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Abstract This paper is devoted to constructing a modified relaxed gradient
based iterative (MRGI) algorithm to solve the coupled Sylvester-conjugate
matrix equations (CSCMEs) based on the hierarchical identification principle.
Convergence analysis shows that the proposed algorithm is effective for arbi-
trary initial matrices. Further, we apply the MRGI algorithm to study a more
general coupled Sylvester conjugate matrix equations and give a sufficient con-
dition to guarantee that the iterative solution converges to the exact solution.
Two numerical experiments are provided to demonstrate that the MRGI al-
gorithm has better efficiency and accuracy than the three existing algorithms,
which are presented by Wu et al. (2010) and Huang and Ma (2018). Finally,
we derive an application of MRGI algorithm in discrete-time antilinear system.
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1. Introduction
Solving matrix equations is a common research topic in system theory, control
theory and stability analysis [7, 12, 16, 28, 29, 33]. For example, the mean-square
stability of discrete-time Markovian jump linear system

x(k + 1) = Ar(k)x(k), x(0) = x0, r(0) = r0, (1.1)

can be determined by solving coupled discrete-time Markovian jump Lyapunov
matrix equations [16,29]:

Ai(

N∑
j=1

πijPj)A
T
i − Pi + Si = 0, i ∈ I[1, N ]. (1.2)

One of the most important iterative methods is the gradient based iterative (GI)
algorithm. Due to the effectiveness and superiority of GI method, it was enriched by
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many researchers to compute the numerical solutions of various matrix equations.
For instance, Wu et al. solved the solutions to the coupled Sylvester-conjugate
matrix equations [24]

p∑
η=1

(AiηXηBiη + CiηXηDiη) = Fi, i ∈ I[1, N ], (1.3)

the extended Sylvester-conjugate matrix equations [26]

AXB + CXD = F, (1.4)

and a class of complex conjugate and transpose matrix equations [25]
s1∑
l=1

(AlXBl) +

s2∑
l=1

(ClXDl) +

s3∑
l=1

(GlX
THl) +

s4∑
l=1

(MlX
HNl) = F, (1.5)

by the GI method. Huang and Ma [14] gave a new convergence proof of the GI
method for solving Eq.(1.3) and answered the problem proposed by Wu et al. [24].
Song et al. [20] and Hajarian [8] investigated the solutions to the coupled Sylvester
transpose matrix equations

p∑
η=1

(AiηXηBiη + CiηX
T
η Diη) = Fi, i ∈ I[1, N ], (1.6)

and general Sylvester discrete-time periodic (GSDTP) matrix equations
m∑
j=1

(AijXiBij + CijXi+1Dij + EijYiFij +GijYi+1Hij) = Mi, i = 1, 2, · · · , (1.7)

by the GI method, respectively. Zhang et al. [30–32] also extended the GI algorithm
to the case where the unknown matrices are conjugate, transpose and conjugate
transpose, the case where the unknown matrix is nonlinear, the case where the
coefficient matrix is a column (row) reduced-rank matrix. In addition, Wang et
al. [23] provided the optimal convergence factor of the GI algorithm in order to
solve some linear matrix equations. Deghan and Hajarian [4,9] constructed the GI
method for solving the constraint solutions to linear matrix equations.

In order to reduce the time cost of computation, it is necessary to improve the
efficiency of GI method. Hence, several new iterative methods were researched in
recent years. For instance, a relaxed gradient based iterative algorithm [15, 18, 19]
was established to solve the Sylvester matrix equation, the generalized Sylvester
matrix equation and coupled Sylvester matrix equations. Subsequently, a modified
gradient based iterative algorithm [22] was investigated to obtain the solution of the
Sylvester matrix equation. Based on the two iterative methods mentioned above, an
accelerated gradient based iterative algorithm [27] was studied to solve the Sylvester
transpose matrix equation. Besides, there are various iterative methods that aim to
calculate the solutions of some linear equations, the readers are suggested to refer
to [1–3,5, 10,11,13,17,21] for more detailed information.

Inspired by [6,15,24,34], we construct a modified relaxed gradient based iterative
(MRGI) algorithm for solving the coupled Sylvester-conjugate matrix equations
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(CSCMEs)

p∑
j=1

(AijXjBij + CijXjDij) = Fi, i ∈ I[1, q], (1.8)

where Aij , Cij ∈ Cmi×lj , Bij , Dij ∈ Cnj×pi , Fi ∈ Cmi×pi , i ∈ I[1, q], j ∈ I[1, p]
are the given matrices, and Xj ∈ Clj×nj , j ∈ I[1, p] are the unknown matrices.
It should be noted that the MRGI algorithm has not been mentioned in previous
studies. Numerical results illustrate that the proposed algorithm has better conver-
gence performance than the gradient based iterative (GI) algorithm [24], the relaxed
gradient based iterative (RGI) algorithm [15] and the generalized relaxed gradient
based iterative (GRGI) algorithm [15]. Further, we generalize the MRGI algorithm
to a more general coupled Sylvester conjugate matrix equations

si1∑
j=1

Ai1jX1Bi1j +

wi1∑
j=1

Ci1jX1Di1j + · · ·+
sip∑
j=1

AipjXpBipj +

wip∑
j=1

CipjXpDipj = Fi,

(1.9)

for i ∈ I[1, q]. In addition, only a sufficient condition is shown to analyze the
convergence of the GI algorithm in [24]. In this work, by applying real represen-
tation of complex matrix, Kronecker product and vector operator, the necessary
and sufficient conditions are determined to guarantee the convergence of the GI
algorithm [24]. Meanwhile, the optimal convergence factor of the GI algorithm [24]
is gave.

The organization of this work is as follows. Section 2 introduces some impor-
tant preliminaries and lemmas. Section 3 derives a MRGI algorithm to solve the
CSCMEs (1.8). Section 4 shows detailed analysis of the convergence for the MRGI
algorithm and the GI algorithm [24]. Then a class of more general coupled Sylvester-
conjugate matrix equations is considered in Section 5. The numerical results are
given to explore the effectiveness, efficiency and accuracy of the MRGI algorithm
in Section 6 and an application in antilinear system is given in Section 7.

Notations. For A ∈ Cn×n, we use AT , A ,AH and tr(A) to denote the trans-
pose, the conjugate, the conjugate transpose and the trace of A, respectively.
Then σmax(A), σmin(A), λmax(A), λmin(A) and ρ(A) represent the maximal singu-
lar value, the minimal nonzero singular value, the maximal eigenvalue, the minimal
eigenvalue and the spectral radius of the matrix A, respectively. For any integers m
and n with m ≤ n, we denote I[m,n] = {m,m+1, · · · , n}. We use A⊗B to denote
the Kronecker product of two matrices A ∈ Cn×m and B ∈ Cp×q. For a matrix
X = (x1, x2, · · · , xn) ∈ Cm×n, the vector stretching function vec(·) : X → vec(X)
is defined as vec(X) = (xT

1 , x
T
2 , · · · , xT

n )
T . By combining vector operator with Kro-

necker product, we get vec(AXB) = (BT ⊗ A)vec(X). The inner product of two
matrices is defined as ⟨A,B⟩ = tr(AHB) with A,B ∈ Cn×m. The spectral norm of
the matrix A is denoted by ∥A∥2 =

√
λmax(AHA) = σmax(A) and the Frobenious

norm of the matrix A is denoted by ∥A∥F =
√
⟨A,A⟩ =

√
tr(AHA). The symbol

In represents the identity matrix of size n × n and the symbol rand(m), diag(A),
tril(A), triu(A), eye(A) are functions in MATLAB.
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2. Preliminaries
First, the real representation of complex matrix and its properties are reviewed.
The definition of the real representation was first introduced in [17]. Let A ∈ Cm×n

be an arbitrary complex matrix, then A can be uniquely decomposed into the form
of A1 + A2i with A1, A2 ∈ Rm×n. Now we are in a position to define the real
representation of a complex matrix A as

Aσ :=

A1 A2

A2 −A1

 ∈ R2m×2n. (2.1)

Then, let

Aσ := (A)σ, A
T
σ := (AT )σ, A

H
σ := (AH)σ, (2.2)

and

Pj :=

 Ij 0

0 −Ij

 , Qj :=

 0 Ij

−Ij 0

 , (2.3)

where Ij is the identity matrix of size j×j. The properties of the real representation
of complex matrix are given by the following lemmas, which are given in [17].

