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BIFURCATION AND COMPARISON OF A
DISCRETE-TIME HINDMARSH-ROSE MODEL

Yue Li1 and Hongjun Cao1,†

Abstract In this paper, a Hindmarsh-Rose model discretized by a nonstan-
dard finite difference (NSFD) scheme is considered. Bifurcation behaviors
are compared between the model obtained by the forward Euler scheme and
the model obtained by the NSFD scheme. Through analytical and numeri-
cal comparisons, the Neimark-Sacker bifurcation of the model discretized by
the NSFD method is closer to the Hopf bifurcation of the original continuous
Hindmarsh-Rose model than that discretized by the forward Euler method.
Moreover, due to the NSFD method’s better stability and convergence, the
integral step size can be chosen larger in the NSFD scheme. And much more
dynamic behaviors can be obtained by using the NSFD scheme than those in
the forward Euler scheme. These confirmed results can at least guarantee true
available numerical results to investigate complex neuron dynamical systems.
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Rose model, stability, fold bifurcation, Neimark-Sacker bifurcation.
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1. Introduction
Many dynamical systems are represented by nonlinear differential equations whose
analytical solutions are usually hard to obtain. Under this circumstance, how to
take into account the dynamical behaviors of these nonlinear differential equations
effectively is of great significance.

Among so many methods to deal with the above problem, the discretization is a
straightforward way. There are several ways to transform a continuous differential
system into a corresponding discrete mapping. The most commonly used method
for this aim is the standard difference methods, such as the forward Euler scheme,
the Runge-Kutta method and so on. Nevertheless, there have been so many unclear
questions so far. The key point is how to preserve the basic structures and main
properties of the original continuous dynamical system after discretization as much
as possible. In particular, the numerical instabilities should be considered before
the implementation of standard finite difference schemes.

To eliminate numerical instabilities, the NSFD schemes have been proposed by
many researchers, for example like [15] and therein. In addition, dynamic consis-
tency must be considered, which is also a goal for proposing the NSFD methods. A
difference equation is called dynamically consistent with the differential equation if
they both possess the same dynamics such as stability, bifurcation, and chaos [2].
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The main advantage of NSFD schemes can retain the considerable properties of
their original continuous systems to guarantee true numerical results. While the
construction of these NSFD schemes is not easy, because there is no general criterion
for construction.

Over the past decades, there have been numerous interesting results from using
the NSFD method. Some results also proved that the stability and convergence of
the NSFD methods are better than some standard difference schemes. For example,
in [6], authors developed positive and elementary stable nonstandard (PESN) finite-
difference methods for predator-prey systems. They found that the PESN methods
keep both the positivity of the solutions and the stability of the equilibria of the
corresponding predator-prey system. A NSFD scheme that was constructed to sim-
ulate a predator-prey model of Gause-type with a functional response is consistent
with the asymptotic dynamics of the model. It was also compared with those ob-
tained from the standard methods such as the forward Euler and the Runge-Kutta
methods [16]. Other applications and analyses of the NSFD scheme can be found
in [1,3,5,10,17]. Moreover, Mickens’s method was generalized by Roeger. Simulta-
neously, a class of nonstandard symplectic numerical methods for a Lotka-Volterra
system was given [19]. Roeger et al. constructed a discrete Lotka-Volterra compe-
tition model by applying the NSFD schemes. It proved the dynamic consistency
between the resulting difference equation and the differential equation [20]. Kahan
et al. presented an unconventional method with second-order accuracy [9]. Roeger
used conformal mappings to study the relationship between the eigenvalues of the
Jacobian matrices of the differential equations and the resulting difference equa-
tions. He proved that Kahan’s discretization method preserves the local stability
and the Hopf bifurcation of any fixed points while Euler’s method fails. Unfortu-
nately, Kahan’s method can only be applied to the differential equation dx

dt = f(x)
where f(x) is at most quadratic in x [21].

So it is worth discretizing a neuron model with cubic terms and studying its
dynamic behavior by using a kind of NSFD method. A classical Hindmarsh-Rose
neuron model [22] with cubic terms is chosen in this paper as follows:

dx

dt
= c

(
x− x3

3
− y + I

)
,

dy

dt
=

x2 + dx− by + a

c
.

(1.1)

Herein, x represents the membrane potential, y is an internal or recovery variable,
I is the stimulus intensity and a, b, c, d are all positive parameters.

There are several reasons for choosing this model:
(i). Hindmarsh-Rose model is a classical neuron model and has been widely studied.

Many researchers have used the bifurcation theory to study the complex dynam-
ics of the Hindmarsh-Rose model. In [23], the authors proposed two Hindmarsh-
Rose neurons with the same synaptic coupling and discussed how coupling strength
and time delay affect dynamics by studying the stabilities and bifurcations at equi-
libria. Some conclusions could be regarded as theoretical guidance for the study of
the dynamics of coupled neurons.
(ii). There have been many works on the discretization of the Hindmarsh-Rose
model.

