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A NEW NUMERICAL TECHNIQUE FOR
INVESTIGATING BOUNDARY VALUE

PROBLEMS WITH Ψ-CAPUTO FRACTIONAL
OPERATOR
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Abstract This article introduces a new numerical approach for solving linear
and non-linear boundary value problems for Ψ-fractional differential equations
(Ψ-FDEs). This approach relies on the Ψ-Haar wavelet operational integra-
tion matrices. The Ψ-operational matrices (Ψ-OMs) are used to convert the
Ψ-FDE to an algebraic system of equations. The non-linear fractional bound-
ary value problems are first linearized using the quasi-linearization technique,
and then the Ψ-Haar wavelet technique is applied to the linearized problem.
The solution is updated by the Ψ-Haar wavelet method in each iteration of
the quasi-linearization technique. The proposed method is a good and sim-
ple mathematical technique for numerically solving non-linear Ψ-FDEs. The
operational matrix (OM) method is computationally more efficient. Several
linear and non-linear boundary value problems are discussed to demonstrate
the applicability, efficiency, and simplicity of the method. Moreover, the er-
ror analysis is carried out resulting a rigorous error bound for the proposed
method.

Keywords Ψ-Haar wavelet operational matrices, Ψ-Caputo fractional inte-
gration and derivative, quasilinearization, collocation points, convergence.

MSC(2010) 26A33, 34A08, 34B05, 34B15, 65L10, 65L70.

1. Introduction
Fractional calculus is the generalization of classical calculus. Numerous scientific
and engineering disciplines, including physics, biology, economics, biochemistry,
and many others, use fractional calculus , see for example [14, 15, 18, 22]. In lit-
erature, a large number of definitions exist for fractional differential and integral
operators including the Riemann-Liouville, the Caputo, the Caputo-Hadamard, the
Hilfer, the Erdelyi-Kober, and many more [1, 11, 16, 21]. Usually it is difficult to
choose the appropriate operator for simulating various physical phenomena. As a
result, generalized fractional order operators may be introduced, including classical
operators as special cases. Introducing the fractional derivatives of a function with
respect to another function is an effective approach to cope with these difficulties.
Fractional order Riemann-Liouville operators are modified by introducing fractional
order differentiation and integration with respect to a general function Ψ [20, 21].
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In [2, 3] the Ψ-Caputo fractional differential and integral operators were defined
and described by R.Almeida et al, this study is very significant in putting together
a diversified set of fractional operators (FO). Furthermore, recent study on the Ψ-
Caputo derivative suggests that mathematical models based on Ψ-Caputo fractional
differential operators are more versatile and produce satisfactory results in a variety
of scenarios [4,8,10,17,19]. In [2] R.Almeida used the Ψ-Caputo derivative to assess
global population increase and demonstrated that the model’s precision is controlled
on the selection of fractional operator. Utilizing fixed-point theory, R.Almeida et
al. investigated the uniqueness and existence results for solutions of non-linear Ψ-
FDEs [6]. To solve Relaxation-oscillation equation with fractional order Ψ-Caputo
derivative, R.Almeida et al. devised the Ψ-shifted legendre polynomials [5]. As a
result, we believe that Ψ-FDE theory is a potential research field. Motivated by
the above-mentioned work, in this study we devised a new approach for addressing
linear and non-linear boundary value problems in Ψ-FDEs numerically.

The outline of this paper is as follows: In Section 2 we present the basics of
Ψ-fractional calculus that is the Ψ-Caputo and Ψ-Riemann-Liouville fractional dif-
ferential and integral operators and their properties. Haar wavelet and estimation
of a function by Haar wavelet have also been discussed. In Section 3 we developed
the Ψ-Haar wavelet OM of fractional integration that is used for solving boundary
value problems in Ψ-FDEs. In Section 4 we presented an error estimate of our
method in the form of Theorems 4.1 and 4.2. In Section 5 numerical solutions of
some linear and non-linear boundary value problems are obtained by the proposed
method, elaborating the efficacy and accuracy of the described approach. Finally,
the paper is completed with a conclusion section.

2. Basics of Ψ-Fractional Calculus
This section reviews several concepts, definitions, and basic results from Ψ-fractional
calculus that are essential for subsequent advancements in this paper.
Ψ-Fractional integral: [3, 7] Let h : J → R be an integrable function, where
J = [δ1, δ2] and α ∈ R, n ∈ N and Ψ(t) ∈ Cn(J) such that Ψ′(t) > 0 ∀ t ∈ J. The
Ψ-Riemann-Liouville fractional integral of order α > 0 is defined as

Iα,Ψ
δ1

h(t) =
1

Γ(α)

∫ t

δ1

(
Ψ(t)−Ψ(s)

)α−1
Ψ′(s)h(s)ds.

Property 2.1.
Iη,Ψ
δ1

Iζ,Ψ
δ1

h(t) = Iη+ζ,Ψ
δ1

h(t).

Ψ-Fractional Derivative : [3, 7, 16].
For α > 0, n− 1 < α ≤ n, the Ψ-Reimann-Liouville fractional derivative is given as

Dα,Ψ
δ1

h(t) =

(
1

Ψ′(t)

d

dt

)n

In−α,Ψ
δ1

h(t).

Ψ-Caputo Fractional Derivative : [2]
For n− 1 < α ≤ n, Ψ-Caputo fractional derivative of order α is defined as

CDα,Ψ
δ1

h(t) = In−α,Ψ
δ1

(
1

Ψ′(t)

d

dt

)n

h(t)
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or
CDα,Ψ

δ1
h(t) = In−α,Ψ

δ1
h
[n]
Ψ (t), where h

[n]
Ψ (t) =

(
1

Ψ′(t)

d

dt

)n

h(t).

Ψ-Caputo fractional derivative can also be defined as

CDα,Ψ
δ1

h(t) = Dα,Ψ
δ1

[
h(t)−

n−1∑
κ=0

h
[κ]
Ψ (δ1)

κ!
(Ψ(t)−Ψ(δ1))

κ
]

where, n = ⌈α⌉ for α /∈ N and n = α for α ∈ N.

Property 2.2 ( [2, 3]). If h(t) =
(
Ψ(t)−Ψ(δ1)

)ζ where ζ > n and α > 0 then

cDα,Ψ
δ1

h(t) =
Γ(ζ + 1)

Γ(ζ − α+ 1)

(
Ψ(t)−Ψ(δ1)

)ζ−α

.

Property 2.3 ( [2, 3]).
cDα,Ψ

δ1
Iα,Ψ
δ1

h(t) = h(t).

