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FOUR NUMERICAL SCHEMES FOR
SOLUTION OF BURGERS’ EQUATION VIA
OPERATOR SPLITTING TRIGONOMETRIC
CUBIC B-SPLINE COLLOCATION METHOD
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Abstract In this study, we have used operator splitting methods for nu-
merical solutions of the Burgers’ equation by given four different numerical
schemes. To set these schemes, we divide the Burgers equation into two sub-
problems according to the time term, as linear Ut = L(U) and nonlinear
Ut = N (U). Then, numerical schemes have been obtained by the finite ele-
ment method using trigonometric cubic B-spline basis for each sub-problem.
Splitting L ◦ N , N ◦ L Lie-Trotter and L ◦ N ◦ L, N ◦ L ◦ N Strang splitting
solution schemes have been used to obtain the solution of the main equation.
Numerical results calculated with these schemes have been compared among
themselves in terms of L2, L∞ error norms and CPU time. Furthermore, the
numerical results have been compared with some studies that solved the equa-
tion directly with the same method. It has been observed that the numerical
results obtained with the proposed schemes are in agreement with the exact
solution and other studies in the literature. All calculations are obtained using
Matlab Version R2015a.
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1. Introduction
The form of the nonlinear Burgers’ equation is

Ut + UUx = νUxx, a < x < b, t ≥ t0 (1.1)

where U = U(x, t) is a differentiable smooth function of space variable x and time
variable t and ν > 0 kinematics viscosity coefficient. The Burgers’ equation, which
derives two basic steady solutions, was first introduced by Bateman [2] while study-
ing fluid mechanics. This equation is known as the simplest mathematical model
expressing the balance between convection and diffusion.Then, the equation (1.1)
has been studied by Burgers’ [3,4] and is referred to as Burgers’ equation after this
study. This equation involves nonlinearity and dissipation in the simplest possible
way and can be thought of as a nonlinear type of heat equation [5]. If ν = 0 is taken
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in Equation (1.1), the inviscid Burgers’ equation expressing the shock waves and
having many important applications in physics is obtained [6]. The reasons for the
Burgers’ equation attracting the attention of many researchers are that it includes
the nonlinear advection term UUx in its simplest form, the dissipation term νUxx

that models the physical wave phenomena, the shock wave property for the small
values of the kinematic viscosity coefficient ν, the comparison with the exact solu-
tion [8] obtained by [5]. The Burgers’ equation is an important partial derivative
differential equation with widespread usage in mathematical physics. The increase
in interest in nonlinear science makes this equation an observation of scientists be-
cause it describes very well many gas dynamics, heat conduction, traffic flow, and
shock wave models [16]. Numerous mathematical techniques and methods have
been developed in recent years to obtain numerical solutions of Burgers’ equation
and compare analytical and numerical solutions.

Among others, Dağ et al. [9] used the trigonometric cubic B-spline (CTB) func-
tions to set up the collocation method for finding solutions of the Burgers’ equation.
Ersoy et al. [13] found the solutions of Burgers’ equation using exponential cubic
B-splines in the collocation method. Ö. Ersoy [14] adapted the trigonometric cubic
B-splines to the collocation method for solutions of the Kuramoto-Sivashinsky(KS)
equation. Uçar et al. [29] solved Burgers’ equation by using the operator splitting
cubic B-spline collocation method. B. Saka and İ. Dağ [25] applied time and space
splitting techniques to get the approximate solutions of the Burgers’ equation via a
quintic B-spline collocation procedure. Dağ et al. [10] applied cubic B-splines bases
using a linearization technique and collocation finite element method. Kutluay et
al. [18] utilized the least-squares quadratic B-spline finite element method with three
test problems. R.C. Mittal and R.K. Jain [21] calculated the numerical solutions
of the Burgers’ equation via collocation-modified cubic B-splines using SSP-RK43
and SSP-RK54. Dağ et al. [11] solved the Burgers’ equation using both time and
space splitting with the quadratic B-spline collocation method. Ö. Ersoy and G.
Yiğit [12] investigated the numerical solutions of advection-diffusion equation via
quartic-trigonometric tension (QTT) B-spline. Ay et al. [1] found the numerical
solutions of Burgers’ equation using the subdomain Galerkin method based on the
trigonometric B-splines as approximate functions. Ö. Ersoy [15] solved the general-
ized Kuramoto–Sivashinsky (gKS) equation with the quartic trigonometric tension
(QTT) B-spline Galerkin method. S. Kutluay and A. Esen [19] solved the Burgers’
equation using a lumped Galerkin method with quadratic B-spline finite elements.
B. Saka and İ. Dağ [24] used the quartic B-splines in the collocation method for
the numerical solution of the time split Burgers’ equation. A. T. Onarcan and
Ö. Ersoy [23] obtained numerical solutions of the Coupled Burgers’ equation using
trigonometric B-spline functions with the collocation method.