The forward Euler scheme is the more frequently used method to discretize a
Hindmarsh-Rose model. Yu and Cao [25] discretized a three-dimensional Hindmarsh-
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Rose model by the forward Euler scheme and then investigated the existence of one-
parameter bifurcations in the discrete model. They illustrated the correctness of the
bifurcation analysis by numerical computation. Li and He [14] proved that a two-
dimensional discrete Hindmarsh-Rose model can produce two kinds of codimension-
one bifurcations (flip bifurcation, Neimark-Sacker bifurcation) and a codimension-
two bifurcation (1:1 resonance). In addition, they also carried out numerical compu-
tations, which illustrated the theoretical results and showed some complex dynamic
behaviors. Felicio and Rech [7] presented a two-dimensional parameter-plane dia-
gram for a three-dimensional discrete Hindmarsh-Rose model. Moreover, periodic
structures can be observed clearly in a two-dimensional parameter-plane diagram.
Kuznetsov and Sedova [11] analyzed the quasi-periodic bifurcations of a map by
observing two-dimensional parameter-plane diagrams corresponding to different in-
tegral step sizes.
(iii). The model (1.1) is a relatively simple two-dimensional Hindmarsh-Rose model
with cubic terms, which made the implementation of theoretical analysis and cal-
culation less complicated and relatively feasible.

Besides, Li and He [13] studied the dynamic properties like periodic structures
and bifurcation types of the model which is obtained by applying the forward Euler
scheme to discretize the model (1.1):x

y

 7→

x+ hc

(
x− x3

3
− y + I

)
y+

h

c

(
x2 + dx− by + a

)
 , (1.2)

where h is the step size. This paper mainly focus on the comparison of bifurcations
between the model (1.2) and the model discretized by the NSFD method.

In this paper, a NSFD scheme is applied to the model (1.1) and the following
discrete-time model is obtained:
x

y

 7→


6h(x− 2y)c2 +

(
((3b− 3d)x− 6a)h2 + 12x

)
c+ 6bhx

M

4ch2(
dx3

2
+ (a+

3

2
− by

2
)x2 − 3xy

2
+

3

4
y(b− d)− 3a

2
) + ((4x2y − 6y)c2 − 6by + 12(dx+ x2 + a))h+ 12cy

M

 ,

(1.3)
where M =

(
4x2 − 6

)
hc2 +

(
12 +

(
2bx2 − 3b+ 3d+ 6x

)
h2

)
c+ 6bh. The detailed

calculation is in Appendix A. In order to guarantee the model is meaningful, suppose
M 6= 0. Assume that I = 0 in this paper [4].

Unlike most implicit discrete schemes which cannot be solved explicitly, one of
the novelties of this paper is that the explicit expressions can be solved in this
paper as equation (1.3), which facilitates our research. The goal is to compare
the difference between the model obtained by the forward Euler scheme and the
discrete-time Hindmarsh-Rose model obtained by the NSFD scheme. For the sake of
simplicity in the computation, the projection method is used to calculate the normal
forms of one-parameter bifurcations at the fixed points of the model (1.3). Based
on the bifurcation analysis, several behaviors for the two-dimensional Hindmarsh-
Rose model are simulated and compared near bifurcation points. When the step
size h is the same, the bifurcation parameter of the Hopf bifurcation of the model
(1.3) obtained by the NSFD method is closer to the original continuous model
than the model (1.2) obtained by the forward Euler method. In addition, because
of the better stability and convergence of the NSFD method, when the step size
increases, the difference equation still converges and more dynamic phenomena can
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be obtained such as the chaotic attractor, which is demonstrated by numerical
simulation.

The layout of this paper is as follows. In section 2, from the point of view of
qualitative and quantitative analysis for bifurcation, the existence and stability of
the fixed points for model (1.3) are concerned, which makes the bifurcation anal-
ysis more accurate and the corresponding comparison more specific, especially in
numerical simulation. In section 3, sufficient conditions for fold bifurcation and
Neimark-Sacker bifurcation at fixed points of model (1.3) are given and the dif-
ferences on bifurcations between model (1.2) and model (1.3) are discussed. The
theoretical results are identified by numerical simulation in section 4, where complex
dynamics like periodic structures, invariant closed orbits and chaotic attractor are
observed. Moreover, the results of numerical simulation of the forward Euler scheme
and the NSFD scheme are compared, especially in two-dimensional parameter-plane
diagrams. Finally, conclusions are given in section 5.

2. Existence and Stability of fixed points of the mod-
el (1.3)

The existence and stability of the fixed points of the model (1.3) are analyzed,
which provides a precondition for the analysis and comparison of the bifurcation
and facilitates the selection of parameters in numerical simulation.