Proof. By definition

cDα,Ψ
δ1

Iα,Ψ
δ1

h(t) = Dα,Ψ
δ1

[
Iα,Ψ
δ1

h(t)−
n−1∑
κ=0

[Iα,Ψ
δ1

h(t)]
[κ]
Ψ (δ1)

κ!
(Ψ(t)−Ψ(δ1))

κ
]
. (2.1)

Note that

Iα,Ψ
δ1

ht
[κ]
Ψ (t) =

(
1

Ψ′(t)

d

dt

)κ

Iα,Ψ
δ1

h(t)

=

(
1

Ψ′(t)

d

dt

)κ−1
1

Ψ′(t)

d

dt

∫ t

δ1

(
Ψ(t)−Ψ(s)

)α−1

Γ(α)
Ψ′(s)h(s)ds

=

(
1

Ψ′(t)

d

dt

)κ−1
1

Ψ′(t)

∫ t

δ1

(α− 1)
(
Ψ(t)−Ψ(s)

)α−2

Γ(α)
Ψ′(t)Ψ′(s)h(s)ds

=

(
1

Ψ′(t)

d

dt

)κ−1 ∫ t

δ1

(
Ψ(t)−Ψ(s)

)α−2

Γ(α− 1)
Ψ′(s)h(s)ds

=

(
1

Ψ′(t)

d

dt

)κ−1

Iα−1,Ψ
δ1

h(t),

[Iα,Ψ
δ1

h]
[κ]
Ψ (t) =

(
1

Ψ′(t)

d

dt

)κ−1

Iα−1,Ψ
δ1

h(t).

Repeating the process κ-times we are at

[Iα,Ψ
δ1

h]
[κ]
Ψ (t) = Iα−κ,Ψ

δ1
h(t) (2.2)

using equation (2.2) in equation (2.1), we have

cDα,Ψ
δ1

Iα,Ψ
δ1

h(t) = Dα,Ψ
δ1

[
Iα,Ψ
δ1

h(t)−
n−1∑
κ=0

Iα−κ,Ψ
δ1

h(δ1)

κ!
(Ψ(t)−Ψ(δ1))

κ
]
. (2.3)
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Now we show that Iα−κ,Ψ
δ1

h(δ1) = 0. We will prove that limt→a Iα−κ,Ψ
δ1

h(t) = 0.
Now

∥ Iα,Ψ
δ1

h(t)∥ = ∥ 1

Γ(α)

∫ t

δ1

(
Ψ(t)−Ψ(s)

)α−1
Ψ′(s)h(s)ds∥

≤ 1

Γ(α)

∫ t

δ1

∥
(
Ψ(t)−Ψ(s)

)α−1
Ψ′(s)h(s)ds∥

≤ ∥h∥
Γ(α)

∫ t

δ1

(
Ψ(t)−Ψ(s)

)α−1
Ψ′(s)h(s)ds Assume Ψ

′
(t) > 0

≤ ∥h∥
(
Ψ(t)−Ψ(δ1)

)α
Γ(α+ 1)

integrating and using Γ(α+ 1) = (α)Γ(α).

Hence Iα,Ψ
δ1

h(t) → 0 as t→ a. Therefore, from equation (2.3), we have
cDα,Ψ

δ1
Iα,Ψ
δ1

h(t) = Dα,Ψ
δ1

Iα,Ψ
δ1

h(t)

=

(
1

Ψ′(t)

d

dt

)n

In−α,Ψ
δ1

Iα,Ψ
δ1

h(t)

=

(
1

Ψ′(t)

d

dt

)n

In−α+α,Ψ
δ1

h(t)

=

(
1

Ψ′(t)

d

dt

)n

In,Ψ
δ1

h(t).

Consequently, cDα,Ψ
δ1

Iα,Ψ
δ1

h(t) = h(t). Note

1

Ψ′(t)

d

dt
I1,Ψ
δ1

h(t) =
1

Ψ′(t)

d

dt

∫ t

δ1

(
Ψ(t)−Ψ(s)

)1−1
Ψ′(s)h(s)ds

=
1

Ψ′(t)
Ψ

′
(t)h(t) by Leibniz rule

= h(t).

Repeating above process n-times we have( 1

Ψ′(t)

d

dt

)n
In,Ψ
δ1

h(t) = h(t).

Lemma 2.1.

In,Ψ
δ1

h
[n]
Ψ (t) = h(t)−

n−1∑
κ=0

h
[n]
Ψ (δ1)

κ!

(
Ψ(t)−Ψ(δ1)

)κ
.

Proof. For n = 1

I1,Ψ
δ1

h
[1]
Ψ (t) =

∫ t

δ1

(
Ψ(t)−Ψ(s)

)1−1

Γ(1)
Ψ′(s)

1

Ψ′(s)

d

ds
h(s)ds

=

∫ t

δ1

d

ds
h(s)ds

= h(t)− h(δ1).

(2.4)
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For n = 2

I2,Ψ
δ1

h
[2]
Ψ (t) = I1,Ψ

δ1
I1,Ψ
δ1

[
h
[1]
Ψ

]1
Ψ
(t)

= I1,Ψ
δ1

[
h
[1]
Ψ − h

[1]
Ψ

]
by (2.4)

= I1,Ψ
δ1

h
[1]
Ψ (t)− I1,Ψ

δ1
h
[1]
Ψ (δ1)

= h(t)− h(δ1)− h
[1]
Ψ (δ1)

∫ t

δ1

(Ψ(t)−Ψ(δ1))
1−1Ψ′(s)ds

= h(t)− h(δ1)− h
[1]
Ψ (δ1)(Ψ(t)−Ψ(δ1)).

(2.5)

Repeating above process n-times, we have

In,Ψ
δ1

h
[n]
Ψ (t) = h(t)−

n−1∑
κ=0

h
[κ]
Ψ (δ1)

κ!

(
Ψ(t)−Ψ(δ1)

)κ
.

The proof of lemma 2.1 is completed.

Lemma 2.2.

Iα,Ψ
δ1

CDα,Ψ
δ1

h(t) = h(t)−
n−1∑
κ=0

h
[κ]
Ψ (δ1)

κ!
(Ψ(t)−Ψ(δ1))

κ.