Lemma 2.1 ( [17]). The properties of real representation matrices.

(1) If A,B ∈ Cm×n, α ∈ R, then
(A+B)σ = Aσ +Bσ,

(αA)σ = αAσ,

PmAσPn = (A)σ;

(2) If A ∈ Cm×n, B ∈ Cn×r, C ∈ Cr×p, then
(AB)σ = AσPnBσ = AσBσPr,

(ABC)σ = AσBσCσ,

QmAσQn = Aσ;

(3) If A ∈ Cm×n, then  (AT )σ = (Aσ)
T ,

(AH)σ = Pn(A
T )σPm;Pn(A

H)σ =
(
PmAσ

)T

,

(AH)σPm =
(
AσPn

)T

.

Lemma 2.2 ( [26]). Given a complex matrix A with appropriate dimensions, the
following relations hold.
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(1) ∥Aσ∥2F = 2∥A∥2F ;
(2) ∥Aσ∥2 = ∥A∥2.

Lemma 2.3 ( [34]). For the complex matrix equation AXB = F , if A is a column-
full rank matrix and B is a row-full rank matrix, then the iterative solution X(k)
generated by the gradient-based iterative algorithm

X(k + 1) = X(k) + µAH(F −AX(k)B)BH , (2.4)

converges to the exact solution X∗ (that is, limk→∞ X(k) = X∗) for any initial
matrix X(0) if and only if

0 ≤ µ ≤ 2

∥A∥22∥B∥22
. (2.5)

Moreover, the best convergence factor µ0 is

µ0 =
2

λmax(AHA)λmax(BHB) + λmin(AHA)λmin(BHB)
. (2.6)

Lemma 2.4 ( [34]). Assume that mi(i = 1, 2, · · · , n) are some given positive scalars.
Denote mmax = max

1≤i≤n
{mi} and mmin = min

1≤i≤n
{mi}. Then

min
0<µ< 2

mmax

max
1≤i≤n

∣∣1− µmi

∣∣ = mmax −mmin

mmax +mmin
. (2.7)

Moreover, the unique µopt such that this relation holds is

µopt =
2

mmax +mmin
. (2.8)

3. The modified relaxed gradient based iterative al-
gorithm

In this section, we present a modified relaxed gradient based iterative (MRGI)
method for solving CSCMEs (1.8) based on the hierarchical identification principle.

First, define the intermediate matrices

Φil := Fi −
p∑

j=1

(AijXjBij + CijXjDij) +AilXlBil, i ∈ I[1, q], l ∈ I[1, p], (3.1)

Ωil := Fi −
p∑

j=1

(AijXjBij + CijXjDij) + CilXlDil, i ∈ I[1, q], l ∈ I[1, p]. (3.2)

Thus, the CSCMEs (1.8) can be decomposed into the following matrix equations

AilXlBil = Φil, i ∈ I[1, q], l ∈ I[1, p], (3.3)

CilXlDil = Ωil, i ∈ I[1, q], l ∈ I[1, p]. (3.4)
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From Lemma 2.3, we can construct the recursive forms as follows,

X1,i
l (k + 1) = Xl(k) + µiA

H
il (Φil −AilXl(k)Bil)B

H
il , i ∈ I[1, q], l ∈ I[1, p], (3.5)

X2,i
l (k + 1) = Xl(k) + µiCil

H
(Ωil − CilXl(k)Dil)Dil

H
, i ∈ I[1, q], l ∈ I[1, p]. (3.6)

Substituting Eqs.(3.1) and (3.2) into Eqs.(3.5) and (3.6), respectively, we get

X1,i
l (k + 1) =Xl(k) + µiA

H
il

[
Fi −

p∑
j=1

(AijXjBij + CijXjDij) +AilXlBil

−AilXl(k)Bil

]
BH

il , i ∈ I[1, q], l ∈ I[1, p], (3.7)

X2,i
l (k + 1) =Xl(k) + µiCil

H
[
Fi −

p∑
j=1

(AijXjBij + CijXjDij) + CilXlDil

− CilXl(k)Dil

]
Dil

H
, i ∈ I[1, q], l ∈ I[1, p]. (3.8)

We can’t implement the algorithms in Eqs.(3.7) and (3.8) through the previous
expressions because their right-hand sides contain the unknown matrices Xj , j ∈
I[1, p]. In order to make the algorithms in Eqs.(3.7) and (3.8)) work, the unknown
matrices Xl, l ∈ I[1, p] in Eqs.(3.7) and (3.8) are respectively replaced with their
corresponding estimates Xl(k), l ∈ I[1, p]. In this way, one can obtain the following
iterative forms for i ∈ I[1, q], l ∈ I[1, p],

X1,i
l (k + 1) = Xl(k) + µiA

H
il

[
Fi −

p∑
j=1

(AijXj(k)Bij + CijXj(k)Dij)

]
BH

il , (3.9)

X2,i
l (k + 1) = Xl(k) + µiCil

H
[
Fi −

p∑
j=1

(AijXj(k)Bij + CijXj(k)Dij)

]
Dil

H
.

(3.10)

Taking the average of X1,i
l (k), X2,i

l (k), i ∈ I[1, q], one can obtain the following
iterative algorithm,

Xi
l (k + 1) =

X1,i
l (k + 1) +X2,i

l (k + 1)

2

=Xl(k) +
µi

2
AH

il

[
Fi −

p∑
j=1

(AijXj(k)Bij + CijXj(k)Dij)

]
BH

il +
µi

2
Cil

H

×
[
Fi −

p∑
j=1

(AijXj(k)Bij + CijXj(k)Dij)

]
Dil

H
, i ∈ I[1, q], l ∈ I[1, p]. (3.11)

Next some suitable positive numbers ωi, i ∈ I[1, q] called as relaxed factors are
introduced and used to update Xl(k + 1), l ∈ I[1, p]. These relaxed factors satisfy∑q

i=1 ωi = 1 and 0 < ωi < 1.

Xl(k + 1) = ω1X
1
l (k + 1) + ω2X

2
l (k + 1) + · · ·+ ωqX

q
l (k + 1), l ∈ I[1, p]. (3.12)
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Next, we summarize three existing algorithms for solving CSCMEs (1.8).

Algorithm 3.1.( [24, The gradient based iterative (GI) algorithm])
Step 1. Input matrices Aij , Cij ∈ Cmi×lj , Bij , Dij ∈ Cnj×pi , Fi ∈ Cmi×pi , i ∈

I[1, q], j ∈ I[1, p], give any small positive number ε. Choose the initial matrices
Xj(0), j ∈ I[1, p], set k := 0;

Step 2. If δk =

q∑
i=1

∥Fi−
p∑

j=1
(AijXj(k)Bij+CijXj(k)Dij)∥F

p∑
i=1

∥Fi∥F

< ε, stop; otherwise, go to

Step 3;
Step 3. For l ∈ I[1, p], update the sequences

Xl(k + 1) = Xl(k) +
µ
2q

q∑
i=1

AH
il

[
Fi −

p∑
j=1

(AijXj(k)Bij + CijXj(k)Dij)

]
BH

il

+ µ
2q

q∑
i=1

Cil
H
[
Fi −

p∑
j=1

(AijXj(k)Bij + CijXj(k)Dij)

]
Dil

H
;

Step 4. Set k:=k+1, return to Step 2.