2.1. Existence
For model (1.1), the equilibria should satisfy the following conditions

b

3
x3 + x2 + (d− b)x+ a = 0,

y = x− x3

3
.

(2.1)

In the same way, the fixed points E(x, y) of the model (1.3) satisfy the following
equations

6h(x− 2y)c2 +
(
((3b− 3d)x− 6a)h2 + 12x

)
c+ 6bhx

M
= x,

4ch2(dx
3

2 + (a+ 3
2 − by

2 )x
2 − 3xy

2 + 3
4y(b− d)− 3a

2 ) + ((4x2y − 6y)c2 − 6by + 12(dx+ x2 + a))h+ 12cy

M
= y.

(2.2)
Then we have

(
bx3

3
+ x2 + (d− b)x+ a)h+

2c

3
(x3 − 3x+ 3y) = 0,

ch(
dx3

2
+ (a− by +

3

2
)x2 − 3xy +

3

2
((b− d)y − a)) + 3(a− by + dx+ x2) = 0.

(2.3)
Through variable transformations, we get the following conditions for the fixed
points of the model (1.3),

b

3
x3 + x2 + (d− b)x+ a = 0,

y′ = − (bh+ 2c)x3

6c
− hx2

2c
− (−3bh+ 3dh− 6c)x

6c
− ah

2c
.

(2.4)
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Note that when the equation b
3x

3 + x2 + (d− b)x+ a = 0 holds, y′ − y = 0. So the
equilibria of model (1.1) is also the fixed points of model (1.3). Here we only study
the equilibria that retained after discretization.

2.2. Stability
The Jacobian matrix J(xk, yk) of the model (1.3) evaluated at one of the above
fixed points at Ek(xk, yk) is given by

J (xk, yk) =

J11 J12

J21 J22

 , (2.5)

where the expression of J11, J12, J21, J22 are given in the Appendix B.
The corresponding characteristic equation can be written as

h(λ) = λ2 − (Ba+ C)λ+ (Da+ E) = 0. (2.6)

It is easy to obtain the eigenvalues

λ1,2 =
Ba+ C

2
±

√
∆

2
,

where ∆ = (Ba+ C)2 − 4(Da + E), and the the expression of B, C, D, E are
presented in the Appendix C.

Proposition 2.1.
(i) The fixed point Ek of model (1.3) is a stable focus if one of the following conditions
holds:

(a) −BC+2D−2
√
B2E−BCD+D2

B2 <a< −BC+2D+2
√
B2E−BCD+D2

B2 , a< 1−E
D (D>0);

(b) −BC+2D−2
√
B2E−BCD+D2

B2 <a< −BC+2D+2
√
B2E−BCD+D2

B2 , a> 1−E
D (D<0).

(ii) The fixed point Ek of model (1.3) is an unstable focus if one of the following
conditions satisfies:

(a) −BC+2D−2
√
B2E−BCD+D2

B2 <a< −BC+2D+2
√
B2E−BCD+D2

B2 , a> 1−E
D (D>0);

(b) −BC+2D−2
√
B2E−BCD+D2

B2 <a< −BC+2D+2
√
B2E−BCD+D2

B2 , a< 1−E
D (D<0).

Proposition 2.2.
(i) The fixed point Ek of model (1.3) is an unstable source if one of the following
conditions holds:

(a) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a < 1+E−C

B−D (B −D < 0), a < −1−E−C
B+D (B +D > 0);

(b) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a < 1+E−C

B−D (B −D < 0), a > −1−E−C
B+D (B +D < 0);

(c) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a > 1+E−C

B−D (B −D > 0), a < −1−E−C
B+D (B +D > 0);
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(d) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a > 1+E−C

B−D (B −D > 0), a > −1−E−C
B+D (B +D < 0);

(e) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a < −C+2

B (B > 0), a < −1−E−C
B+D (B +D < 0);

(f) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a < −C+2

B (B > 0), a > −1−E−C
B+D (B +D > 0);

(g) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a > −C+2

B (B < 0), a < −1−E−C
B+D (B +D < 0);

(h) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a > −C+2

B (B < 0), a > −1−E−C
B+D (B +D > 0);

(i) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a > −C+2

B (B > 0), a < 1+E−C
B−D (B −D > 0);

(j) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a > −C+2

B (B > 0), a > 1+E−C
B−D (B −D < 0);

(k) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a > −C+2

B (B < 0), a < 1+E−C
B−D (B −D > 0);

(l) −a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a > −C+2

B (B < 0), a > 1+E−C
B−D (B −D < 0).

(ii) The fixed point Ek of model (3) is a saddle if one of the following conditions
holds:

(a) a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
−BC+D+

√
(E+1)2B2−2BCD+D2(C2−E2−2E)

B2−D2

< a <
−BC+D−

√
(E+1)2B2−2BCD+D2(C2−E2−2E)

B2−D2 (D2 −B2 > 0);

(b) a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
a <

−BC+D−
√

(E+1)2B2−2BCD+D2(C2−E2−2E)

B2−D2

or a >
−BC+D+

√
(E+1)2B2−2BCD+D2(C2−E2−2E)

B2−D2 (D2 −B2 < 0).