Proof. Since
CDα,Ψ

δ1
h(t) = In−α,Ψ

δ1
h
[n]
Ψ (t),

thus

Iα,Ψ
δ1

CDα,Ψ
δ1

h(t) = Iα,Ψ
δ1

In−α,Ψ
δ1

h
[n]
Ψ (t)

= Iα+n−α,Ψ
δ1

h
[n]
Ψ (t)

= In,Ψ
δ1

h
[n]
Ψ (t)

Iα,Ψ
δ1

CDα,Ψ
δ1

h(t) = h(t)−
n−1∑
κ=0

h
[κ]
Ψ (δ1)

κ!

(
Ψ(t)−Ψ(δ1)

)κ
.

Methodology for solution of Ψ-fractional boundary value problem:
Consider the boundary value problem

CDα,Ψ
δ1

κ(t) = g(t), 1 < α ≤ 2, (2.6)
κ(δ1) = κδ1 , κ(δ2) = κδ2 ,

apply Iα,Ψ
δ1

on equation (2.6)

Iα,Ψ
δ1

CDα,Ψ
δ1

κ(t) = Iα,Ψ
δ1

g(t),

apply lemma 2.2 on L.H.S, we get

κ(t)− c0 − c1
(
Ψ(t)−Ψ(δ1)

)
=

1

Γ(α)

∫ t

δ1

(
Ψ(t)−Ψ(s)

)α−1
Ψ′(s)g(s)ds. (2.7)



280 A. Ali & T. Minamoto

Apply κ(δ1) = κδ1 , equation (2.7) implies κδ1 = c0.
Again apply κ(δ2) = κδ2 (put t = δ2 in equation (2.7)) we have,

κδ2 − κδ1 − c1
(
Ψ(δ2)−Ψ(δ1)

)
=

1

Γ(α)

∫ δ2

δ1

(
Ψ(δ2)−Ψ(s)

)α−1
Ψ′(s)g(s)ds

⇒c1 =
κδ1 − κδ2

Ψ(δ2)−Ψ(δ1)
+

1

Ψ(s)−Ψ(δ1)

∫ δ2

δ1

(Ψ(δ2)−Ψ(s))

Γ(α)
Ψ′(s)g(s)ds.

Substituting c0 and c1 in equation (2.7) we obtained

κ(t) =κδ1 +

[
κδ1 − κδ2

Ψ(δ2)−Ψ(δ1)

]
[Ψ(t)−Ψ(δ1)]

+
Ψ(t)−Ψ(δ1)

Ψ(δ2)−Ψ(δ1)

∫ δ2

δ1

[Ψ(δ2)−Ψ(s)]α−1

Γ(α)
Ψ′(s)g(s)ds

+
1

Γ(α)

∫ t

δ1

(Ψ(t)−Ψ(s))α−1Ψ′(s)g(s)ds.

The general case:
Consider the boundary value problem

Dα,Ψ
δ1

κ(t) = g(t), t ∈ [δ1, δ2], n− 1 < α ≤ n, (2.8)

with the initial and boundary conditions given by

κ[κ]
Ψ (δ1) = κκ

δ1 , κ[n−1]
Ψ (δ2) = κδ2 , κ = 0, 1, 2, · · ·n− 2.

Apply Iα,Ψ
δ1

on (2.8)
Iα,Ψ
δ1

CDα,Ψ
δ1

κ(t) = Iα,Ψ
δ1

g(t), (2.9)
using Lemma 2.2, that is

Iα,Ψ
δ1

CDα,Ψ
δ1

h(t) = h(t)−
∑n−1

κ=0 Cκ(Ψ(t)−Ψ(δ1))
κ, where Cκ =

h
[κ]
Ψ (δ1)

κ!

in equation (2.9), we have

κ(t)−
n−1∑
κ=0

κ[κ]
Ψ (δ1)

κ!
(Ψ(t)−Ψ(δ1))

κ = Iα,Ψg(t),

κ(t) =
n−2∑
κ=0

κ[κ]
Ψ (δ1)

κ!
(Ψ(t)−Ψ(δ1))

κ +
κ[n−1)
Ψ (δ1)

(n− 1)!
(Ψ(t)−Ψ(δ1))

n−1 + Iα,Ψ
δ1

g(t),

κ(t) =

n−2∑
κ=0

κκ
δ1

κ!
(Ψ(t)−Ψ(δ1))

κ + Cn−1(Ψ(t)−Ψ(δ1))
n−1 + Iα,Ψ

δ1
g(t),

where

Cn−1 :=
κ[n−1]
Ψ (δ1)

(n− 1)!
. (2.10)

Now apply the boundary conditions κ(n−1)
Ψ (δ2) = κδ2 we get(

1

Ψ′(t)

d

dt

)n−1

κ(t)
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=

n−2∑
κ=0

κκ
δ1

κ!

[
1

Ψ′(t)

d

dt

]n−1

(Ψ(t)−Ψ(δ1))
κ (κ = 0, 1, · · ·n− 2)

+ Cn−1

[
1

Ψ′(t)

d

dt

]n−1

(Ψ(t)−Ψ(δ1))
n−1 +

[
1

Ψ′(t)

d

dt

]n−1

Iα,Ψ
δ1

g(t). (2.11)

Note (1)
1

Ψ′(t)

d

dt
(Ψ(t)−Ψ(δ1)) =

1

Ψ′(t)
Ψ′(t) = 1

and
(

1
Ψ′(t)

d
dt

)2
(Ψ(t)−Ψ(δ1))

′ = 1
Ψ′(t)

d
dt (1) = 0.

In general
[

1
Ψ′(t)

d
dt

]n
(Ψ(t)−Ψ(δ1))

m = 0 if m < n.
Note (2)

1

Ψ′(t)

d

dt
(Ψ(t)−Ψ(δ1))

n =
1

Ψ′(t)
n(Ψ(t)−Ψ(δ1))

n−1Ψ′(t),(
1

Ψ′(t)

d

dt

)2

(Ψ(t)−Ψ(δ1))
n = n(n− 1)(Ψ(t)−Ψ(δ1))

n−2,(
1

Ψ′(t)

d

dt

)3

(Ψ(t)−Ψ(δ1))
n = n(n− 1)(n− 2)(Ψ(t)−Ψ(δ1))

n−3,(
1

Ψ′(t)

d

dt

)m

(Ψ(t)−Ψ(δ1))
n

=n(n− 1)(n− 2) · · · (n−m+ 1)(Ψ(t)−Ψ(δ1))
n−m

=
n(n−1)(n−2) · · · (n−m+1)(n−m)!

(n−m)!
(Ψ(t)−Ψ(δ1))

n−m

=
n!