Algorithm 3.2. ( [15, The relaxed gradient based iterative (RGI) algorithm])
Step 1. Input matrices Aij , Cij ∈ Cmi×lj ,Bij , Dij ∈ Cnj×pi , Fi ∈ Cmi×pi , i ∈

I[1, q], j ∈ I[1, p]. Give any small positive number ε and appropriative positive
numbers ωl such that 0 < ωl < 1, l ∈ I[1, p]. Choose the initial matrices Xj(0), j ∈
I[1, p], set k := 1;

Step 2. Choose the initial matrices X
(1)
l (0) and X

(2)
l (0), l ∈ I[1, p]. Compute

Xl(0) = ωlX
(1)
l (0) + (1− ωl)X

(2)
l (0), l ∈ I[1, p], set k := 1;

Step 3. If δk,i =
∥Fi−

∑p
j=1(AijXj(k)Bij+CijXj(k)Dij)∥

∥Fi∥ < ε, stop; otherwise, go to
Step 4;

Step 4. For l ∈ I[1, p], update the sequences

X
(1)
l (k) = X

(1)
l (k−1)+(1−ωl)µ

q∑
i=1

AH
il

[
Fi−

p∑
j=1

(AijXj(k)Bij+CijXj(k)Dij)

]
BH

il ,

X
(2)
l (k) = X

(2)
l (k−1)+ωlµ

q∑
i=1

Cil
H
[
Fi −

p∑
j=1

(AijXj(k)Bij + CijXj(k)Dij)

]
Dil

H
.

Compute Xl(k) = ωlX
(1)
l (k) + (1− ωl)X

(2)
l (k), l ∈ I[1, p];

Step 5. Set k := k + 1, return to Step 3.

Algorithm 3.3. ( [15, The generalized relaxed gradient based iterative (GRGI)
algorithm)])

Step 1. Input matrices Aij , Cij ∈ Cmi×lj ,Bij , Dij ∈ Cnj×pi , Fi ∈ Cmi×pi , i ∈
I[1, q], j ∈ I[1, p]. Give any small positive number ε and appropriative positive
numbers αi such that αi > 0, i ∈ I[1, q]. Choose the initial matrices Xj(0), j ∈
I[1, p], set k := 1;

Step 2. Choose initial matrices X
(1)
l (0) and X

(2)
l (0), l ∈ I[1, p]. Compute

Xl(0) = ωlX
(1)
l (0) + (1− ωl)X

(2)
l (0), l ∈ I[1, p], set k := 1;
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Step 3. If δk,i =
∥Fi−

∑p
j=1(AijXj(k)Bij+CijXj(k)Dij)∥

∥Fi∥ < ε, stop; otherwise, go to
Step 4.

Step 4. For l ∈ I[1, p], update the sequences

X
(1)
l (k) = X

(1)
l (k − 1) +

µ

2

{
AH

1l

[
F1 −

p∑
j=1

(A1jXj(k − 1)B1j + C1jXj(k − 1)D1j)
]

×BH
1l + CT

1l

[
F1 −

p∑
j=1

(A1jXj(k − 1)B1j + C1jXj(k − 1)D1j)
]
DT

1l

}
,

...
...

...

X
(q)
l (k) = X

(q)
l (k − 1) +

µ

2

{
AH

ql

[
Fq −

p∑
j=1

(AqjXj(k − 1)Bqj + CqjXj(k − 1)Dqj)
]

×BH
ql + CT

ql

[
Fq −

p∑
j=1

(AqjXj(k − 1)Bqj + CqjXj(k − 1)Dqj)
]
DT

ql

}
.

Compute Xl(k) = α1X
(1)
l (k) + α2X

(2)
l (k) + · · ·+ αqX

(q)
l (k), l ∈ I[1, p];

Step 5. Set k =: k + 1, return to Step 3.

Summing up Eqs.(3.9)-(3.12), we get the following MRGI algorithm for solving
CSCMEs (1.8).

Algorithm 3.4. (The modified relaxed gradient based iterative (MRGI) algorithm)
Step 1. Input matrices Aij , Cij ∈ Cmi×lj ,Bij , Dij ∈ Cnj×pi , Fi ∈ Cmi×pi , i ∈

I[1, q], j ∈ I[1, p]. Give any small positive number ε and appropriative positive
numbers ωi, i = 1, 2, . . . , p such that

∑p
i=1 ωi = 1. Choose the initial matrices

Xj(0), j ∈ I[1, p], set k := 1.

Step 2. If δk =

q∑
i=1

∥Fi−
p∑

j=1
(AijXj(k)Bij+CijXj(k)Dij)∥F

p∑
i=1

∥Fi∥F

< ε, stop; otherwise, go to

Step 3.
Step 3. For i ∈ I[1, q], l ∈ I[1, p], update the sequences

Xi
l (k + 1) = Xl(k) +

µi

2
AH

il

[
Fi −

p∑
j=1

(AijXj(k)Bij + CijXj(k)Dij)

]
BH

il

+
µi

2
Cil

H
[
Fi −

p∑
j=1

(AijXj(k)Bij + CijXj(k)Dij)

]
Dil

H
,

Xl(k + 1) = ω1X
1
l (k + 1) + ω2X

2
l (k + 1) + · · ·+ ωqX

q
l (k + 1);

Step 4. Set k := k + 1, return to Step 2.
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4. Convergence analysis
First, we discuss the convergence properties of the MRGI algorithm. For conve-
nience, we introduce the following notation,

A :=


(
Pn1(B11)σ

)T ⊗
(
(A11)σPl1

)
+
(
D11

)T
σ
⊗
(
C11

)
σ
· · · · · ·

...
...

...(
Pn1(Bq1)σ

)T ⊗
(
(Aq1)σPl1

)
+
(
Dq1

)T
σ
⊗

(
Cq1

)
σ
· · · · · ·

· · · · · ·
(
Pnp(B1p)σ

)T ⊗
(
(A1p)σPlp

)
+

(
D1p

)T
σ
⊗
(
C1p

)
σ

...
...

...

· · · · · ·
(
Pnp(Bqp)σ

)T ⊗
(
(Aqp)σPlp

)
+

(
Dqp

)T
σ
⊗

(
Cqp

)
σ

 . (4.1)

It is easy to see A ∈ R
∑q

i=1 4mipi×
∑p

j=1 4nj lj . Then, we have the following results.

Lemma 4.1. The CSCMEs (1.8) have unique solutions if and only if the matrix A
is nonsingular, the unique solution is given by

vec((X1)σ)

vec((X2)σ)

...

vec((Xp)σ)


= A−1



vec((F1)σ)

vec((F2)σ)

...

vec((Fp)σ)


, (4.2)

and the corresponding homogeneous matrix equations
∑p

j=1(AijXjBij+CijXjDij) =
0, i ∈ I[1, q], have the unique solutions X1 = X2 = · · · = Xp = 0.