The proofs of the above two propositions are presented in the Appendix D.

Remark 2.1. The fixed point satisfying the above conditions does not necessarily
exist. The parameters selected in section 4 (numerical simulations) are all satisfied
with the existence conditions of the fixed points.

Remark 2.2. From the above two propositions, it can be seen that the stability of
the fixed points is related to the step size h. So the size of the discrete step h must
be considered in the discrete model.



40 Y. Li & H.J. Cao

3. Bifurcation Analysis
This section mainly focuses on the one-parameter bifurcations of the model (1.3)
which is investigated by the projection method [12]. More importantly, the com-
parison of bifurcations between model (1.2) and model (1.3) is discussed.

Let u = x− xk and v = y − yk, then we transform Ek(xk, yk) to the origin. By
introducing a new variable X = (u, v)T ((·)T denotes the transpose of (·)), model
(1.3) can be transformed into the form

X 7→ G(X), (3.1)

where G = (G1, G2)
T with

G1 = 6hc2(u−2v−xk+2yk)+((3(b−d)(u−xk)−6a)h2+12(u−xk))c+6bh(u−xk)

4hc2(u2−2uxk+x2
k−

3
2 )+(12+(2bu2+(6−4bxk)u+2bx2

k+3(d−b)−6xk)h2)c+6bh
,

G2 =
4((4(v − yk)(u

2 − 2uxk + x2
k − 3

2 )c
2 + 12(u2 + (d− 2xk)u) + 6b(yk − v) + 12(x2

k − dxk + a))h+ 12c(v − yk))

4hc2(u2 − 2uxk + x2
k − 3

2 ) + (12 + ((2u2 − 4uxk + 2x2
k − 3)b+ 3d+ 6u− 6xk)h2)c+ 6bh

− ch2(2dx3
k + 2x2

k(b(yk − v) + 3) + 6xk(v − yk)3v(b− d) + 3yk(d− b)− 6a)

4hc2(u2 − 2uxk + x2
k − 3

2 ) + (12 + ((2u2 − 4uxk + 2x2
k − 3)b+ 3d+ 6u− 6xk)h2)c+ 6bh

+
4ch2(du

3+(b(yk−v)−3dxk+3+2a)u2

2 + (
3dx2

k

2 + (b(v − yk)− 2a− 3)xk + 3(yk−v)
2 )u)

4hc2(u2 − 2uxk + x2
k − 3

2 ) + (12 + ((2u2 − 4uxk + 2x2
k − 3)b+ 3d+ 6u− 6xk)h2)c+ 6bh

.

For model (3.1), we obtain

X 7→ JX +
1

2
B(X,X) +

1

6
C(X,X,X) +O(|X|4), (3.2)

and let
F (X) =

1

2
B(X,X) +

1

6
C(X,X,X) +O(|X|4),

where J = J(Ek) and B(X,X) and C(X,X,X) are mulitilinear functions with

B(x, y) =

2∑
i,j=1

∂2F (ξ)

∂ξi∂ξj

∣∣∣∣∣∣
ξ=0

xiyj =

 b1

b2

x1y1 +

 b3

b4

 (x1y2 + x2y1),

and

C(x, y, w) =
2∑

i,j,l=1

∂3F (ξ)
∂ξi∂ξj∂ξl

∣∣∣∣∣
ξ=0

xiyjwl

=

 c1

c2

x1y1w1 +

 c3

c4

 (x1y1w2 + x1y2w1 + x2y1w1) ,

where the expression of b1, b2, b3, b4 and c1, c2, c3, c4 are given in the Appendix E.

3.1. Fold bifurcation
In the following analysis of the fold bifurcation, parameter a is chosen as the bi-
furcation parameter. Bifurcation analysis for the models (1.1),(1.2), and (1.3) is
performed by the bifurcation theory at Ek(xk, yk), which is more convenient to
make a comparison of bifurcation between these three models.
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First, the characteristic polynomial corresponding to the Jacobian matrix at the
fixed point Ek(xk, yk) of the model (1.1) is

H(λ) = λ2 −
(
−cx2

k + c− b

c

)
λ+ bx2

k + 2xk − b+ d.

A fold bifurcation may occur at the fixed point Ek(xk, yk) if the following conditions
are satisfied [12]: H(0) = bx2

k + 2xk − b+ d = 0,

b
3x

3
k + x2

k + (d− b)xk + a = 0.