This study will obtain the numerical solution of the Burgers’ equation by com-
bining the operator splitting, which is easy and practical to apply with the finite
element collocation method. Some advantages of operator splitting methods are
easy to apply and explicit methods, their algorithms are sequential, and mid-stage
solutions are stored in the solution vector, they retain the structural features of
the solution (volume preservation, time symmetricity, and simple implementation
can be given) [7]. For this purpose, we will split the equation (1.1) by time and
convert it into two subproblems with a more straightforward structure, one con-
taining the convection term (UUx) and the other the diffusion term (Uxx). Next,
ordinary differential equation systems are obtained using trigonometric cubic B-
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spline bases for each of the sub-problem. Then, with the help of finite difference
approximations, sub-problems were discretized and linear equation systems in the
form Aδn+1 = Bδn were obtained. Numerical results were calculated using these
systems in L ◦ N , N ◦ L, L ◦ N ◦ L and N ◦ L ◦ N splitting schemes.

2. Operator Splitting Methods
Generally, in splitting methods, the original equation is split into several equations,
and each of the sub equation is solved independently over the time interval [tn, tn+1] .
These methods, in general, are called time splitting or fractional step methods. In
the case of splitting the equation in such a way that it includes different physical
phenomena, the method is known as “operator splitting” [17].

Let us consider a Cauchy problem given as follows

dU(t)

dt
= ΠU(t), U(0) = U0, t ∈ [0, T ] . (2.1)

It is assumed in (2.1) that the function U(x, t) is semi-discretized along spatial
direction. We will concentrate on cases where the operator Π = L̂ + N̂ can be
written as the summation of two linear ( and/or nonlinear) operators. That is, it
can be written as follows

dU(t)

dt
= L̂U(t) + N̂U(t), U(0) = U0, t ∈ [0, T ] . (2.2)

Where, the vector U(x, t) is the solution vector obtained from the U0 ∈ X initial
condition, and the operators Π, L̂, N̂ are bounded or unbounded in a finite or infinite
X Banach space. With the aid of the Lie operator formulation, the expression (2.2)
in general (may be nonlinear) can be written as follows

dU(t)

dt
= LU(t) +NU(t) (2.3)

where L and N are Lie operators applied to the function U(t) as follows

L = L̂ (U(t))
∂

∂U
, N = N̂ (U(t))

∂

∂U
.

U(tn+1) = e∆t(L+N )U(tn) is the formal solution (2.3). This solution can also be
written as follows using the Taylor series expansion of the exponential function

U(tn+1) = e∆t(L+N )U(tn) =

∞∑
k=0

tk

k!

(
L̂ (U(t))

∂

∂U
+ N̂ (U(t))

∂

∂U

)k

U(tn).

In order to solve Eq. (2.3) numerically, the splitting technique splits the problem
into two sub problems as follows

dU(t)

dt
= LU(t) and dU(t)

dt
= NU(t) (2.4)

and tries to find the solution numerically or analitically [26]. Let us assume that φ[L]
∆t

and φ
[N ]
∆t are the exact or numerical solutions of the equations in (2.4) involving the
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operators L and N , respectively, then the most basic first order splitting technique
is defined as follows

L∆t = φ
[L]
∆t ◦ φ

[N ]
∆t ≡ e∆tLe∆tN or L∗

∆t = φ
[N ]
∆t ◦ φ[L]

∆t ≡ e∆tN e∆tL

and is known as Lie-Trotter splitting [28]. The algorithm for Lie-Trotter splitting
N ◦ L as follows

dU∗(t)

dt
= LU∗(t), U∗(tn) = U0(tn), t ∈ [tn, tn+1] ,

dU∗∗(t)

dt
= NU∗∗(t), U∗∗(tn) = U∗(tn+1), t ∈ [tn, tn+1] ,

the final solutions are taken from U(tn+1) = U∗∗(tn+1) to complete the splitting
step. If we swap the positions of operators L and N , we get the following half-time
step combination

S∆t = φ
[L]
∆t
2

◦ φ[N ]
∆t ◦ φ[L]

∆t
2

≡ e
∆t
2 Le∆tN e

∆t
2 L

or S∗
∆t = φ

[N ]
∆t
2

◦ φ[L]
∆t ◦ φ

[N ]
∆t
2

≡ e
∆t
2 N e∆tLe

∆t
2 N .

We obtain so-called symmetric Marchuk [22] or more widely known as Strang split-
ting [27] having the schemes ”L ◦ N ◦ L” and ”N ◦ L ◦ N ”. The algorithm for Strang
splitting as follows

dU∗(t)

dt
= LU∗(t), U∗(tn) = U0(tn), t ∈

[
tn, tn+ 1

2

]
,

dU∗∗(t)

dt
= NU∗∗(t), U∗∗(tn) = U∗(tn+ 1

2
), t ∈ [tn, tn+1] ,

dU∗∗∗(t)

dt
= LU∗∗∗(t), U∗∗∗(tn+ 1

2
) = U∗∗(tn+1), t ∈

[
tn+ 1

2
, tn+1

]
.

Where tn+ 1
2

= tn + ∆t
2 and the desired solutions are obtained from equation

U(tn+1) = U∗∗∗(tn+1) to complete the splitting time step.