Proof. Apply the real representation of the complex matrix to CSCMEs (1.8),
one has

p∑
j=1

[
(Aij)σPlj(Xj)σPnj(Bij)σ + (Cij)σ(Xj)σ(Dij)σ

]
= (Fi)σ, i ∈ I[1, q]. (4.3)

By using Kronecker products of matrices and vector stretching operator, the pre-
ceding expression can be transformed into Ax = f with

x =



vec((X1)σ)

vec((X2)σ)

...

vec((Xp)σ)


, f =



vec((F1)σ)

vec((F2)σ)

...

vec((Fp)σ)


, (4.4)

where A is given by (4.1). Therefore, the CSCMEs (1.8) have unique solutions if
and only if the matrix A is nonsingular. The conclusion follows immediately.
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Theorem 4.1. Suppose that the CSCMEs (1.8) have a unique solution (X∗
1 , X

∗
2 ,

· · · , X∗
p ). If µi satisfies

0 < µi <
4

qωi

p∑
l=1

(∥Ail∥22∥Bil∥22 + ∥Cil∥22∥Dil∥22)
, (4.5)

then the iterative sequences Xl(k), l ∈ I[1, p] generated by the Algorithm 3.4 converge
to (X∗

1 , X
∗
2 , · · · , X∗

p ), i.e., limk→∞ Xl(k) = X∗
l , l ∈ I[1, p] or the error matrices

Xl(k)−X∗
l , l ∈ I[1, p] converge to zero for any initial values Xl(0), l ∈ I[1, p], where

(·)σ is the real representation of complex matrix.

Proof. Define the error matrices

X̃l(k) := Xl(k)−X∗
l , l ∈ I[1, p], (4.6)

and

θi(k) := Fi −
p∑

j=1

(AijXj(k)Bij + CijXj(k)Dij), i ∈ I[1, q]. (4.7)

From Eq.(4.7), it is easy to derive

θi(k) = −
p∑

j=1

(AijX̃j(k)Bij + CijX̃j(k)Dij), i ∈ I[1, q]. (4.8)

It follows from Algorithm 3.4 that

X̃l(k + 1) = Xl(k + 1)−X∗
l =

q∑
i=1

ωiX
i
l (k + 1)−X∗

l =

q∑
i=1

ωi[X
i
l (k + 1)−X∗

l ]

=

q∑
i=1

ωi
X1,i

l (k + 1)−X∗
l +X2,i

l (k + 1)−X∗
l

2

=

q∑
i=1

ωi
2X̃l(k) + µi(A

H
il θi(k)B

H
il + Cil

H
θi(k)Dil

H
)

2

= X̃l(k) +

q∑
i=1

ωiµi
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H

2
. (4.9)

Thus, by the properties of norm, one has

∥X̃l(k + 1)∥2F =
∥∥∥X̃l(k) +

q∑
i=1

ωiµi
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H

2

∥∥∥2
F

=∥X̃l(k)||2F +
∥∥∥ q∑

i=1

ωiµi
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H

2

∥∥∥2
F

+ tr

[
X̃l(k)

H

q∑
i=1

(ωiµi
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H

2
)

]
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+ tr

[ q∑
i=1

(ωiµi
Bilθi(k)

HAil +Dilθi(k)
H
Cil

2
)X̃l(k)

]

=∥X̃l(k)∥2F +
∥∥∥ q∑

i=1

ωiµi
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H

2

∥∥∥2
F

+
1

2
tr

( q∑
i=1

ωiµiX̃l(k)
HAH

il θi(k)B
H
il

)

+
1

2
tr

( q∑
i=1

ωiµiX̃l(k)
HCil

H
θi(k)Dil

H
)

+
1

2
tr

( q∑
i=1

ωiµiBilθi(k)
HAilX̃l(k)

)

+
1

2
tr

( q∑
i=1

ωiµiDilθi(k)
H
CilX̃l(k)

)
. (4.10)

Moreover, note that the following expression is real,

tr

( q∑
i=1

ωiµiX̃l(k)
HCil

H
θi(k)Dil

H
)
+ tr

( q∑
i=1

ωiµiDilθi(k)
H
CilX̃l(k)

)
. (4.11)

Therefore, we get

tr

( q∑
i=1

ωiµiX̃l(k)
HCil

H
θi(k)Dil

H
)
+ tr

( q∑
i=1

ωiµiDilθi(k)
H
CilX̃l(k)

)

=tr

( q∑
i=1

ωiµiX̃l(k)
H

CH
il θi(k)D

H
il

)
+ tr

( q∑
i=1

ωiµiDilθi(k)
HCilX̃l(k)

)
, (4.12)

and

tr

( q∑
i=1

ωiµiX̃l(k)
HAH

il θi(k)B
H
il

)
+ tr

( q∑
i=1

ωiµiX̃l(k)
HCil

H
θi(k)Dil

H
)

+ tr

( q∑
i=1

ωiµiBilθi(k)
HAilX̃l(k)

)
+ tr

( q∑
i=1

ωiµiDilθi(k)
H
CilX̃l(k)

)

=tr

[ q∑
i=1

ωiµi

(
BH

il X̃l(k)
HAH

il +DH
il X̃l(k)

H

CH
il

)
θi(k)

]

+ tr

[ q∑
i=1

ωiµiθi(k)
H
(
AilX̃l(k)Bil + CilX̃l(k)Dil

)]
. (4.13)

So Eq.(4.10) becomes

∥X̃l(k + 1)∥2F

=∥X̃l(k)∥2F +
∥∥∥ q∑

i=1

ωiµi
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H

2

∥∥∥2
F
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+
1

2
tr

[ q∑
i=1

ωiµi

(
BH

il X̃l(k)
HAH

il +DH
il X̃l(k)

H

CH
il

)
θi(k)

]

+
1

2
tr

[ q∑
i=1

ωiµiθi(k)
H
(
AilX̃l(k)Bil + CilX̃l(k)Dil

)]
. (4.14)

Adding all ||X̃l(k + 1)||2F , l ∈ I[1, q] on both sides of Eq.(4.14), we have

p∑
l=1

∥X̃l(k + 1)∥2F

=

p∑
l=1

∥X̃l(k)∥2F +

p∑
l=1

∥
q∑

i=1

ωiµi
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H

2
∥2F

+
1

2

p∑
l=1

tr

[ q∑
i=1

ωiµi

(
BH

il X̃l(k)
HAH

il +DH
il X̃l(k)

H

CH
il

)
θi(k)

]

+
1

2

p∑
l=1

tr

[ q∑
i=1

ωiµiθi(k)
H
(
AilX̃l(k)Bil + CilX̃l(k)Dil

)]
. (4.15)

It is easy to know that∥∥∥∥ q∑
i=1

ωiµi
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H

2

∥∥∥∥2
F

=

q∑
i=1

ω2
i µ

2
i

4

∥∥∥AH
il θi(k)B

H
il + Cil

H
θi(k)Dil

H
∥∥∥2
F

+
∑

1≤i̸=j≤q

ωiµiωjµj

4
tr

[(
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H
)H

× (AH
jlθj(k)B

H
jl + Cjl

H
θj(k)Djl

H
)