It is easy to conclude that when a =
(−1±

√
b2−bd+1)(2b2−2bd+1∓

√
b2−bd+1)

3b2 , there
exists a fold bifurcation at the fixed point Ek(xk, yk), where xk = −1±

√
b2−bd+1
b ,

yk = xk − x3
k

3 .
Next, the characteristic polynomial of the Jacobian matrix at the fixed point

Ek(xk, yk) of the model (1.2) is

P (λ) = λ2 +

((
cx2

k − c+
b

c

)
h− 2

)
λ+

(
bx2

k + 2xk − b+ d
)
h2 −

(
cx2

k − c+
b

c

)
h+ 1.

Like the analysis of the model (1.1), if the following conditions are satisfied, model
(1.2) may undergo a fold bifurcation at the fixed point Ek(xk, yk) [12]:

P (1)=
(
bx2

k + 2xk − b+ d
)
h2= 0,

b

3
x3
k + x2

k + (d− b)xk + a = 0.

It means that a fold bifurcation may occur at the fixed point Ek(xk, yk) when
a =

(−1±
√
b2−bd+1)(2b2−2bd+1∓

√
b2−bd+1)

3b2 , where xk = −1±
√
b2−bd+1
b , yk = xk − x3

k

3 .
For model (1.3), the characteristic polynomial corresponding to the Jacobian

matrix at the fixed point Ek(xk, yk) of the model (1.3) is

h(λ) = λ2 − p(a)λ+ q(a),

where p(a) = Ba+ C, q(a) = Da+ E.
There exists a fold bifurcation at the fixed point Ek(xk, yk) if the following

conditions hold: 
h(1)=1− p(a) + q(a)= 0,

b

3
x3
k + x2

k + (d− b)xk + a = 0.

Thus, when a = a0 =
(−1±

√
b2−bd+1)(2b2−2bd+1∓

√
b2−bd+1)

3b2 , a fold bifurcation may
occur at the fixed point Ek(xk, yk), where xk = −1±

√
b2−bd+1
b , yk = xk − x3

k

3 .
It is easy to find that the conditions of the fold bifurcation for these three models

are consistent.
Using the corresponding theorems in [8,12,24], we obtain the following result of

the model (1.3).
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Theorem 3.1. If
∣∣∣BE−CD+D

B−D

∣∣∣ 6= 1 and ã (a0) 6= 0, then model (1.3) undergoes a fold
bifurcation at Ek(xk, yk) when a = a0. Moreover, if ã(a0) < 0 (resp., ã(a0) > 0),
there are two fixed points for a < a0 (resp., a > a0). These two fixed points collide
at a = a0, and disappear when a > a0 (resp., a < a0).

Proof. The model (1.3) undergoes a fold bifurcation at the fixed point Ek(xk, yk)
as the parameter a varies in a small neighborhood of a0. There exists a critical eigen-
value λ1 = 1. And supposing that |λ2| =

∣∣∣BE−CD+D
B−D

∣∣∣ 6= 1, B −D 6= 0 are satisfied.
There exist p1, q1 ∈ R2 such that J(a0, xk, yk)q1 = q1 and JT (a0, xk, yk)p1 = p1,
where JT (a0, xk, yk) is the transpose matrix of J(a0, xk, yk).

It is easy to obtain
q1 ∼ (q∗1 , 1)

T , p1 ∼ (p∗1, 1)
T ,

where “∼” is used for proportional vectors and

q∗1 =
2bxk + 3

x2
k + 2dxk + 3

, p∗1 =
−(hc(bx2

k + 3
2 (d− b) + 3xk) + 3b)

3c2
.

For satisfying the normalization < p1, q1 >= 1, where < p1, q1 >= p∗1q
∗
1+p∗2q

∗
2 =

p∗1q
∗
1 + 1 is the scalar product in R2, we choose

q1 = (q∗1 , 1)
T , p1 = κ1(p

∗
1, 1)

T ,

where
κ1 =

1

p∗1q
∗
1 + 1

.

Through a series of transformations based on the theorems deduced by Kuznetsov
[12], the restriction of the model (3.1) to its one-dimensional center manifold at the
critical parameter value a0 can be transformed into the normal form

η 7→ η+ã(a0)η
2 + b̃(a0)η

3 +O
(
η4
)
,

where

ã (a0) =
1

2
〈p1, B(q1, q1)〉,

b̃ (a0) =
1

6

(
〈p1, C(q1, q1, q1)〉 − 3

〈
p1, B

(
q1, (J (a0)− I2)

INV
a′
)〉)

,

a′ = B(q1, q1)− 〈p1, B(q1, q1)〉q1,

which determines the direction of fold bifurcation at the fixed point Ek(xk, yk),
where I2 is the unit 2× 2 matrix. In the fold case, the matrix (J (a0)− I2) is
noninvertible in R2, since λ1 = 1 is the eigenvalue of J (a0). Let T su denotes a
one-dimensional linear eigenspace of J (a0) corresponding to all eigenvalues other
than λ1. Notice that a′ ∈ T su, since < p1, a