3. Trigonometric Cubic B-spline Functions
Let us assume that the space solution domain is [a, b] and a uniform discretization of
this domain by the nodal points xm, m = 0, 1, ..., N, is given by a = x0 < x1 < ... <
xN = b . If we define the distance between two consecutive points as h = xm+1−xm

and Tm(x), m = −1(1)N + 1, then trigonometric cubic B-spline functions on the
domain [a, b] can be expressed in terms of nodal points xm as follows

Tm(x)=
1

r



p3(xm−2), x∈[xm−2, xm−1]

p(xm−2)(p(xm−2)q(xm)+q(xm+1)p(xm−1))+q(xm+2)p
2(xm−1), x∈[xm−1, xm]

p(xm−2)q
2(xm+1)+q(xm+2)(p(xm−1)q(xm+1)+q(xm+2)p(xm)), x∈[xm, xm+1]

q3(xm+2), x∈[xm+1, xm+2]

0, othwerwise
(3.1)
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as stated by [20, 30]. Where p(xm) = sin(x−xm

2 ), q(xm) = sin(xm−x
2 ) and r =

sin(h2 ) sin(h) sin(
3h
2 ).

It is obvious that the set {T−1(x), T0(x), ..., TN+1(x)} constitutes a base on the
domain [a, b]. If we assume that the function U(x, t) is defined on the domain [a, b],
then the function U(x, t) can be approximated as follows in terms of trigonometric
cubic B-spline functions and time dependent parameters δm(t) as follows

U(x, t) ∼=
N+1∑
m=−1

δm(t)Tm(x). (3.2)

Where time-dependent parameters δm(t) are going to be determined using the Eq.
(1.1) and its auxiliary conditions. Since the Eq.(1.1) contains the terms U , U ′

and U ′′, we need the values of U, its first and second order derivatives in terms of
trigonometric cubic B-spline functions. Using the approximations (3.1) and (3.2),
the nodal values of U , U ′ and U ′′ are obtained in terms of the time-dependent
parameters δm(t) as follows

Um = U(xm) = α1δm−1 + α2δm + α1δm+1, (3.3)
U ′
m = U ′(xm) = β1δm−1 + β2δm+1,

U ′′
m = U ′′(xm) = γ1δm−1 + γ2δm + γ1δm+1,

with

α1 =
sin2(h/2)

sin(h) sin(3h/2)
, α2 =

2

1 + cos(2h)
, β1 = − 3

4 sin(3h/2)
, β2 =

3

4 sin(3h/2)
,

γ1 =
3(1 + 3 cos(h))

16 sin2(h/2)(2 cos(h/2) + cos(3h/2))
, γ2 =

3 cos2(h/2)

sin2(h/2)(2 + 4 cos(h))
.

Where ′ and ′′ denote the first and second order derivatives with respect to the
space variable x, respectively.

4. Application of the method
The time split form of the Burgers’ (1.1) equation is as follows

Ut − νUxx = 0, (4.1)

Ut + UUxx = 0. (4.2)

We obtain the following first-order system of ordinary differential equations by using
the values of U, U ′ and U

′′ given by (3.3) in equations given by (4.1) and (4.2),

α1

◦
δm−1 + α2

◦
δm + α1

◦
δm+1 − ν (γ1δm−1 + γ2δm + γ1δm+1) = 0 (4.3)

α1

◦
δm−1 + α2

◦
δm + α1

◦
δm+1 + zm (β1δm−1 + β2δm+1) = 0. (4.4)

Where the symbol ◦ denotes the first order derivative with respect to the time
variable t and

zm = α1δm−1 + α2δm + α1δm+1.
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While solving the problems, the δn+1 = δn+1+δn

2 approach was used to improve
the zm term with inner iteration. If we use the Crank-Nicolson approximation
δn+1
m +δnm

2 in place of the parameters δm in Eqs. (4.3) and (4.4), forward difference
equations δn+1

m −δnm
∆t in place of the parameters

◦
δm,we obtain the following equations,

respectively

κ1δ
n+1
m−1 + κ2δ

n+1
m + κ1δ

n+1
m+1 = κ3δ

n
m−1 + κ4δ

n
m + κ3δ

n
m+1, (4.5)

κ5δ
n+1
m−1 + κ6δ

n+1
m + κ7δ

n+1
m+1 = κ8δ

n
m−1 + κ6δ

n
m + κ9δ

n
m+1, (4.6)

κ1 = α1 −
ν∆tγ1

2
, κ2 = α2 −

ν∆tγ2
2

, κ3 = α1 +
ν∆tγ1

2
, κ4 = α2 +

ν∆tγ2
2

,

κ5 = α1 +
zm∆tβ1

2
, κ6 = α2, κ7 = α1 +

zm∆tβ2

2
, κ8 = α1 −

zm∆tβ1

2
,

κ9 = α1 −
zm∆tβ2

2
.

