1 + 0.45 cos 2πθ)s∗(t+ θ)dθ

dt ≈ 1.1086

<

∫ 4

0

d(t)dt = 3.2.

From the numerical simulations in Figure 4 we see that the conclusions in Corollary
6.8 are right.
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Figure 4. (a): the numerical simulation of s∗(t); (b)-(c): the solutions for model (1.5) with the initial
functions (s(η), x(η)) = (0.5 + 0.02i, 0.4 + 0.03i) for all η ∈ [−1, 0], i = 1, 2, ..., 20 converge to (s∗(t), 0)
as t → ∞, respectively.

8. Conclusion
In this article, we investigate a nonautonomous chemostat model with general delay
in microorganism growth. A series of criteria on the positivity and ultimate bound-
edness of solutions, uniform persistence and strong persistence of system, global
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attractivity of trivial solution in which microorganisms species x vanishes are es-
tablished by the approaches of reductionism, comparison principle and differential
inequality techniques etc. The corresponding results of uniform persistence and ex-
tinction obtained in [7, 28, 43] are extended to the general delayed nonautonomous
case. For the two special cases of model (1.3), i.e., model (1.4) and model (1.5),
the sufficient criteria for the uniform persistence and strong persistence of microor-
ganism species x are also obtained, respectively. Furthermore, for periodic model
(1.3), we obtain the necessary and sufficient criteria for the existence of positive
periodic solutions, the uniform persistence of microorganism species and the global
attractivity of trivial periodc solution. Additionally, similar results are obtained for
ω-periodic models (1.4) and (1.5). We also see that the main result on the existence
of positive periodic solution established in [1,28] is improved and extended. Finally,
our main theoretical results are illustrated by some special numerical examples.

We see that only one species and one nutrient is investigated in this paper,
biologically, it is more proper to extend the model (1.3) to more general chemostat
models, such as delayed nonautonomous chemostat models with multiple species or
multiple nutrients. In addition, some more general and complicated results, e.g.,
bifurcation, chaos, and the average persistence would be valuable and interesting
research subjects in future.
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