(n−m)!
[Ψ(t)−Ψ(δ1)]

n−m,

if m = n,
[

1
Ψ1

d
dt

]n
[Ψ(t)−Ψ(δ1)]

n = n!.
Note (3)[

Iα,Ψ
δ1

h(t)
][κ]
Ψ

(t) = Iα−κ
δ1

h(t) or
[

1

Ψ′(t)

d

dt

]κ
Iα,Ψ
δ1

h(t) = Iα−κ
δ1

h(t),

using note (1), (2), and (3) in equation (2.11), we have

κ(n−1)
Ψ (t) = (n− 1)!Cn−1 + Iα−n+1

δ1
g(t),

apply the boundary conditions

κ[n−1]
Ψ (δ2) = κδ2 ,

κ(n−1)(δ2) = (n− 1)!Cn−1 + Iα−n+1,Ψ
δ1

g(δ2),

Cn−1 =
1

(n− 1)!

[
κδ2 − Iα−n+1,Ψ

δ1
g(δ2)

]
.

Substituting Cn−1 in equation (2.10), we have

κ(t) =

n−2∑
κ=0

κκ
δ1

κ!
(Ψ(t)−Ψ(δ1))

κ+
[Ψ(t)−Ψ(δ1)]

n−1

(n−1)!

[
κδ2−Iα−n+1,Ψ

δ1
g(δ2)

]
+Iα,Ψ

δ1
g(t),
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κ(t) =

n−2∑
κ=0

κκ
δ1
[Ψ(t)−Ψ(α))

κ!
+

κδ2

(n− 1)!
[Ψ(t)−Ψ(1))n−1

− [Ψ(t)−Ψ(δ1)]
n−1

(n− 1)!

∫ δ2

δ1

(Ψ(δ2)−Ψ(s)Ψ′(s)

Γ(α− n+ 1)
g(s)ds

+

∫ t

δ1

(Ψ(t)−Ψ(s))α−1

Γ(α)
Ψ′(s)g(s)ds.

2.1. The Haar wavelet
In 1990, the Hungarian mathematician Alfred Haar first introduced Haar wavelet.
Haar wavelet is the first order wavelet from Daubechies family of wavelets. Haar
wavelet have been shown to be impeccable for approximation of other functions.In
recent decades this wavelet are widely used for numerical approximation of solutions
of differential equations. The operational matrices of fractional order integration
for Haar wavelet are first introduced by Chen and Hasiao [12]. The basic aspect
of the Haar wavelet Operational matrix (OM) approach is to transform differential
equations into a system of algebraic equations of finite order. First and foremost,
the higher order derivative in the given problem is approximated by the Haar series.
Then by using the Haar wavelet OM of integration, the lower order derivatives and
the solutions can then be obtained very easily.

On the interval [x1, x2], the ith Haar wavelet is defined as:

hi(t) =


1, if δ1(i) ≤ t < δ2(i);

−1, if δ2(i) ≤ t < δ3(i);

0, elsewhere,
(2.12)

where, δ1(i) = x1+(x2−x1) κ
m , δ2(i) = x1+(x2−x1)κ+0.5

m , δ3(i) = x1+(x2−x1)κ+1
m .

The wavelet number i is identified by the relation i = m + κ + 1, where m = 2j ,
j = 0, 1, 2, 3, ..., J and κ = 0, 1, 2, 3, ..., 2j−1. j and κ are the dilation and translation
parameters, respectively, whereas J is the maximum resolution level.

2.2. Function approximation by Haar wavelet
Any square integrable function κ(t) defined on the interval [0, 1) can be written in
terms of Haar wavelet as:

κ(t) =
∞∑
i=0

cihi(t), (2.13)

where the coefficients ci of the Haar wavelet are defined by

ci = ⟨κ(t),hi(t)⟩ =
∫ 1

0

κ(t)hi(t)dt.

Only the first m terms in equation (2.13) are taken into consideration, that is

κ(t) ∼= κm(t) =

m−1∑
i=0

cihi(t)

with vector form as:
κ(t) ∼= κm(t) = CT

mHm(t), (2.14)
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where CT
m = [c0, c1, c2, · · · , cm−1] and Hm(t) = [h0(t), h1(t), h2(t), · · · , hm−1(t)]

T .
Figure 1. shows the actual and approximated integral of the function h(t) =

t(et+2)
e+2 at J = 7 and varied α values.

Figure 1. exact and numerical integration of h(t) =
t(et+2)

e+2

3. The Ψ-operational matrix
In this section, we derived the Ψ-Haar wavelet OM of integration, Pα,Ψ, of fractional
order α, which is utilized in solving of Ψ-FDEs numerically. In general the Ψ-
fractional integral of the Haar wavelet Hm = [h0, h1, h2, · · · , hm−1] is defined as:

Pα,Ψ
i (t) =

1

Γ(α)

∫ t

δ1

Ψ
′
(t)
(
Ψ(t)−Ψ(s)

)α−1
hi(s)ds. (3.1)

The Ψ-fractional integrals in (3.1) can be approximated by

Pα,Ψ
i (t) =


0, if t < δ1(i);

Φ1, if t ∈ [δ1(i), δ2(i));

Φ2, if t ∈ (δ2(i), δ3(i)];

Φ3, if t > δ3(i).

(3.2)

where,

Φ1 =

(
Ψ(t)−Ψ(δ1(i))

)α
Γ(α+ 1)

,

Φ2 =

(
Ψ(t)−Ψ(δ1(i))

)α − 2
(
Ψ(t)−Ψ(δ2(i))

)α
Γ(α+ 1)

,

Φ3 =

(
Ψ(t)−Ψ(δ1(i))

)α − 2
(
Ψ(t)−Ψ(δ2(i))

)α
+
(
Ψ(t)−Ψ(δ3(i))

)α
Γ(α+ 1)

.
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Equation (3.2) is valid in the case of i > 1, for i = 1 we have:

Pα,Ψ
1 (t) =

(
Ψ(t)−Ψ(δ1)

)α
Γ(α+ 1)

. (3.3)

For α = 1.8, J = 6 and Ψ(t) = t(et+2)
e+2 the Ψ-Haar wavelet OM is given by

Pα,Ψ
8×8 =



0.1785 −0.1403 −0.0287 −0.1224 −0.0073 −0.0220 −0.0441 −0.0806

0.0951 −0.0568 −0.0287 0.0044 −0.0073 −0.0220 −0.0133 0.0191

0.0193 0.0055 −0.0152 0.0092 −0.0073 −0.0013 0.0052 0.0043

0.0261 −0.0261 0 −0.0323 0 0 −0.0154 −0.0020

0.0042 0.0028 0 0.0016 −0.0046 0.0013 0.0008 0.0008

0.0055 −0.0007 −0.0048 0.0032 0 −0.0065 0.0019 0.0014

0.0068 −0.0068 0 0.0006 0 0 −0.0096 0.0031

0.0055 −0.0055 0 −0.0111 0 0 0 −0.0149



.