]
=

q∑
i=1

ω2
i µ

2
i

4

∥∥∥AH
il θi(k)B

H
il + Cil

H
θi(k)Dil

H
∥∥∥2
F

+
∑

1≤i̸=j≤q

ωiµiωjµj

4
⟨AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H
,

AH
jlθj(k)B

H
jl + Cjl

H
θj(k)Djl

H⟩

≤
q∑

i=1

ω2
i µ

2
i

4

∥∥∥AH
il θi(k)B

H
il + Cil

H
θi(k)Dil

H
∥∥∥2
F

+
∑

1≤i̸=j≤q

ωiµiωjµj

4

∥∥∥AH
il θi(k)B

H
il + Cil

H
θi(k)Dil

H
∥∥∥
F

×
∥∥∥AH

jlθj(k)B
H
jl + Cjl

H
θj(k)Djl

H
∥∥∥
F

≤
q∑

i=1

ω2
i µ

2
i

4

∥∥∥AH
il θi(k)B

H
il + Cil

H
θi(k)Dil

H
∥∥∥2
F
+

∑
1≤i ̸=j≤q

[
ω2
i µ

2
i

8

∥∥∥AH
il θi(k)B

H
il
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+ Cil
H
θi(k)Dil

H
∥∥∥2
F
+

ω2
jµ

2
j

8

∥∥∥AH
jlθj(k)B

H
jl + Cjl

H
θj(k)Djl

H
∥∥∥2
F

]
=
q

4

q∑
i=1

ω2
i µ

2
i

∥∥∥AH
il θi(k)B

H
il + Cil

H
θi(k)Dil

H
∥∥∥2
F
. (4.16)

Moreover, we have∥∥∥AH
il θi(k)B

H
il + Cil

H
θi(k)Dil

H
∥∥∥2
F

=
1

2

∥∥∥(AH
il θi(k)B

H
il + Cil

H
θi(k)Dil

H
)σ

∥∥∥2
F

=
1

2

∥∥∥(AH
il )σPmi(θi(k))σPpi(B

H
il )σ + (Cil

H
)σ(θi(k))σ(Dil

H
)σ

∥∥∥2
F

≤1

2

(
∥(AH

il )σ∥22∥Pmi∥22∥(θi(k))σ∥2F ∥Ppi∥22∥(BH
il )σ∥22

+ ∥(Cil
H
)σ∥22∥(θi(k))σ∥2F ∥(Dil

H
)σ∥22

)
=
1

2

(
2∥AH

il ∥22∥θi(k)∥2F ∥BH
il ∥22 + 2∥Cil

H∥22∥θi(k)∥2F ∥Dil
H∥22

)
=
(
∥Ail∥22∥Bil∥22 + ∥Cil∥22∥Dil∥22

)
∥θi(k)∥2F . (4.17)

Substituting Eq.(4.17) into Eq.(4.16) we get∥∥∥∥ q∑
i=1

ωiµi
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H

2

∥∥∥∥2
F

≤q

4

q∑
i=1

ω2
i µ

2
i

(
∥Ail∥22∥Bil∥22 + ∥Cil∥22∥Dil∥22

)
∥θi(k)∥2F . (4.18)

From Eq.(4.18), one has
p∑

l=1

∥∥∥∥ q∑
i=1

ωiµi
AH

il θi(k)B
H
il + Cil

H
θi(k)Dil

H

2

∥∥∥∥2
F

≤q

4

p∑
l=1

q∑
i=1

ω2
i µ

2
i

(
∥Ail∥22∥Bil∥22 + ∥Cil∥22∥Dil∥22

)
∥θi(k)∥2F . (4.19)

By the relations Eqs.(4.8), (4.15) and (4.19), one can get
p∑

l=1

∥∥∥X̃l(k + 1)
∥∥∥2
F

≤
p∑

l=1

∥X̃l(k)∥2F +
q

4

p∑
l=1

q∑
i=1

ω2
i µ

2
i

(
∥Ail∥22∥Bil∥22 + ∥Cil∥22∥Dil∥22

)
∥θi(k)∥2F

+
1

2

p∑
l=1

tr

[ q∑
i=1

ωiµi

(
BH

il X̃l(k)
HAH

il +DH
il X̃l(k)

H

CH
il

)
θi(k)

]

+
1

2

p∑
l=1

tr

[ q∑
i=1

ωiµiθi(k)
H
(
AilX̃l(k)Bil + CilX̃l(k)Dil

)]
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=

p∑
l=1

∥X̃l(k)∥2F +
q

4

p∑
l=1

q∑
i=1

ω2
i µ

2
i

(
∥Ail∥22∥Bil∥22 + ∥Cil∥22∥Dil∥22

)
∥θi(k)∥2F

+
1

2

q∑
i=1

ωiµitr

[ p∑
l=1

(
BH

il X̃l(k)
HAH

il +DH
il X̃l(k)

H

CH
il

)
θi(k)

]

+
1

2

q∑
i=1

ωiµitr

[ p∑
l=1

θi(k)
H
(
AilX̃l(k)Bil + CilX̃l(k)Dil

)]

=

p∑
l=1

∥X̃l(k)∥2F +
q

4

p∑
l=1

q∑
i=1

ω2
i µ

2
i

(
∥Ail∥22∥Bil∥22 + ∥Cil∥22∥Dil∥22

)
∥θi(k)∥2F

− 1

2

q∑
i=1

ωiµitr

[
θi(k)

Hθi(k)

]
− 1

2

q∑
i=1

ωiµitr

[
θi(k)

Hθi(k)

]

=

p∑
l=1

∥X̃l(k)∥2F +
q

4

p∑
l=1

q∑
i=1

ω2
i µ

2
i

(
∥Ail∥22∥Bil∥22 + ∥Cil∥22∥Dil∥22

)
∥θi(k)∥2F

−
q∑

i=1

ωiµi∥θi(k)∥2F

=

p∑
l=1

∥X̃l(k)∥2F −
q∑

i=1

ωiµi

[
1− q

4
ωiµi

p∑
l=1

(
∥Ail∥22∥Bil∥22 + ∥Cil∥22∥Dil∥22

)]
× ∥θi(k)∥2F

=

p∑
l=1

∥X̃l(0)∥2F −
q∑

i=1

ωiµi

[
1− q

4
ωiµi

p∑
l=1

(
∥Ail∥22∥Bil∥22 + ∥Cil∥22∥Dil∥22

)]

×
k∑

j=0

∥θi(j)∥2F .

Thus, if the convergence factors are chosen to satisfy Eq.(4.5), then for any initial
values Xl(0), l ∈ I[1, p], one has

∞∑
j=1

q∑
i=1

∥θi(j)∥2F < ∞. (4.20)

This implies that

lim
k→∞

θi(k) = 0, i ∈ I[1, q]. (4.21)

Therefore, we obtain

lim
k→∞

p∑
j=1

(AijXj(k)Bij + CijXj(k)Dij) = Fi, i ∈ I[1, q]. (4.22)

It follows that

lim
k→∞

Xl(k) = X∗
l , l ∈ I[1, p]. (4.23)

So the desire result follows.
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In the following, we study the necessary and sufficient conditions of convergence
for Algorithm 3.1 and consider the optimal µ value to make it converge in the
maximum convergence rate. This result can be stated as Theorem 4.2. The proof
of this theorem has the same line as Theorem 3.1 and 4.1 in Huang and Ma [14].
However, it uses a different real representation matrix as a tool in this paper with
that in [14]. For convenience, we rewrite the proof of this theorem.

Theorem 4.2. Suppose that the CSCMEs (1.8) have a unique solution (X(1)∗,
X(2)∗, · · · , X(p)∗), then the GI algorithm yields limk→∞ Xl(k) = X∗

l , l ∈ I[1, p] for
any initial matrices Xl(0), l ∈ I[1, p] if and only if

0 < µ <
4q

σ2
max(A)

. (4.24)

Moreover, the F-convergence rate of the GI algorithm is maximized if

µ = µopt =
4q

σ2
max(A) + σ2

min(A)
, (4.25)

where the matrix A is defined in Eq.(4.1).