′ >= 0. The restriction of the linear
transformation corresponding to J (a0) to its invariant subspace T su is invertible.
Thus, to facilitate the following calculation, we use (J (a0)− I2)

INV to denote the
inverse of (J (a0)− I2), where INV means the inverse in T su. [(J (a0)− I2)

INV
a′]

can be computed by solving the following systemJ (a0)− I2 q1

pT1 0

 (J (a0)− I2)
INV

a′

η

 =

a′

0


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for (J (a0)− I2)
INV

a′ ∈ R2 and η ∈ R1. Here q1 and p1 are the above-defined and
normalized eigenvectors of J (a0) and JT (a0), respectively. The 3× 3 matrix of this
system is nonsingular [12].

3.2. Neimark-Sacker bifurcation
As the fold bifurcation analyzed above, a Neimark-Sacker bifurcation will be studied
in this section, the parameter a is chosen as the bifurcation parameter and bifurca-
tion analysis is performed by bifurcation theory at the fixed point Ek(xk, yk).

For model (1.1), if the following conditions are satisfied, a Hopf bifurcation may
occur at the fixed point Ek(xk, yk): trace = (1− x2)c2 − b = 0,

b
3x

3 + x2 + (d− b)x+ a = 0,

where the “trace” represents the trace of the Jacobian matrix of the model (1.1) at
the fixed point Ek(xk, yk).

It is easy to know from the above conditions that the model (1.1) may take place
a Neimark-Sacker bifurcation at the fixed point Ek(xk, yk) when

a = a1 =
±
(
(2b− 3d)c2 + b2

)√
c2 − b− 3c3 + 3bc

3c3
,

where xk = ±
√
c2−b
c , yk = xk − x3

k

3 .
Similarly, a Neimark-Sacker bifurcation may arise at the fixed point Ek(xk, yk)

of the model (1.2), if the following conditions hold:
(
1− x2

k

)
c2 +

(
bx2

k − b+ d+ 2xk

)
hc− b = 0,

b

3
x3
k + x2

k + (d− b)xk + a = 0.

Thus, when a = a2, a Neimark-Sacker bifurcation may occur at the fixed point
Ek(xk, yk), where

a2 =
(3d− 2b)c3 + (4b2h− 5bdh+ 3h)c2 + ((2h2d− 1)b2 − (2b3 + b)h2 − 3c

√
(c3 − 2h(b− d

2 )c
2 + ((b2 − bd+ 1)h2 − b)c+ b2h)c)

3c2(hb− c)
3

×
(hc−

√
(c3 − 2h(b− d

2 )c
2 + ((b2 − bd+ 1)h2 − b)c+ b2h)c)

3c2(hb− c)
3 −

bh(b2 +
√

(c3 − 2h(b− d
2 )c

2 + ((b2 − bd+ 1)h2 − b)c+ b2h)c)

3c2(hb− c)
3 ,

xk =
−hc±

√(
c3 − 2h

(
b− d

2

)
c2 + ((b2 − bd+ 1)h2 − b) c+ b2h

)
c

c(bh− c)
, yk = xk − x3

k

3
.

As the study of the model (1.1) and the model (1.2), a Neimark-Sacker bifurca-
tion may undergo at the fixed point Ek(xk, yk) of the model (1.3) if the following
conditions are satisfied: 

q(a) = 1,

b

3
x3
k + x2

k + (d− b)xk + a = 0.
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It means that when a = a3, a Neimark-Sacker bifurcation may occur at the fixed
point Ek(xk, yk), where

a3=±
√
6
(
(6d− 4b)c2+bh(b−d)c−2b2

)√
c(bh−6c)(b− c2)−6c(bh− 6c)(b− c2)

c2(bh− 6c)
2 ,

xk = ±
√
6
√
c(bh− 6c) (b− c2)

c(bh− 6c)
, yk = xk − x3

k

3
.

Since the relationship between a1, a2, and a3 can not be directly seen through
the above expressions, a specific comparison will be given in the later numerical
simulation.

Using the corresponding results in [8, 12,24], we obtain the following theorem.

Theorem 3.2. If the conditions a 6= −C
B ,−C−1

B hold and ã (a3) 6= 0, then model
(1.3) undergoes a Neimark-Sacker bifurcation at Ek(xk, yk) when a = a3. Moreover,
the sign of ã (a3) decides the stability of bifurcating closed invariant curve. If
ã (a3) < 0 (resp., ã (a3) > 0), then the bifurcating closed invariant curve is attracting
(resp., repelling) for a > a3 (resp., a < a3).

Proof. The following characteristic equation is given to analyze the local dynamics
near the fixed points of the model (1.3):

λ2 + p (a)λ+ q (a) = 0,

where
p (a) = Ba+ C, q (a) = Da+ E.