The Eqs. (4.5) and (4.6) consist of (N + 1) equations and (N + 3) unknown time
dependent parameters δm,m = 0, 1, ..., N +1. In order to obtain a solvable system,
we need to eliminate the time dependent parameters δ−1 and δN+1. To accomplish
this, we will use the boundary conditions U(a, t) = f(t), U(b, t) = g(t) for the
system (4.5) and Ux(a, t) = h(t), Ux(b, t) = i(t) for the system (4.6) to obtain the
following equations

δ−1 = −α2

α1
δ0 − δ1 +

f(t)

α1
, δN+1 = −δN−1 −

α2

α1
δN +

g(t)

α1
, (4.7)

δ−1 = −β2

β1
δ1 +

h(t)

β1
, δN+1 = −β1

β2
δN−1 +

i(t)

β2
. (4.8)

We get a three-diagonal (N + 1)×(N + 1) band matrix if we use the equations (4.7)
and (4.8) in the system of equations given by (4.5) and (4.6). A unique solution of
these systems is easily obtained using the Thomas algoritm. To be able to solve this
(N + 1)×(N + 1) system, we need the initial vector δ0m to start the iterative process.
The initial vector is built as follows, using the initial condition U(x, 0) = s(x) and
the approximation given in (3.2)

U(xm, 0) = s(xm), m = 0(1)N, (4.9)
Um = α1δ

0
m−1 + α2δ

0
m + α1δ

0
m+1,

U0 = α1δ
0
−1 + α2δ

0
0 + α1δ

0
1 ,

U1 = α1δ
0
0 + α2δ

0
1 + α1δ

0
2 ,

...
UN = α1δ

0
N−1 + α2δ

0
N + α1δ

0
N+1.

To solve this system, the parameters δ−1 and δN+1 are eliminated using the bound-
ary conditions Uxx(a, 0) = f1(t), Uxx(b, 0) = f2(t). As a result, the following
three-dimensional (N + 1)× (N + 1) band matrix can be solved using the Thomas
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algorithm

−α1γ2

γ1
+ α2 0 0

α1 α2 α1

. . .

α1 α2 α1

0 0 −α1γ2

γ1
+ α2





δ00

δ01
...

δ0N−1

δ0N


=



U0 − α1f1(t)
γ1

U1

...

UN−1

UN − α1f2(t)
γ1

.


. (4.10)

5. Numerical results and discussion
The numerical solutions of the Burgers’ equation are going to be sought for two
standard test problems frequently found in the literature. The efficiency of the
numerical method has been tested using the following error methods between exact
and approximate solutions for all test problems. All computations have been carried
out using the splitting schemes L ◦ N , N ◦ L, L ◦ N ◦ L and N ◦ L ◦ N on Maltab
Version R2015a.

L2 =

√√√√h

N∑
j=0

∣∣∣∣(UExact
j − UApp

j

)2
∣∣∣∣, L∞ = max

j

∣∣∣UExact
j − UApp

j

∣∣∣ .
Problem 1. As a first test problem, Burgers’ equation is going to be considered
together with the following initial

U(x, 0) = s(x) = sinπx, 0 ≤ x ≤ 1

and boundary conditions

f(t) = g(t) = h(t) = i(t) = f1(t) = f2(t) = 0.

The exact solution of this problem has been obtained as a summation of an infinite
series by D. Cole [8] as follows

U(x, t) = 2πν

∑∞
j jaj sin(jπx) exp(−j2π2νt)

a0 +
∑∞

j=1 aj cos(jπx) exp(−j2π2νt)
. (5.1)

Where a0 and aj are Fourier coefficients given as follows

a0 =

∫ 1

0

e−(2πν)−1(1−cos(πx))dx,

an = 2

∫ 1

0

e−(2πν)−1(1−cos(πx)) cos(nπx)dx, n = 1, 2, ....

When all calculations are done in this problem, the inner iteration is taken as
3. L2 and L∞ error norms, as well as total CPU times calculated by L ◦ N , N ◦ L,
L ◦ N ◦ L, N ◦ L ◦ N methods, are compared in the Tables 1, 2. When we look at
the L2 and L∞ error norms and CPU times, it has been seen that the error norms
are close to each other, but the L ◦ N and N ◦ L methods have given faster results.
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Table 1. Comparison of problem 1’s error norms L2, L∞ at different times t and ν for h = 0.025,
∆t = 0.0001.

ν = 1 ν = 0.1 ν = 0.01
Method t L2 L∞ L2 L∞ L2 L∞

0.4 0.2071E-4 0.2928E-4 0.2625E-3 0.6906E-3 0.2465E-2 0.1403E-1
0.6 0.4317E-5 0.6105E-5 0.2320E-3 0.5862E-3 0.2543E-2 0.1554E-1

L ◦ N 0.8 0.7996E-6 0.1131E-5 0.1759E-3 0.4153E-3 0.2599E-2 0.1309E-1
1.0 0.1388E-6 0.1963E-6 0.1298E-3 0.2894E-3 0.2443E-2 0.1187E-1
3.0 0.0000E-6 0.0000E-6 0.2058E-4 0.3046E-4 0.4332E-3 0.1846E-2

0.4 0.2062E-4 0.2916E-4 0.2228E-3 0.5907E-3 0.2355E-2 0.1316E-1
0.6 0.4305E-5 0.6088E-5 0.2012E-3 0.5116E-3 0.2506E-2 0.1557E-1