Proof. Subtract X∗
l , l ∈ [1, p] on both sides of Algorithm 3.1, we get

X̃l(k + 1) = X̃l(k)−
µ

2q

q∑
i=1

[
AH

il

p∑
j=1

(
AijX̃j(k)Bij + CijX̃j(k)Dij

)
BH

il

+ CT
il

p∑
j=1

(
AijX̃j(k)Bij + CijX̃j(k)Dij

)
DT

il

]

= X̃l(k)−
µ

2q

q∑
i=1

p∑
j=1

[
AH

il

(
AijX̃j(k)Bij + CijX̃j(k)Dij

)
BH

il

+ CT
il

(
AijX̃j(k)Bij + CijX̃j(k)Dij

)
DT

il

]
, (4.26)

where X̃l(k) = Xl(k)−X∗
l , l ∈ I[1, p]. Combining this relation with the real repre-

sentation of complex matrix, one has(
X̃l(k + 1)

)
σ

=
(
X̃l(k)

)
σ
− µ

2q

q∑
i=1

p∑
j=1

[
(AH

il )σPmi

(
AijX̃j(k)Bij + CijX̃j(k)Dij

)
σ

× Ppi(B
H
il )σ + (CT

il )σ

(
AijX̃j(k)Bij + CijX̃j(k)Dij

)
σ
(DT

il )σ

]
. (4.27)

Taking the vec-operator on both sides of above relation, we can obtain

vec
[(
X̃l(k + 1)

)
σ

]
= vec

[(
X̃l(k)

)
σ

]
−

q∑
i=1

p∑
j=1

µ

2q

[(
Ppi(B

H
il )σ

)T ⊗
(
(AH

il )σPmi

)
+
(
(DT

il )σ
)T ⊗

(
CT

il

)
σ

]
vec

[(
AijX̃j(k)Bij + CijX̃j(k)Dij

)
σ

]
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= vec
[(
X̃l(k)

)
σ

]
−

q∑
i=1

p∑
j=1

µ

2q

[(
Pnj(Bil)σ

)
⊗
(
(Ail)σPlj

)T
+ (Dil)σ ⊗

(
Cil

)T
σ

]

× vec

[
(Aij)σPlj(X̃j(k))σPnj(Bij)σ + (Cij)σ(X̃j(k))σ(Dij)σ

]
= vec

[(
X̃l(k)

)
σ

]
−

q∑
i=1

p∑
j=1

µ

2q

[(
Pnj(Bil)σ ⊗

(
(Ail)σPlj

)T
+ (Dil)σ ⊗

(
Cil

)T
σ

]

×
[(
Pnj(Bij)σ

)T ⊗
(
(Aij)σPlj

)
+
(
Dij

)T
σ
⊗
(
Cij

)
σ

]
vec

[(
X̃j(k)

)
σ

]
= vec

[(
X̃l(k)

)
σ

]
−

q∑
i=1

p∑
j=1

µ

2q

[(
Pnj(Bil)σ

)T ⊗
(
(Ail)σPlj

)
+

(
Dil

)T
σ
⊗

(
Cil

)
σ

]T
×
[(
Pnj(Bij)σ

)T ⊗
(
(Aij)σPlj

)
+

(
Dij

)T
σ
⊗
(
Cij

)
σ

]
vec

[(
X̃j(k)

)
σ

]
. (4.28)

So we have

vec
[
X̃σ(k + 1)

]
= vec

[
X̃σ(k)

]
− µ

2q
ATAvec

[
X̃σ(k)

]
= (I − µ

2q
ATA)vec

[
X̃σ(k)

]
, (4.29)

where vec
[
X̃σ(k)

]
=
[[
vec((X̃1(k))σ)

]T
,
[
vec((X̃2(k))σ)

]T
, · · · ,

[
vec((X̃p(k))σ)

]T ]T
.

This equation is a linear matrix equation with the coefficient matrix Υ := I −
µ
2qA

TA. Thus, the gradient based iterative algorithm converges for any initial
matrices Xl(0), l ∈ I[1, p] if and only if ρ(Υ) < 1. Since ATA is a symmetric
matrix, we have

ρ(Υ) = max
1≤i≤

∑p
j=1 4nj lj

|λi(Υ)| = max
1≤i≤

∑p
j=1 4nj lj

|1− µ

2q
λi(ATA)| < 1. (4.30)

Therefore, we have 0 < µ < 4q
σ2
max(A) . According to Lemma 2.4, if

µ = µopt =
4q

σ2
max(A) + σ2

min(A)
, (4.31)

then the maximal convergence rate of Algorithm 3.1 can be reached.

5. A more general case
In this section, we extend the idea of Algorithm 3.4 to solve a more general coupled
Sylvester conjugate matrix equations
si1∑
j=1

Ai1jX1Bi1j +

wi1∑
j=1

Ci1jX1Di1j + · · ·+
sip∑
j=1

AipjXpBipj +

wip∑
j=1

CipjXpDipj = Fi,

(5.1)

where Aiηj , Ciηj ∈ Cmi×rη , Biηj , Diηj ∈ Csη×ni , i ∈ I[1, N ], η ∈ I[1, p] are the given
matrices, and Xη ∈ Crη×sη , η ∈ I[i, p] are the unknown matrices to be determined.
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In the same way, the iterative algorithm of the equations (5.1) is constructed as
follows,

X1,i
l (k + 1) =Xl(k) + µi

sil∑
j=1

AH
ilj

[
Fi −

( p∑
u=1

siu∑
t=1

AiutXu(k)Biut

+

p∑
u=1

wiu∑
t=1

CiutXu(k)Diut

)]
BH

ilj , (5.2)

X2,i
l (k + 1) =Xl(k) + µi

wil∑
j=1

Cilj
H
[
Fi −

( p∑
u=1

siu∑
t=1

AiutXu(k)Biut

+

p∑
u=1

wiu∑
t=1

CiutXu(k)Diut

)]
Dilj

H
, (5.3)

Xi
l (k + 1) =

X1,i
l (k + 1) +X2,i

l (k + 1)

2

=Xl(k) +
µi

2

sil∑
j=1

AH
ilj

[
Fi −

( p∑
u=1

siu∑
t=1

AiutXu(k)Biut

+

p∑
u=1

wiu∑
t=1

CiutXu(k)Diut

)]
BH

ilj

+
µi

2

wil∑
j=1

Cilj
H
[
Fi −

( p∑
u=1

siu∑
t=1

AiutXu(k)Biut

+

p∑
u=1

wiu∑
t=1

CiutXu(k)Diut

)]
Dilj

H
, (5.4)

Xl(k + 1) =ω1X
1
l (k + 1) + ω2X

2
l (k + 1) + · · ·+ ωqX

q
l (k + 1), l ∈ I[1, p]. (5.5)

Similar to Theorem 4.1, we have the following Theorem 5.1 and its proof is
omitted here.

Theorem 5.1. If the equations (5.1) have a unique solution (X1∗, X2∗, · · · , Xp∗),
then the iterative solution Xl(k), l ∈ I[1, p] given by algorithm (5.2)-(5.5) converge
to Xl∗, l ∈ I[1, p] for arbitrary initial values Xl(0), l ∈ I[1, p] if

0 < µi <
4

qωi

p∑
l=1

( sil∑
j=1

∥Ailj∥2F ∥Bilj∥2F +

wil∑
j=1

∥Cilj∥2F ∥Dilj∥2F
) . (5.6)

6. Numerical examples
In this section, two numerical examples are presented to show the effectiveness
of the MRGI Method. All the computations are performed on Intel Pentium(R)
Dual-Core CPU T4300 XP system by using MATLAB 7.0.