4. convergence analysis of Ψ-haar wavelet method
Recently,the error analysis of Caputo type FDEs and non-linear Fredholm integral
equation are discussed in [9, 13]. This section deals with the detailed investigation
of the error analysis of our method.

Theorem 4.1. Let us Suppose that κn(t) is continuous on [δ1, δ2], and that there
exists K > 0 such that |κ[n]

Ψ (t)| ≤ K for all t ∈ [δ1, δ2], where δ1, δ2 ∈ R+, κ[n]
Ψ (t) =(

1
Ψ′ (t)

d
dt

)n

κ(t) and Dα,Ψ
δ1

κm(t) is the approximation of Dα,Ψ
δ1

κ(t), then

∥∥∥Dα,Ψ
δ1

κ(t)−Dα,Ψ
δ1

κm(t)
∥∥∥
E
≤

(δ2 − δ1)K
(
Ψ

′
(δ2)

)m−α

Γ(m− α+ 1)

1

κ(m−α)

1

[1− 22(α−m)]
1
2

.

Proof. The function Dα,Ψ
δ1

κ(t) defined on [δ1, δ2] is approximated as follows:

Dα,Ψ
δ1

κ(t) =
∞∑
i=a

cihi(t),

where

ci = ⟨Dα,Ψ
δ1

κ(t),hi(t)⟩ =
∫ δ2

δ1

(
Dα,Ψ

δ1
κ(t)

)
hi(t)dt, (4.1)

suppose

Dα,Ψ
δ1

κm(t) =

m−1∑
i=0

cihi(t), (4.2)
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where m = 2(1+ζ), and ζ = 1, 2, 3, · · · , then

Dα,Ψ
δ1

κ(t)−Dα,Ψ
δ1

κm(t) =
∞∑

i=m

cihi(t) =

∞∑
i=2ζ+1

cihi(t), (4.3)

which implies that∥∥∥Dα,Ψ
δ1

κ(t)−Dα,Ψ
δ1

κm(t)
∥∥∥2
E
=

∫ t

δ1

(
Dα,Ψ

δ1
κ(t)−Dα,Ψ

δ1
κm(t)

)2

dt

=

∞∑
i=2ζ+1

∞∑
i′=2ζ+1

cici′

∫ t

δ1

hi(t)hi′ (t)dt.

As the sequence {hm(t)} is orthogonal, therefore, we have∫ δ2

δ1

hm(t)hm(t)dt = Im,

where Im is the order m identity matrix.
Therefore, ∥∥∥Dα,Ψ

δ1
κ(t)−Dα,Ψ

δ1
κm(t)

∥∥∥2
E
=

∞∑
i′=2ζ+1

c2i . (4.4)

Equation (4.1) implies:

ci =

∫ δ2

δ1

(
Dα,Ψ

δ1
κ(t)

)
hi(t)dt

= 2
j
2

{∫ δ1+(δ2−δ1)(κ+
1
2 )2

−j

δ1+(δ2−δ1)κ2−j

Dα,Ψ
δ1

κ(t)dt−
∫ δ1+(δ2−δ1)(κ+1)2−j

δ1+(δ2−δ1)(κ+
1
2 )2

−j

Dα,Ψ
δ1

κ(t)dt

}
.

(4.5)

According to the mean value theorem (MVT) of integrals:

∃ t1, t2 ∈ (δ1, δ2)

where

δ1 +
(δ2 − δ1)κ

2j
< t1 < δ1 +

(δ2 − δ1)
(
κ+ 0.5

)
2j

,

δ1 +
(δ2 − δ1)

(
κ+ 0.5

)
2j

< t2 < δ1 +
(δ2 − δ1)(κ+ 1)

2j
,

such that

ci =2
j
2 (δ2 − δ1)

{(
δ1 +

(κ+ 0.5)

2j
− (δ1 +

κ

2j
)

)
Dα,Ψ

δ1
κ(t1)

−
(
δ1 +

(κ+ 1)

2j
− (δ1 +

(κ+ 0.5)

2j

)
Dα,Ψ

δ1
κ(t2)

}

=2
j
2 (δ2 − δ1)

{
2−j−1

(
Dα,Ψ

δ1
κ(t1)−Dα,Ψ

δ1
κ(t2)

)}
.

(4.6)



286 A. Ali & T. Minamoto

Therefore,
c2i = 2−j−2(δ2 − δ1)

2(Dα,Ψ
δ1

κ(t1)−Dα,Ψ
δ1

κ(t2))2. (4.7)

Using the condition |κ[n]
Ψ (t)| ≤ K, the Ψ−Caputo FO and the fact that Ψ(t) is

increasing we have:

|Dα,Ψ
δ1

κ(t1)−Dα,Ψ
δ1

κ(t2)|

=
1

Γ(m− α)

∣∣∣∣ ∫ t1

δ1

Ψ
′
(t)

(
Ψ(t1)−Ψ(t)

)m−α−1

κ[n]
Ψ (t)dt

−
∫ t2

δ1

Ψ
′
(t)

(
Ψ(t2)−Ψ(t)

)m−α−1

κ[n]
Ψ (t)dt

∣∣∣∣
≤ 1

Γ(m− α)

∣∣∣∣ ∫ t1

δ1

Ψ
′
(t)

(
Ψ(t1)−Ψ(t)

)m−α−1

κ[n]
Ψ (t)dt

−
∫ t1

δ1

Ψ
′
(t)

(
Ψ(t2)−Ψ(t)

)m−α−1

κ[n]
Ψ (t)dt

∣∣∣∣
+

∣∣∣∣ ∫ t2

t1

Ψ
′
(t)

(
Ψ(t2)−Ψ(t)

)m−α−1

κ[n]
Ψ (t)dt

∣∣∣∣
≤ 1

Γ(m−α)

(∫ t1

δ1

Ψ
′
(t)

[(
Ψ(t1)−Ψ(t)

)m−α−1

−
(
Ψ(t2)−Ψ(t)

)m−α−1]∣∣∣∣κ[n]
Ψ (t)

∣∣∣∣dt
+

∫ t2

t1

Ψ
′
(t)

(
Ψ(t2)−Ψ(t)

)m−α−1∣∣∣∣κ[n]
Ψ (t)

∣∣∣∣dt
)
, where m− α− 1 > 0

=
K

Γ(m−α+1)

((
Ψ(t1)−Ψ(δ1)

)m−α

−
(
Ψ(t2)−Ψ(δ1)

)m−α

+2

(
Ψ(t2)−Ψ(t1)

)m−α
)
.