N ◦ L 0.8 0.7980E-6 0.1128E-5 0.1545E-3 0.3649E-3 0.2526E-2 0.1323E-1
1.0 0.1386E-6 0.1960E-6 0.1151E-3 0.2567E-3 0.2373E-2 0.1113E-1
3.0 0.0000E-6 0.0000E-6 0.1942E-4 0.2873E-4 0.4245E-3 0.1806E-2

0.4 0.2066E-4 0.2922E-4 0.2426E-3 0.6407E-3 0.2410E-2 0.1360E-1
0.6 0.4310E-5 0.6096E-5 0.2165E-3 0.5489E-3 0.2522E-2 0.1556E-1

L ◦ N ◦ L 0.8 0.7987E-6 0.1129E-5 0.1651E-3 0.3901E-3 0.2561E-2 0.1316E-1
1.0 0.1387E-6 0.1961E-6 0.1224E-3 0.2731E-3 0.2408E-2 0.1150E-1
0.3 0.0000E-6 0.0000E-6 0.2000E-3 0.2960E-3 0.4289E-3 0.1826E-2

0.4 0.2066E-4 0.2922E-4 0.2426E-3 0.6407E-3 0.2410E-2 0.1360E-1
0.6 0.4311E-5 0.6097E-5 0.2165E-3 0.5489E-3 0.2522E-2 0.1556E-1

N ◦ L ◦ N 0.8 0.7988E-6 0.1130E-5 0.1651E-3 0.3901E-3 0.2561E-2 0.1316E-1
1.0 0.1387E-6 0.1962E-6 0.1224E-3 0.2731E-3 0.2408E-2 0.1150E-1
0.3 0.0000E-6 0.0000E-6 0.2000E-4 0.2960E-4 0.4289E-3 0.1826E-2

Table 2. Comparison of CPU times at different t and ν of problem 1 for h = 0.025, ∆t = 0.0001.

Total CPU Time
ν t L ◦ N N ◦ L L ◦ N ◦ L N ◦ L ◦ N

0.4 1.646 1.659 1.891 2.413
0.6 2.169 2.134 2.437 3.249

1 0.8 2.558 2.598 2.998 4.108
1.0 3.052 3.092 3.581 4.790
3.0 7.501 7.764 9.127 12.737
0.4 1.639 1.670 1.855 2.371
0.6 2.108 2.194 2.431 3.107

0.1 0.8 2.566 2.544 2.967 3.921
1.0 3.010 2.962 3.518 4.699
3.0 7.637 7.514 9.177 12.937
0.4 1.545 1.514 1.731 2.284
0.6 1.988 2.028 2.302 3.069

0.01 0.8 2.380 2.395 2.839 3.878
1.0 2.851 2.897 3.415 4.745
3.0 7.386 7.599 9.113 12.567

Some nodal values are given at different positions and times for ν = 1, 0.1, 0.01,
h = 0.025, ∆t = 0.0001 in the Tables 3, 4, 5 and compared with Ref. [9, 21, 29].
The results calculated with the proposed schemes are closer to the exact solution
at some points according to the trigonometric cubic B-spline collocation method
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Table 3. Comparison of some nodal values of problem 1 with exact solution and Ref. [9, 21, 29] at the
different t and x for h = 0.025, ∆t = 0.0001, ν = 1.

x t L ◦ N N ◦ L L ◦ N ◦ L N ◦ L ◦ N Ref. [9] Ref. [29] Ref. [21] Exact
0.25 0.4 0.01355 0.01355 0.01355 0.01355 0.01355 0.01357 0.01354 0.01357

0.6 0.00188 0.00188 0.00188 0.00188 0.00188 0.00189 0.00188 0.00189
0.8 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026
1.0 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004
3.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.5 0.4 0.01921 0.01921 0.01921 0.01921 0.01920 0.01923 0.01920 0.01924
0.6 0.00267 0.00267 0.00267 0.00267 0.00266 0.00267 0.00266 0.00267
0.8 0.00037 0.00037 0.00037 0.00037 0.00037 0.00037 0.00037 0.00037
1.0 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005
3.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.75 0.4 0.01361 0.01361 0.01361 0.01361 0.01361 0.01362 0.01360 0.01363
0.6 0.00189 0.00189 0.00189 0.00189 0.00188 0.00189 0.00188 0.00189
0.8 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026 0.00026
1.0 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004 0.00004
3.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 4. Comparison of some nodal values of problem 1 with exact solution and Ref. [9, 21, 29] at the
different t and x for h = 0.025, ∆t = 0.0001, ν = 0.1.

x t L ◦ N N ◦ L L ◦ N ◦ L N ◦ L ◦ N Ref. [9] Ref. [29] Ref. [21] Exact
0.25 0.4 0.30893 0.30892 0.30892 0.30892 0.30892 0.30890 0.30892 0.30889

0.6 0.24078 0.24078 0.24078 0.24078 0.24078 0.24075 0.24077 0.24075
0.8 0.19573 0.19572 0.19573 0.19573 0.19572 0.19569 0.19572 0.19569
1.0 0.16262 0.16261 0.16262 0.16262 0.16261 0.16258 0.16261 0.16258
3.0 0.02719 0.02719 0.02719 0.02719 0.02718 0.02720 0.02718 0.02720