Example 6.1. In this example, we consider the generalized coupled Sylvester-
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conjugate matrix equationsA11X1B11 + C11X1D11 +A12X2B12 + C12X2D12 = F1,

A21X1B21 + C21X1D21 +A22X2B22 = F2,
(6.1)

with the following coefficient matrices:

A11 =

2− 2i 2i

8 + i 2 + 3i

 , B11 =

 0.5− i −1 + 3i

−1.5 + 2i 1− 2i

 , C11 =

 4i 2 + 2i

3 + 2.5i i

 ,

C12 =

 1 + 3i 4− i

2− 3i 1 + 2i

 , D12 =

 1 + 2.5i −3 + i

−1− 0.5i −1 + 2i

 , D21 =

 4− i 1.5− i

i −2 + 2i

 ,

D11 =

−2 + i 3i

−1 3 + i

 , A12 =

1− 1.5i 3i

−2 + 3i 4

 , B12 =

 1− 2i −1 + 4i

−1 + 3i 1

 ,

B21 =

−1− i −3i

5 1 + 2i

 , C21 =

 −1− i 2− i

−2 + 3i 1 + 2i

 , B22 =

3 + i 2 + 3i

3 1− 7i

 ,

A22 =

 1− 4i 1 + i

−1 + 3i 2

 , A21 =

−1 + 0.5i 0.5

1− 2i −2.5 + 1.5i

 ,

F1 =

74 + 52.5i −124 + 38.5i

23 + 44.5i −134 + 83i

 , F2 =

 18− 6i −23− 17i

−21.5− 27.5i 103 + 22.5i

 .

These matrix equations have a unique solution

X1 =

 1 + i 2− 3i

−1 + 2i −2 + 3i

 , X2 =

 2 + i 3 + i

3 + 2i 1 + 2i

 .

Choose X1(0) = X2(0) = Xi
1(0) = Xi

2(0) = 10−6 × I2 for i = 1, 2 as the initial
iterative matrices and define the relative iterative error is

f(k) =

√
||X1(k)−X1||2 + ||X2(k)−X2||2

||X1||2 + ||X2||2
, (6.2)

where X1(k) and X2(k) are the kth solution of the corresponding matrix equations.
The relative residual of these algorithms is illustrated in Figure 1, in which it

can be concluded that the efficiency of the MRGI algorithm is faster than the GI
algorithm in Wu et al. [24], the RGI algorithm in Huang and Ma [15] and the GRGI
algorithm in Huang and Ma [15].

In Table 1, it is clear that the iterative solution obtained by the MRGI algo-
rithm converges to the exact solution with the increase of iteration number k. In
addition, the iterative steps, relative residual and computational time results are
given in Table 2 and 3. We can seen the advantages of the proposed algorithm in
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convergence accuracy and efficiency by comparing these results.
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Figure 1. Comparison of convergence curve

Table 1. The iterative solution for the MRGI algorithm with µ1 = 2.2 × 10−3, µ2 = 1.8 × 10−3 and
ω1 = 0.4, ω2 = 0.6

k X1 X2

200
[

0.7453 + 1.0247i 2.1434− 2.9552i

−0.7792 + 1.6749i −1.5885 + 3.2316i

] [
2.0322 + 0.6542i 2.9387 + 0.8960i

3.2106 + 1.9661i 0.9123 + 1.8146i

]

400
[

0.8835 + 1.0113i 2.0696− 2.9755i

−0.8953 + 1.8465i −1.8154 + 3.1092i

] [
2.0165 + 0.8460i 2.9730 + 0.9507i

3.0941 + 1.9933i 0.9600 + 1.9137i

]

600
[

0.9467 + 1.0053i 2.0325− 2.9884i

−0.9513 + 1.9291i −1.9157 + 3.0504i

] [
2.0077 + 0.9298i 2.9876 + 0.9773i

3.0427 + 1.9978i 0.9813 + 1.9602i

]

800
[

0.9755 + 1.0025i 2.0150− 2.9946i

−0.9776 + 1.9674i −1.9613 + 3.0232i

] [
2.0035 + 0.9678i 2.9943 + 0.9895i

3.0195 + 1.9991i 0.9914 + 1.9817i

]

1000
[

0.9888 + 1.0011i 2.0069− 2.9975i

−0.9897 + 1.9850i −1.9823 + 3.0106i

] [
2.0016 + 0.9852i 2.9974 + 0.9952i

3.0090 + 1.9996i 0.9960 + 1.9916i

]

Solution
[

1 + i 2− 3i

−1 + 2i −2 + 3i

] [
2 + i 3 + i

3 + 2i 1 + 2i

]

Table 2. Iterative steps, relative residual and computational time results

Method Steps f(k) Time (s)
GI algorithm in Wu et al. [24] 4819 9.5817× 10−4 2.5238
RGI algorithm in in Huang and Ma [15] 3332 9.5753× 10−4 1.7718
GRGI algorithm in in Huang and Ma [15] 2425 9.5582× 10−4 0.7904
MRGI algorithm in this paper 1327 9.5180× 10−4 0.7798
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Table 3. The relative iterative error versus the number of iterations k for the GI algorithm in Wu et
al. [24], the RGI algorithm in Huang and Ma [15], the GRGI algorithm in Huang and Ma [15] and the
MRGI algorithm in this paper

f(k) k
GI algorithm RGI algorithm GRGI algorithm MRGI algorithm

0.1 693 479 349 210
0.01 2731 1888 1374 753
0.001 4738 3276 2384 1304

Example 6.2. We consider the following coupled Sylvester conjugate matrix equa-
tions A11X1B11 + C11X1D11 +A12X2B12 + C12X2D12 = F1,

A21X1B21 + C21X1D21 +A22X2B22 + C22X2D22 = F2.
(6.3)

with the coefficient matrices:

A11 = diag(a+ diag(rand(m)))− tril(rand(m),m)i, B11 = eye(m) + eye(m)i,

C11 = eye(m)− tril(rand(m),m)i, D11 = rand(m) + triu(rand(m),m)i,

A12 = diag(a+ diag(rand(m)))− tril(rand(m),m)i,

B12 = rand(m)× a+ triu(rand(m),m)i,

C12 = eye(m)× a+ eye(m)i, D12 = eye(m)× a+ tril(rand(m),m)i,

A21 = diag(a+ diag(rand(m)))× a− triu(rand(m),m)i,

B21 = diag(a+ diag(rand(m))) + tril(rand(m),m)i,

C21 = −eye(m)× a− triu(rand(m),m)i, D21 = eye(m) + eye(m)i,

A22 = −rand(m) + eye(m)i, B22 = eye(m)× a+ tril(rand(m),m)i,

C22 = −eye(m)−+tril(rand(m),m)i, D22 = rand(m)− triu(rand(m),m)i,

let

X1 =diag(a+ diag(rand(m))) + eye(m)× a

+
(
tril(rand(m),−1)× a− (tril(rand(m),−1)T )

)
i,

X2 =
(
tril(rand(m),−1) + triu(rand(m)T , 0)

)
× a

+
(
tril(rand(m),−1)− tril(rand(m),m)T

)
i,

then we have

F1 = A11X1B11 + C11X1D11 +A12X2B12 + C12X2D12,

F2 = A21X1B21 + C21X1D21 +A22X2B22 + C22X2D22.

Therefore, the Eqs.(6.3) have a unique solution group {X1, X2}. In this example,
we let m = 10 and a = 10.
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In addition, we choose X1(0) = X2(0) = Xi
1(0) = Xi

2(0) = 10−6 × Im, i = 1, 2
as the initial matrices and define the relative error as in Eq.(6.2).