Then

|λ(a)| =
√
Da+ E,

l∗ =
d|λ|
da

∣∣∣∣
a=a3

=
D

2

=
24c3h3xk − (12bxk + 18)c2h4

(ch2 (2bx2
k − 3b+ 3d+ 6xk) + h ((4x2

k − 6) c2 + 6b) + 12c)
2 6= 0.

In addition, |λ(a3)| = 1, and we require p(a3) 6= 0, 1, which means

a3 6= −C

B
, − C − 1

B

then λn(a3) 6= 1, n = 1, 2, 3, 4. There exist p3, q3 ∈ C2 such that

J(a3, xk, yk)q3 = λ(a3)q3, J(a3, xk, yk)q̄3 = λ̄(a3)q̄3

and
JT (a3, xk, yk)p3 = λ̄(a3)p3, JT (a3, xk, yk)p̄3 = λ(a3)p̄3.

After calculation, p,q can be chosen as

q3 ∼ (q∗3 , 1)
T , p3 ∼ (p∗3, 1)

T ,



Bifurcation and comparison of a HR model 45

where

q∗3 =
− 1

2c((bhxk − 2cxk) +
3
2h)

√
2
√
128

(ch2 (2bx2
k − 3b+ 3d+ 6xk) + h ((4x2

k − 6) c2 + 6b) + 12c)
2

×

√
c(hc2(2x2

k − 3) + (6 + (bx2
k + 3(d−b)

2 + 3xk)h2)c+ 3bh)
2
(h(x3

k − 3xk

2 )c2 + (
3h2x2

k

8 + 3xk)c− 9h
4 )

(ch2 (2bx2
k − 3b+ 3d+ 6xk) + h ((4x2

k − 6) c2 + 6b) + 12c)
2
(2bhxk − 4cxk + 3h)

2

×

√
(
9−3x2

k−6dxk

2 )c2 + hc(bx2
k + 3(d−b)

2 + 3xk)(bxk + 3
2 ) + 3b2xk + 9b

2

(ch2 (2bx2
k − 3b+ 3d+ 6xk) + h ((4x2

k − 6) c2 + 6b) + 12c)
2
(2bhxk − 4cxk + 3h)

2

+
4c

(
h
(
2x2

k − 3
)
c2 +

(
6 +

(
bx2

k − 3
2b+

3
2d+ 3xk

)
h2

)
c+ 3bh

)
c
(
h
(
bx3

k − 3
2bxk + 9

4x
2
k − 9

4

)
c+ 3bxk

)
(ch2 (2bx2

k − 3b+ 3d+ 6xk) + h ((4x2
k − 6) c2 + 6b) + 12c)

2 ,

p∗3 =
2
√
2(bhxk − 2cxk + 3

2h)
√
128

24
(
−2cxk + h

(
bxk + 3

2

)) (
h (2x2

k − 3) c2 +
(
6 +

(
bx2

k − 3
2b+

3
2d+ 3xk

)
h2

)
c+ 3bh

)
c2

×

√
c(hc2(2x2

k − 3) + (6 + (bx2
k + 3(d−b)

2 + 3xk)h2)c+ 3bh)
2
(h(x3

k − 3xk

2 )c2 + (
3h2x2

k

8 + 3xk)c− 9h
4 )(

24
(
−2cxk + h

(
bxk + 3

2

)) (
h (2x2

k − 3) c2 +
(
6 +

(
bx2

k − 3
2b+

3
2d+ 3xk

)
h2

)
c+ 3bh

)
c2
)
(2bhxk − 4cxk + 3h)

2

×
(
9−3x2

k−6dxk

2 )c2 + hc(bx2
k + 3(d−b)

2 + 3xk)(bxk + 3
2 ) + 3b2xk + 9b

2(
24

(
−2cxk + h

(
bxk + 3

2

)) (
h (2x2

k − 3) c2 +
(
6 +

(
bx2

k − 3
2b+

3
2d+ 3xk

)
h2

)
c+ 3bh

)
c2
)
(2bhxk − 4cxk + 3h)

2

+
16

(
h
(
2x2

k − 3
)
c2 +

(
6 +

(
bx2

k − 3
2b+

3
2d+ 3xk

)
h2

)
c+ 3bh

)
c
(
h
(
bx3

k − 3
2bxk + 9

4x
2
k − 9

4

)
c+ 3bxk

)
24

(
−2cxk + h

(
bxk + 3

2

)) (
h (2x2

k − 3) c2 +
(
6 +

(
bx2

k − 3
2b+

3
2d+ 3xk

)
h2

)
c+ 3bh

)
c2

.

Normalizing p3 with respect to q3, we have

q3 = (q∗3 , 1)
T , p3 = κ3(p

∗
3, 1)

T ,

where
κ3 =

1

p∗3q
∗
3 + 1

.