0.5 0.4 0.56972 0.56971 0.56972 0.56972 0.56971 0.56965 0.56970 0.56963
0.6 0.44731 0.44730 0.44731 0.44731 0.44730 0.44723 0.44729 0.44723
0.8 0.35932 0.35932 0.35932 0.35932 0.35932 0.35925 0.35930 0.35925
1.0 0.29197 0.29197 0.29197 0.29197 0.29197 0.29192 0.29195 0.29192
3.0 0.04018 0.04018 0.04018 0.04018 0.04017 0.04019 0.04016 0.04019

0.75 0.4 0.62521 0.62527 0.62524 0.62524 0.62524 0.62538 0.62520 0.62544
0.6 0.48696 0.48701 0.48699 0.48699 0.48798 0.48715 0.48694 0.48721
0.8 0.37368 0.37372 0.37370 0.37370 0.37369 0.37385 0.37365 0.37392
1.0 0.00004 0.28729 0.28728 0.28728 0.28727 0.28741 0.28724 0.28747
3.0 0.02975 0.02975 0.02975 0.02975 0.02974 0.02976 0.02974 0.02977

without using splitting the Ref. [9] and modified cubic B-splines collocation method
the Ref. [21]. Furthermore, our results appear to be in good agreement with those
of Ref. [29], which uses the cubic B-spline collocation method with splitting. The
physical behaviors of the exact and approximate solutions for ν = 1, 0.1, 0.01 at
different times are obtained with the N ◦ L scheme displayed in Figure 1. It has
been seen from the figures that the approximate solution is in a good harmony with
the exact solution. Also, since the exact solution is distorted for small values of ν,
only the approximate solution is plotted for ν = 0.001.

Problem 2. As the second problem, the Burgers’ equation is taken with the
following exact solution

U(x, t) =
α+ µ+ (µ− α) exp η

1 + exp η
, 0 ≤ x ≤ 1, t ≥ 0, where η =

α(x− µt− γ)

ν
.
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Table 5. Comparison of some nodal values of problem 1 with exact solution and Ref. [9, 21, 29] at the
different t and x for h = 0.025, ∆t = 0.0001, ν = 0.01.

x t L ◦ N N ◦ L L ◦ N ◦ L N ◦ L ◦ N Ref. [9] Ref. [29] Ref. [21] Exact
0.25 0.4 0.34192 0.34192 0.34192 0.34192 0.34191 0.34192 0.34192 0.34192

0.6 0.26897 0.26897 0.26897 0.26897 0.26896 0.26896 0.26896 0.22896
0.8 0.22148 0.22148 0.22148 0.22148 0.22148 0.22148 0.22148 0.22148
1.0 0.18819 0.18819 0.18819 0.18819 0.18819 0.18819 0.18819 0.18819
3.0 0.07511 0.07511 0.07511 0.07511 0.07511 0.07511 0.07511 0.07511

0.5 0.4 0.66072 0.66071 0.66072 0.66072 0.66071 0.66071 0.66071 0.66071
0.6 0.52942 0.52942 0.52942 0.52942 0.52942 0.52942 0.52942 0.52942
0.8 0.43914 0.43914 0.43914 0.43914 0.43914 0.43914 0.43914 0.43914
1.0 0.37442 0.37442 0.37442 0.37442 0.37442 0.37442 0.37442 0.37442
3.0 0.15018 0.15018 0.15018 0.15018 0.15017 0.15018 0.15018 0.15018

0.75 0.4 0.91029 0.91029 0.91029 0.91029 0.91029 0.91027 0.91027 0.91026
0.6 0.76726 0.76725 0.76725 0.76725 0.76725 0.76725 0.76724 0.76724
0.8 0.64740 0.64740 0.64740 0.64740 0.64740 0.64740 0.64740 0.64740
1.0 0.55605 0.55605 0.55605 0.55605 0.55605 0.55605 0.55605 0.55605
3.0 0.22490 0.22490 0.22490 0.22490 0.22489 0.22483 0.22483 0.22481
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Figure 1. Exact and numerical solutions of Problem 1 obtained by N ◦ L method for different ν and t
values for h = 0.025, ∆t = 0.0001.

The boundary conditions for the system (4.5) and (4.6) are f(t) = 1, g(t) = 0.2,
h(t) = i(t) = 0, the initial solutions are taken from the exact solution while t = 0 and
the boundary conditions for the initial solutions are obtained from Uxx(a, 0) = f1(t),
Uxx(b, 0) = f2(t).