In Figure 2, we compare the MRGI algorithm with the other methods including
the GI algorithm in Wu et al. [24], the RGI algorithm in Huang and Ma [15] and
the GRGI algorithm in Huang and Ma [15]. The relative error becomes smaller and
smaller with the increase of iterative number k, which indicates that the iterative
solution is gradually approaching to the accurate solution and these algorithms are
all effective. Meanwhile, it is illustrated that the MRGI algorithm is superior to the
other three algorithms in convergence performance from Figure 2.

In order to evaluate the convergence performance of these algorithms, we com-
pare iterative steps, relative residual and computational time results. The detailed
information is given in Table 4. It can be clearly seen that the MRGI algorithm
requires much fewer iteration steps and computational time than the GI algorithm
in Wu et al. [24], the RGI algorithm in Huang and Ma [15] and the GRGI algorithm
in Huang and Ma [15] to obtain iterative solution with smaller iterative error.

0 50 100 150 200 250 300 350 400

Iteration Steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f(
k
)

GI algorithm in Wu et al. [24]

RGI algorithm in Huang and Ma [15]

GRGI algorithm in Huang and Ma [15]

MRGI in this paper

Figure 2. Comparison of convergence curves

Table 4. Iterative steps, relative residual and computational time results

Method Steps f(k) Time (s)
GI algorithm in Wu et al. [24] 15822 3.6900× 10−2 13.1977
RGI algorithm in in Huang and Ma [15] 11948 1.2800× 10−2 9.9247
GRGI algorithm in in Huang and Ma [15] 7865 4.6000× 10−3 4.8349
MRGI algorithm in this paper 4207 9.4651× 10−4 3.6684

According to Theorem 4.1, the MRGI algorithm is convergent if we choose 0 <
µ1 < 1.1090 × 10−5, 0 < µ2 < 1.8842 × 10−6 and ω1 = 0.4, ω2 = 0.6. However,
through continuously attempting and testing, we get that the MRGI algorithm is
also convergent if we choose 0 < µ1 < 1.7327× 10−5, 0 < µ2 < 2.9676× 10−6 when
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we take ω1 = 0.4, ω2 = 0.6. Besides, it is clear to get that the convergence speed
of MRGI algorithm becomes faster if we choose the larger convergence factors µ1

and µ2 in Figure 3. This situation illustrates that the convergence range of the
convergence factors µ1 and µ2 calculated by Theorem 4.1 is a little conservative.
How to reduce or remove this conservatism is our future work.
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Figure 3. The convergence performance of MRGI for different convergence factors µ1 and µ2 (ω1 =
0.4, ω2 = 0.6)

7. Application in antilinear system
Consider the following discrete-time antilinear system

ẋ = Ax+Bu+ Pw

ẇ = Fw

e = Cx+Qw,

(7.1)

where A ∈ Cn×n, B ∈ Cn×r, F ∈ Cp×p, P ∈ Cn×p, C ∈ Cm×n and Q ∈ Cm×p are
constant matrices, x ∈ Cn, u ∈ Cr and e ∈ Cm are the state, the control input and
the measurable error output, respectively. The symbol w ∈ Cp is the exogenous
input that includes “reference signals to be tracked” and/or “disturbances to be
rejected”. If we assume that (A,B) is controllable, then F is critical stable. If
the full information feedback u = −Kx + Lw is applied on the system, then the
closed-loop system can result in

ẋ = (A−BK)x+ (P +BL)w

ẇ = Fw

e = Cx+Qw.

(7.2)
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The aim of the output regulation problem is to find two matrices K and L such
that the matrix A−BK is stable and

lim
t→∞

e(t) = lim
t→∞

(Cx(t) +Qw(t)) = 0, (7.3)

in which (x(t), w(t)) is arbitrary and (x(0), w(0)) ∈ Rn × Rp. It has been shown
that such a problem is solvable if and only if there exist two matrices X and Y such
that AX −XF = BY +R

CX +Q = 0.
(7.4)

If the parameter matrices are given as follows

A =


1− i 3 + 2i −1 + i 5− i

2 + 2i 1 1− 8i −3 + 8i

i 2− i 5 + i −6− 4i

2− 6i 3 + i 7− i −6 + i

 , B =


−1 + i 1− 4i 2 + i 2− 5i

1− 2i −3 + i 6− i −1

1 + 2i 2− 3i 4− 7i 3 + 2i

−3− i 5 + i −9 + 2i −1− 6i

 ,

Q =


212.63 + 65.46i 92.9 + 400.77i 86.42− 415.58i 44.51− 69.96i

−23.93− 17.08i 95.27− 165.11i −126 + 227.46i −12.23 + 25i

193.17− 17.85i 140.69− 203.12i −96.65 + 181.17i 32.52− 75.38i

60.04 + 40.57i 220.23− 15.59i −182.93 + 159.68i 2.23 + 52.4i

 ,

C =


1.32− 9.05i −2.08 + 9.53i −7.25 + 6.93i −9.37− 1.04i

−3.35 + 2.78i 2.07− 7.89i 3.98− 0.54i 2.37 + 2.96i

−2.76 + 5.37i 0.31− 5.39i 0.17 + 6.39i 6.27i

−6.32− 0.82i 2.95− 9.02i 3.64 + 1.03i −2.75 + 1.94i

 ,

F =


2− i 9 + 3i −5− 2i −7

4 + 3i −1 + 5i 2− 7i 2 + i

−7 + 3i −4 + 5i 3− 8i −2− 5i

5 −8 + i 5− 4i −7i

 ,

R =


−69.57− 95.78i 74.83− 187.11i 125.03 + 222.47i 2.18− 49.19i

−242.29 + 73.82i 105.29− 26.16i −126.56 + 7.04i 144.05 + 142.32i

−173.98− 120.99i 90.91− 59.56i −114.88− 21.57i 54.15 + 27i

−15.39− 378.98i 2.9− 60.71i 89.17 + 365.53i 252.51− 46.41i

 .
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By the Algorithm 3.4, the solutions to the matrix equation above are

X =


1.2564 + 10.3357i 23.9801− 7.3301i

10.2329− 2.0192i −1.2398− 0.8694i

−2.3726 + 23.0946i 0.1973 + 2.1073i

17.0087− 3.4275i 7.3491 + 15.2093i

−14.2399 + 0.1275i 1.7629 + 3.6928i

21.3982 + 0.7638i 2.6382− 1.9804i

2.0633− 0.2743i 9.0853− 2.7734i

−0.3807− 7.2063i 5.3204 + 2.7493i

 ,

Y =


5.3502− 1.2194i −12.8920− 3.7504i

−1.2957 + 0.3721i 0.2975− 13.7636i

17.9502 + 4.8529i 3.8704− 0.7697i

−13.9402− 7.4028i 0.3967− 5.6428i

2.5307 + 27.3651i 24.5803− 5.7294i

−2.5497 + 4.0927i −1.3529− 9.4325i

−2.7846 + 16.3397i 0.4819− 3.9052i

4.7829− 7.0438i −7.2906− 4.3951i

 .

8. Conclusion remarks
This work has constructed a modified relaxed gradient based iterative (MRGI) al-
gorithm for solving the coupled Sylvester conjugate matrix equations (CSCMEs).
Combining the real representation and the vec-operator of complex matrix, the con-
vergence analysis of MRGI algorithm is analyzed. The numerical experiments are
offered to illustrate that the method presented in this paper has better convergence
performance and requires less storage capacity than the other existing iterative
methods [15, 24]. The method adopted in this paper can be applied to study the
general or constraint solutions of discrete-time periodic matrix equations [8, 9].
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