Since t1 > δ1, t2 > δ1 and t2 > t1 and Ψ(t) is increasing, therefore,(
Ψ(t1)−Ψ(δ1)

)m−α

−
(
Ψ(t2)−Ψ(δ1)

)m−α

< 0.

So,
|Dα,Ψ

δ1
κ(t1)−Dα,Ψ

δ1
κ(t2)|≤

2K

Γ(m− α+ 1)

(
Ψ(t2)−Ψ(t1)

)m−α

.

According to the MVT, ∃ ζ ∈ [t1, t2] ⊆ [δ1, δ2] such that Ψ(t2) − Ψ(t1) ≤ (t2 −
t1)Ψ

′
(ζ).

Thus:

|Dα,Ψ
δ1

κ(t1)−Dα,Ψ
δ1

κ(t2)| ≤
2K

Γ(m− α+ 1)

(
(t2 − t1)Ψ

′
(ζ)

)m−α

≤ 2K

Γ(m− α+ 1)

(Ψ′
(δ2)

2j

)m−α

,

implying, (
Dα,Ψ

δ1
κ(t1)−Dα,Ψ

δ1
κ(t2)

)2

≤ 4K2

Γ2(m− α+ 1)

(Ψ′
(δ2)

2j

)2(m−α)

. (4.8)
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Putting (4.8) in (4.7), we get:

c2i ≤ 2−j−2(δ2 − δ1)
2 4K2

Γ2(m− α+ 1)

(Ψ′
(δ2)

2j

)2(m−α)

. (4.9)

By incorporating equations (4.4) and (4.9), we get∥∥∥Dα,Ψ
δ1

κ(t)−Dα,Ψ
δ1

κm(t)
∥∥∥2
E

=

∞∑
i=2ζ+1

c2i =

∞∑
j=ζ+1

(
2j+1−1∑
i=2j

c2i

)

≤
∞∑

j=ζ+1

(δ2 − δ1)
2 K2

Γ2(m− α+ 1)22j(m−α)+j

(
Ψ

′
(δ2)

)2(m−α)

(2j+1 − 1− 2j + 1)

=
(δ2 − δ1)

2K2
(
Ψ

′
(δ2)

)2(m−α)

Γ2(m− α+ 1)

∞∑
j=ζ+1

1

22j(m−α)

=
(δ2 − δ1)

2K2
(
Ψ

′
(δ2)

)2(m−α)

Γ2(m− α+ 1)

1

22(ζ+1)(m−α)

1

1− 22(α−m)
. (4.10)

This shows that:

∥∥∥Dα,Ψ
δ1

κ(t)−Dα,Ψ
δ1

κm(t)
∥∥∥
E
≤

(δ2 − δ1)K
(
Ψ

′
(δ2)

)m−α

Γ(m− α+ 1)

1

2(ζ+1)(m−α)

1

[1− 22(α−m)]
1
2

.

(4.11)
Let k = 2ζ+1, (4.11) can also be written as:

∥∥∥Dα,Ψ
δ1

κ(t)−Dα,Ψ
δ1

κm(t)
∥∥∥
E
≤

(δ2 − δ1)K
(
Ψ

′
(δ2)

)m−α

Γ(m− α+ 1)

1

κ(m−α)

1

[1− 22(α−m)]
1
2

.

(4.12)
We can compute the error bound as soon as we know the value of K.

First we estimate the value of K. As we know that κn(t) is continuous and
abounded on the interval [δ1, δ2] therefore, so is κ[n]

Ψ (t) which can be estimated as:

κ[n]
Ψ (t) ∼=

m−1∑
i=0

cihi(t) = CT
mHm(t), (4.13)

where Cm = [c0, c1, c2, · · · , cm−1]
T and Hm(t) = [h0(t), h1(t), h2(t), · · · , hm−1(t)]

T .
Integrating (4.13), we have:

κ[n−1]
Ψ (t) =

∫ t

δ1

κ[n]
Ψ (t)dt+ κ[n−1]

Ψ (δ1) =

∫ t

δ1

κ[n]
Ψ (t)dt ∼= CT

mP
1,Ψ
m×mHm(t). (4.14)

Similarly,

κ[n−2]
Ψ (t) =

∫ t

δ1

κ[n−1]
Ψ (t)dt+ κ[n−2]

Ψ (δ1) =

∫ t

δ1

κ[n−1]
Ψ (t)dt ∼= CT

mP
2,Ψ
m×mHm(t).

(4.15)
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Proceeding in the same way we get:

κΨ(t) ∼= CT
mP

m,Ψ
m×mHm(t). (4.16)

Consider tj = j−1/2
m , j = 0, 1, 2, · · · ,m. Substituting tj in (4.16), we have:

κΨ(tj) ∼= CT
mP

m,Ψ
m×mHm(tj). (4.17)

The matrix form of (4.17) is as:

κΨ
∼= CT

mP
m,Ψ
m×mHm(tj) where κΨ = [κΨ(t1),κΨ(t2),κΨ(t3), · · · ,κΨ(tm)]. (4.18)

From equations (4.18) and (4.13) we can obtain Dm,Ψ(t) for every t ∈ [δ1, δ2].
Suppose that ti ∈ [δ1, δ2], for i = 1, 2, 3, · · · , l, ti = i−1

l and compute κ[n]
Ψ (ti)

for i = 1, 2, 3, · · · , l.
The value of max |κn

Ψ(ti)|+ ε can then be used as an estimate for K.
This estimation would become more accurate as l increases and ε is considered

as δ2.

Theorem 4.2. If the function Dα,Ψ
δ1

κm derived by utilizing the Ψ-Haar wavelet is
an accurate approximation of Dα,Ψ

δ1
κ, then we obtain the following exact upper error

bound :

∥κ(t)− κm(t)∥E ≤ KN

Γ(α+ 1)Γ(m− α+ 1)

1

k(m−α)

1

[1− 22(α−m)]
1
2

, (4.19)

where N = max |(δ2 − δ1)(Ψ(δ2))
m−α(Ψ(t)−Ψ(0))α|.

Theorem 4.2. can be proved easily with the help of Theorem 4.1. Equation (4.19)
implies that ∥κ(t)− κm(t)∥E −→ 0 as m −→ ∞. Thus our method is convergent.