In this problem, when all calculations are made, the inner iteration is taken as
2. The L2, L∞ error norms and CPU times at t = 0.4, 0.5, 0.8, 1.2 are calculated
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Table 6. Comparison of the L2, L∞ error norms of problem 2 at the different t for h = 1/36, ∆t = 0.01,
ν = 0.01 and compared with the Ref. [1,11,21,25] for t = 0.5.

t L ◦ N N ◦ L L ◦ N ◦ L N ◦ L ◦ N
L2 0.311461E-2 0.137427E-2 0.211717E-2 0.161583E-2

0.4 L∞ 0.127109E-1 0.437095E-2 0.575369E-2 0.560973E-2
Total CPU T. 0.056s 0.049s 0.063s 0.069s
L2 0.320078E-2 0.142152E-2 0.218591E-2 0.161787E-2

0.5 L∞ 0.125215E-1 0.466784E-2 0.558301E-2 0.509848E-2
Total CPU T. 0.060s 0.057s 0.064s 0.070s
L2 0.343313E-2 0.152890E-2 0.241270E-2 0.161441E-2

0.8 L∞ 0.151762E-1 0.466922E-2 0.678776E-2 0.542833E-2
Total CPU T. 0.065s 0.060s 0.068s 0.082s
L2 0.382040E-2 0.172349E-2 0.276081E-2 0.164411E-2

1.2 L∞ 0.149692E-1 0.454242E-2 0.748851E-2 0.440989E-2
Total CPU T. 0.068s 0.063s 0.076s 0.091s

Ref. [25] Ref. [21] Ref. [11] Ref. [1]
L2 1.72434E-3 1.45E-3 5.86664E-3 1.48311E-3

0.5 L∞ 5.78454E-3 5.97E-3 22.2345E-3 5.51404E-3

Table 7. Comparison of some nodal values of problem 2 with exact solution and Ref. [9, 11, 21] at the
t = 0.5 for h = 1/36, ∆t = 0.01, ν = 0.01.

x L ◦ N N ◦ L L ◦ N ◦ L N ◦ L ◦ N Ref. [9] Ref. [21] Ref. [11] Exact
0.000 1. 1. 1. 1. 1. 1. 1. 1.
0.056 1. 1. 1. 1. 1. 1. 1. 1.
0.111 1. 1. 1. 1. 1. 1. 1. 1.
0.167 1. 1. 1. 1. 1. 1. 1. 1.
0.222 1. 1. 1. 1. 1. 1. 1. 1.
0.278 0.999 0.999 1.001 0.999 0.999 0.998 1. 0.998
0.333 0.981 0.984 0.985 0.982 0.983 0.982 0.983 0.980
0.389 0.835 0.848 0.845 0.843 0.845 0.844 0.825 0.847
0.444 0.458 0.451 0.457 0.457 0.456 0.458 0.465 0.452
0.500 0.239 0.235 0.237 0.237 0.237 0.238 0.244 0.238
0.556 0.203 0.203 0.203 0.203 0.203 0.203 0.204 0.204
0.611 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
0.667 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
0.722 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
0.778 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
0.833 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
0.889 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
0.944 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200
1.000 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200

with L ◦ N , N ◦ L, L ◦ N ◦ L, N ◦ L ◦ N schemes for the values α = 0.4, γ = 0.125,
µ = 0.6, ν = 0.01 and h = 1/36, ∆t = 0.01 are given in the Table 6. Also, the L2,
L∞ error norms are compared with Ref. [1, 11, 21, 25] at t = 0.5 and it has been
seen that our results are smaller than those given in other studies. The calculated
results with all the schemes in terms of CPU times are in good agreement and the
L ◦ N , N ◦ L schemes are faster than L ◦ N ◦ L, N ◦ L ◦ N . In the Table 7, some
nodal values calculated with four splitting schemes are given in the range 0 ≤ x ≤ 1
for ν = 0.01, h = 1/36, ∆t = 0.01 at t = 0.5 and compared with the Ref. [9,11,21].
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Figure 2. Physical behaviors of the solution and absolute error of problem 2 obtained by N ◦ L method
for different ν and t values for h = 1/36, ∆t = 0.01.

It is seen that the approximate results obtained by splitting schemes are in good
harmony with other studies and even better converge to the exact solution at some
points. The physical behavior of the problem and the absolute error for the values
ν = 0.01, 0.005 and h = 1/36, ∆t = 0.01 are plotted using the N ◦ L scheme in
Figure 2. As seen from the figure, as ν becomes smaller, the waves become steeper
and move to the right over time.

Problem 3. As a last problem, the solutions of Burgers’ equation modeling the
shock wave problem, which becomes sharper as the viscosity parameter ν decreases,
are examined. The initial condition and exact solution of Burgers’ equation for t = 1
for this problem are as follows

U(x, 1) =
x

1 +
√
1/t0 exp(x2/(4ν))

and U(x, t) =
x/t

1 +
√
t/t0 exp(x2/(4νt))

.

Where t0 = exp(1/(8ν)), t ≥ 1, 0 ≤ x ≤ 1 and boundary conditions f(t) = g(t) =
h(t) = i(t) = 0.

For this problem, the inner iteration is taken as 9 in all calculations. The
total CPU times of the calculations obtained with the four numerical schemes for
∆t = 0.01 are given in the Table 8. The L2, L∞ error norms calculated with
the L ◦ N , N ◦ L, L ◦ N ◦ L and N ◦ L ◦ N schemes are given in the Table 9 and
compared to those in Ref. [1, 24, 25]. As can be seen from the Table 9, the results
calculated with the four schemes are in agreement with other studies, and the
error norms obtained with the N ◦ L ◦ N scheme are smaller. Furthermore, while
the Ref. [24](QBCM2) study used a split methodology, the L2, L∞ error norms
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Table 8. Comparison of CPU times for different h, t and ν of problem 3 for ∆t = 0.01.