5. numerical solutions of Ψ-FDEs
Here are some numerical examples of how to approximate the numerical solution of
the linear and non-linear boundary value problems of Ψ-FDEs with our proposed
method.

5.1. Linear Boundary Value Problems
Example 5.1. Consider the non-homogeneous fractional boundary value problem
involving Ψ-Caputo fractional derivative

Dα,Ψ
0 κ(t) + aκ(t) = g(t), t ∈ [0, 1], κ(0) = 0, κ(1) = κ1. (5.1)

Where 1 < α ≤ 2.
For g(t) = Ψ(t) + aΨ(t)α+1

Γ(α+2) and κ1 = 1
Γ(α+2) , the boundary value problem (5.1)

has an exact solution κ(t) = (Ψ(t))α+1

Γ(α+2) .
The integral representation of (5.1) is given by

κ(t) = −aIα,Ψ
0 κ(t) + aΨ(t)α−1Iα,Ψ

0 κ(1) + h(t) (5.2)
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where
h(t) = Iα,Ψ

0 g(t)−Ψ(t)α−1Iα,Ψ
0 g(1) +

(Ψ(t))α−1

Γ(α+ 2)
.

For numerical solution, we approximate κ(t) as

κ(t) = CT
mHm(t). (5.3)

Then
Iα,Ψ
0 κ(t) = CT

mIα,Ψ
0 Hm(t) = CT

mP
α,Ψ
m×mHm(t). (5.4)

Let Φ(t) = (Ψ(t))α−1, we have

Φ(t)Iα,Ψ
0 κ(1) = CT

mK
α,Ψ
m×mHm(t), (5.5)

using equations (5.3), (5.4) and (5.5) in equation (5.1), to have:

CT
mHm(t) = −aCT

mP
α,Ψ
m×mHm(t) + aCT

mK
α,Ψ
m×mHm(t) + FT

mHm(t), (5.6)

where FT
mHm(t) is the approximation of h(t).

In Figure 2, numerical solutions, exact solutions, and the max absolute-error are
plotted for various choices of the function Ψ(t) and α. The max absolute-error is
also shown in the Table 1 for various values of α and J . We discovered that as J
increases, the max absolute-error also decreases.

Table 1. max absolute-error for different J and α values.

Ψ(t) = t

α J = 5 J = 6 J = 7 J = 8

1.5 3.504635× 10−5 1.234185× 10−5 4.274255× 10−6 1.513357× 10−6

1.6 5.025384× 10−5 1.902764× 10−5 7.221228× 10−5 2.744912× 10−5

1.7 6.704913× 10−5 2.7187536× 10−5 1.103824× 10−5 4.482642× 10−6

1.8 7.817852× 10−5 3.393346× 10−5 1.474324× 10−5 6.404627× 10−6

1.9 6.675254× 10−5 3.148735× 10−5 1.458791× 10−5 6.812362× 10−6

Ψ(t) = t2

2 + t
2

1.5 2.717725× 10−5 9.021482× 10−6 3.073846× 10−6 1.068451× 10−6

1.6 4.135072× 10−5 1.572354× 10−5 6.053439× 10−6 2.346431× 10−6

1.7 5.948473× 10−5 2.457804× 10−5 1.017341× 10−5 4.143252× 10−6

1.8 7.227815× 10−5 3.163172× 10−5 1.386834× 10−5 6.154427× 10−6

1.9 6.335346× 10−5 2.952634× 10−5 1.381907× 10−5 6.456180× 10−6

Example 5.2. In this example we analyze the Ψ-fractional differential equation
with variable coefficients by the proposed method.

Dα,Ψ
0 κ(t) + a(t)κ(t) = h(t), 2 ≤ α < 3 and t ∈ [0, 1], (5.7)

with the boundary conditions

κ(0) = 0, κ
′
(0) = 0, κ(1) = 0.
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Approximate solutions of equation (5.1) for different choices of Ψ(t) and α.

Figure 2. Exact and Approximate solutions and the corresponding max absolute error of equation (5.1)
for Ψ(t) = t and Ψ(t) = (t2 + t)/2.

For numerical solution, we employ Ψ-Haar wavelet method. Suppose

Dα,Ψκ(t) = CT
mHm(t). (5.8)

Using Ψ-Caputo integral operator and the boundary conditions, we have

κ(t) = CT
mP

α,Ψ
m×mHm(t)− CT

mK
α,Ψ
m×mHm(t). (5.9)

Substituting equations (5.8) and (5.9) in equation (5.7), we get

CT
m(Hm(t) + CT

mP̂
α,Ψ
m×m(Hm(t)− CT

mK
α,Ψ
m×mHm(t) = FT

m(t)Hm(t), (5.10)
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where the following approximations are used

a(t)Iα,Ψ
0 Hm(t) = P̂α,Ψ

m×mHm(t),

Φ(t)Iα,Ψ
0 Hm(1) = Kα,Ψ

m×mHm(t),

h(t) = FT
m(t)Hm(t),

where
Φ(t) = a(t)(Ψ(t))α−1.

One may verify that for

a(t) = e−9πΨ(t), h(t) = e−9πΨ(t)
(
(Ψ(t))α−1 − (Ψ(t))α

)
− Γ(α+ 1)

the boundary value problem (5.7) has the exact solution as κ(t) =
(

1
Ψ(t)−1

)
(Ψ(t))α.

For different choices of the function Ψ(t) and α, numerical solutions, exact solu-
tion and the maximum absolute error are plotted in the Figure 3. Also the maximum
absolute error is presented in the Table 2 for various J and α.

Table 2. max absolute-error for Ψ(t) = t3 and different J and α values.

α J = 5 J = 6 J = 7 J = 8

2.5 2.384237× 10−5 1.854308× 10−5 1.824315× 10−5 1.893752× 10−5

2.6 8.448743× 10−6 5.875834× 10−6 4.818904× 10−6 4.734526× 10−6

2.7 2.984073× 10−6 1.786233× 10−6 1.272453× 10−6 1.182537× 10−6

2.8 1.049082× 10−6 5.453306× 10−7 3.364195× 10−7 2.956827× 10−7

5.2. Non-linear Case
Example 5.3. Consider the non-linear boundary value problem of fractional order
with Ψ-Caputo fractional derivative:

Dα,Ψ
0 κ(t) + a(t)κ′2(t) + b(t)κ(t)κ′(t) = h(t), 1 < α ≤ 2, t ∈ [0, 1], (5.11)

subject to boundary conditions κ(0) = 0, κ(1) = 0. The exact solution of equation
(5.11) is given by κ(t) = (Ψ(t))α − (Ψ(t))70−α. Where

h(t) =Γ(α+ 1)− 71− α

71− 2α
(Ψ(t))70−2α + a(t)(α(Ψ(t))α−1 − (70− α)(Ψ(t))69−α)2

+ b(t)(α(Ψ(t))α−1 − (70− α)(Ψ(t))69−α)((Ψ(t))α − (Ψ(t))70−α).