Total CPU Time
ν h t L ◦ N N ◦ L L ◦ N ◦ L N ◦ L ◦ N

1.7 0.304 0.331 0.336 0.545
0.005 0.005 2.4 0.633 0.558 0.646 1.145

3.1 0.867 0.877 0.876 1.568
1.8 0.081 0.080 0.115 0.164

0.005 0.02 2.4 0.131 0.125 0.164 0.251
3.2 0.185 0.180 0.203 0.337
1.7 0.075 0.077 0.078 0.120

0.01 0.02 2.1 0.099 0.110 0.111 0.174
2.6 0.144 0.138 0.153 0.252

Table 9. Comparison of problem 3’s error norms L2, L∞ for different h, t, ν and ∆t = 0.01.

L ◦N N ◦ L L ◦N ◦ L N ◦ L ◦N
h ν t L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

1.7 0.37076 1.29496 0.33200 1.15368 0.03558 0.16065 0.02926 0.12473
0.005 0.005 2.4 0.25631 0.85606 0.23821 0.78146 0.02209 0.08303 0.01943 0.06770

3.1 0.63477 4.79061 0.71135 4.79061 0.65023 4.79061 0.65010 4.79061
1.8 0.64544 2.35585 0.24122 0.65249 0.35798 1.40339 0.35404 1.37448

0.005 0.02 2.4 0.45170 1.54547 0.19201 0.49144 0.24567 0.88582 0.24372 0.87075
3.2 1.23589 7.49146 1.27728 7.49146 1.24571 7.49146 1.24545 7.49147
1.7 0.31859 0.85415 0.08616 0.22512 0.15368 0.43257 0.15294 0.42712

0.01 0.02 2.1 0.32795 1.14759 0.23627 1.14759 0.24322 1.14759 0.24304 1.14760
2.6 1.53580 8.06798 1.58845 8.06798 1.55803 8.06798 1.55795 8.06798

[25] [1] [24]QBCM1 [24]QBCM2
L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103 L2 × 103 L∞ × 103

1.7 0.35008 1.21175 0.01699 0.06511 0.01705 0.06192 0.35891 1.21170
0.005 0.005 2.4 0.24439 0.80771 0.01463 0.04322 0.01252 0.05882 0.25132 0.80777

3.1 0.63309 4.79061 0.65079 4.79061 0.60199 4.43469 0.63052 4.79061
1.8 0.33376 1.15263 0.36608 1.42677 0.19127 0.54058 0.49130 1.16930

0.005 0.02 2.4 0.24522 0.80008 0.25011 0.89905 0.14246 0.39241 0.41864 0.93664
3.2 1.22981 7.49147 0.12456 7.49147 0.93617 5.54899 1.28863 7.49147
1.7 0.17792 0.47456 0.15117 0.42203 0.17014 0.40431 0.24003 0.48800

0.01 0.02 2.1 0.24875 1.14759 0.24363 1.14760 0.20476 0.86363 0.30849 1.14760
2.6 1.54108 8.06798 1.55800 8.06799 1.29951 6.69425 1.57548 8.06799

obtained by the operator splitting method we used are less. In Figure 3, absolute
error graphs are shown as well as exact and approximate solutions. As can be seen
from Figure 3, the exact solution and the approximate solution overlap. Also, for
ν = 0.005, the shock wave is soft and travels to the right with decreasing amplitude.
For ν = 0.0005, it is clearly seen that the shock wave becomes sharper. Since we
take the boundary conditions as zero, the absolute error at t = 3.1 for v = 0.005
is greatest in the right boundary. When the solution region is [0, 1.2] instead of
[0, 1] for v = 0.005 at t = 3.1, the L2 error norm changes from 0.65010 × 103 to
0.01223 × 103. In addition, the L∞ error norm decreases from 4.79061 × 103 to
0.04382× 103.

6. Conclusions
In this study, Burgers’ equation is divided into two sub-problems such that linear
Ut = L(U) and nonlinear Ut = N (U). L ◦ N , N ◦ L, L ◦ N ◦ L and N ◦ L ◦ N
numerical solution schemes based on operator splitting methods are used to obtain
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Figure 3. Physical behaviors of the solution and absolute error of problem 3 obtained by N ◦ L ◦ N
method for ν = 0.005, h = 0.005 and ν = 0.0005, h = 0.001, ∆t = 0.01.

the solution of the main equation by using sub-problems. Each sub-problem has
been solved by the finite element trigonometric cubic B-spline collocation method.
The numerical results calculated with these schemes are compared among them-
selves and with some studies in the literature. According to the numerical data,
the results calculated with the L ◦ N , N ◦ L schemes are found to be reasonably
good and faster in terms of CPU time than the L ◦ N ◦ L, N ◦ L ◦ N schemes. In
addition, in comparison with Ref. [9], which solves Burgers’ equation directly with
trigonometric cubic B-spline collocation, it has been seen that solving the equation
using operator splitting has more convergent at some points. It is seen from the
results that the proposed methods are easy to apply and economical. The operator
splitting trigonometric cubic B-spline collocation method will be effective in solving
many nonlinear equations as well as Burgers’ equation.
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