We first linearize the non-linear terms in equation (5.11) by using quasi-lineariza-
tion technique and then utilize Ψ-Haar wavelet method for numerical solution.
Equation (5.11) in its linearized representation is given by:

Dα,Ψ
0 κr+1(t) + b(t)κ′

r(t)κr+1(t) + (2a(t)κ′
r(t) + b(t)κr(t))κ′

r+1(t)

=h(t) + a(t)κ′2
r (t) + b(t)κr(t)κ′

r(t), t > 0 and 1 < α ≤ 2,
(5.12)

having κr+1(0) = 0, κr+1(1) = 0 as the boundary conditions.
The Ψ-Haar wavelet approach is applied to equation (5.12).
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Approximate solution of (5.7) for different choices of α and Ψ

Figure 3. For equation (5.7). Exact and approximate solutions for Ψ(t) = t and Ψ(t) = t3 and the
corresponding max absolute error.

Let

Dα,Ψ
0 κr+1(t) = CT

mHm(t). (5.13)

Employing Iα,Ψ and the boundary conditions on (5.13), we have

κr+1(t) = Iα,ΨCT
mHm(t) = CT

mP
α,Ψ
m×mHm(t). (5.14)

κ′
r+1(t) = CT

mP
α−1,Ψ
m×m Hm(t). (5.15)
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Substituting (5.13), (5.14) and (5.15) in (5.12) we have,

CT
m

(
Hm(t) + b(t)κ′

r(t)P
α,Ψ
m×mHm(t) + (2a(t)κ′

r(t) + b(t)κr(t))P
α−1,Ψ
m×m Hm(t)

)
=h(t) + a(t)κ′2

r (t) + b(t)κr(t)κ′
r(t). (5.16)

In matrix notation, equation (5.16) can be written as:

CT
m

(
Hm(t)+ b(t)κ′

r(t)P
α,Ψ
m×mHm(t)+ (2a(t)κ′

r(t)+ b(t)κr(t))P
α−1,Ψ
m×m Hm(t)

)
= F (t),

(5.17)
where F (t) = h(t) + a(t)κ′2

r (t) + b(t)κr(t)κ′
r(t).

The desired numerical solution is obtained by solving (5.17) for CT
m and substi-

tuting the value of CT
m in equation (5.15). Table 3 shows the max absolute-error

for several J and α values. In Figure 4, the exact and approximate solutions for
various selections of the function Ψ(t) are shown.

Table 3. Absolute error for various J and α values

J α = 1.6 α = 1.7 α = 1.8 α = 1.9 α = 2.0

5 1.981467× 10−4 1.637253× 10−4 1.253471× 10−4 9.497683× 10−5 7.13125× 10−5

6 6.389746× 10−5 4.824637× 10−5 3.526588× 10−5 2.516453× 10−5 1.753205× 10−5

7 2.0568703× 10−5 1.435892× 10−5 9.874581× 10−6 6.624682× 10−6 4.413058× 10−6

8 6.6420531× 10−6 4.346458× 10−6 2.785478× 10−6 1.753052× 10−6 1.105386× 10−6

Example 5.4. Consider the fractional order non-linear Lane Emden boundary
value problem with Ψ-Caputo fractional derivative

Dα,Ψ
0 κ(t) +

2

Ψ(t)
κ′(t)− 6κ2(t) = h(t), (5.18)

where, 1 < α ≤ 2, and t ∈ [0, 1].
Subject to the boundary conditions

κ(0) = 0, κ(1) = 2.

For α = 2 and h(t) = 6+ 2
Ψ(t)−6((Ψ(t))2+Ψ(t))2, the exact solution of the problem

(5.18) is given by κ(t) = (Ψ(t))2 +Ψ(t).
We first linearize the non-linear terms in equation (5.18) using the Quasilin-

earization technique, and then use the Ψ-Haar wavelet approach to determine the
numerical solution of the linearized FDE using the same procedure as in example
5.3.

The max absolute-error for various α and J values is shown in Table 4. In Figure
5, the exact and approximate solutions for various selections of α and their max
absolute-error are plotted.

6. Conclusion
Operational matrices approach has been applied for the fist time to Ψ-FDEs with
boundary conditions. One of the major advantages of the technique is that it is a
convenient and effective numerical scheme for solution of non-linear Ψ-FDEs. The
operational matrices are sparse matrices, which help to reduce the computational
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For equation (5.11):Exact and Approximate solutions for different choices of Ψ

Figure 4. For equation (5.11):Approximate solutions for different choices of α and the max absolute
error.

Table 4. max absolute error for Ψ(t) = tan( t
2 ) and different choices of α, J.

ζ = 0.5 and α = 0.75

α J = 5 J = 6 J = 7 J = 8

1.5 6.405136× 10−6 2.372232× 10−6 8.34561× 10−7 2.450634× 10−7

1.6 3.866363× 10−6 1.233445× 10−6 3.756732× 10−7 1.234257× 10−7

1.7 3.213574× 10−6 8.766463× 10−7 2.391531× 10−7 5.643642× 10−8

1.8 2.827468× 10−6 7.563442× 10−7 1.746525× 10−7 4.686534× 10−8

1.9 2.457272× 10−6 5.846783× 10−7 1.584563× 10−7 3.532453× 10−8

cost of the method. The numerical scheme given in this study is based on Ψ-
Haar wavelet OMs of integration. For linear and non-linear Ψ-FDEs, these OMs
are generated and successfully used to solve two and multi-point boundary value
problems. We have applied the scheme to linear and non-linear boundary value
problems. Furthermore, an error analysis is performed, yielding a strict error bound
for the suggested approach. Other wavelet bases, such as Gegenbauer, Chebyshev,
and Legendre wavelet, can be used with the proposed technique. The proposed
method can be used to solve Ψ-fractional partial differential equations as well.
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Numerical solutions of (5.18) for Ψ(t) = t and Ψ(t) = tan( t2 ) for different values of

α

Figure 5. exact and approximate solutions of (5.18) for Ψ(t) = t and Ψ(t) = tan( t
2 ) and the corre-

sponding max absolute error.
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