Through the transformations based on the theorems [12], the restriction of the
model (3.1) to the center manifold takes the form

z 7→ eiθ(a3)z(1 + d̃ (a3) |z|2) +O(|z|4),

where eiθ(a3) = λ (a3) , z ∈ C2 and the real number d̃(a3) = Re (d (a3)) is given by
the following formula:

d̃ (a3) =
1

2
Re

{
e−iθ(a3)

[
〈p3, C(q3, q3, q̄3)〉+ 2

〈
p3, B

(
q3, (I2 − J (a3))

−1
B(q3, q̄3)

)〉
+
〈
p3, B

(
q̄3,

(
e2iθ(a3)I2 − J (a3)

)−1
B(q3, q3)

)〉]}
.

4. Numerical simulations
The numerical simulations in this paper are realized by the software MATLAB
R2020a. In the following cases, we consider different bifurcation parameters re-
spectively. Case (i) chooses the parameter a and the step size h as the bifurcation
parameter respectively. Case (ii) chooses a as the free parameter. In order to com-
pare the NSFD scheme with the forward Euler scheme, the step size h is chosen as
the free parameter to carry out bifurcation analysis of the model (1.2) and model
(1.3) respectively in case (iii).
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(i) When a = 1.080, b = 5, c = 1, d = 2 and h = 0.1, seen from Figure. 1(a),
model (1.3) undergoes the fold bifurcation at the point (0.6, 0.528) with ã(a0) =
−0.5127203730 < 0. So two fixed points bifurcated from (0.6, 0.528) for a < a0
which is illustrated by Theorem 3.1. Figure. 1(b) presents the bifurcation diagram
which shows the bifurcating process for h ∈ (0, 1) and confirms that fold bifurcation
is independent of the value of h.

1.075 1.08 1.085

a

0.4

0.5

0.6

0.7

0.8

x

(a)

0 0.2 0.4 0.6 0.8 1

h
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0.6

0.7

0.8

x

(b)

Figure 1. (a) Bifurcation diagram of model (1.3) in (a, x) plane for b = 5, c = 1, d = 2, h = 0.1, the
initial condition is (0.6, 0.528). (b) Bifurcation diagram of model (1.3) in (h, x) plane for a = 1.080, b =
5, c = 1, d = 2, the initial condition is (0.6, 0.528).

(ii) When a = 1.202251732, b = 1, c = 2, d = 3, and h = 0.1, there exists
a unique fixed point (−0.8696565516,−0.6504154051) for model (1.3). When a ≈
1.202251732, the Neimark-Sacker bifurcation occurs at the point (−0.8696565516,−0
.6504154051) and its eigenvalues are λ1,2 ≈ 0.9947971165 ± 0.1018758902i. For

a = 1.202251732, there are |λ| = 1, l∗ =
d |λ|
da3

= −0.0006179753 < 0 and d̃(a3) =

−3.476537096 < 0. Fixed parameters h = 0.1, b = 1, c = 2, d = 3, model (1.2) un-
dergoes the Neimark-Sacker bifurcation at (−0.8947368423,−0.6559751179) when
a ≈ 1.227681392. It is easy to compute that model (1.1) undergoes the Hopf bi-
furcation at (−0.8660254043,−0.6495190530) when a ≈ 1.198557159. The error of
bifurcation parameter a of the model (1.3) is e1 = |a3 − a1| = 0.003694573, while
the error of model (1.2) is e2 = |a2 − a1| = 0.029124233 > 0.003694573. So we con-
clude that the Neimark-Sacker bifurcation of the model (1.3) is closer to model (1.1)
than model (1.2). Figure. 2(a) presents the bifurcation diagrams which show the
process of bifurcation and the occurrence of a closed invariant curve. Figure. 2(b)
corresponds to the forward Euler method. We also plot the maximum Lyapunov
exponents which show the emergence of periodic orbits and chaotic regions when
the free parameter a changes in Figures. 2(c)-(d). Some typical phase portraits of
the model (1.3) are also plotted in Figure. 4.

(iii) Corresponding to the conditions (ii), the step size h is chosen as the bifurca-
tion parameter. Figures. 3(a)-(b) display the bifurcation diagrams which show the
bifurcating process of the Neimark-Sacker bifurcation of the model (1.3) and model
(1.2), respectively. The stability of the fixed points is illustrated by calculating
the maximum Lyapunov exponents in Figures. 3(c)-(d) respectively correspond-
ing to Figures. 3(a)-(b). To have a more intuitive comparison between the NSFD
scheme and the forward Euler scheme, two-dimensional parameter-plane diagrams
of the model (1.2) and model (1.3) are presented respectively in Figure. 3(e) and
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Figure 2. (a) Neimark-Sacker bifurcation diagram of model (1.3) in (a, x) plane for b = 1, c = 2, d =
3, h = 0.1, the initial condition is (−0.8,−0.6). (b) Neimark-Sacker bifurcation diagram of model (1.2)
in (a, x) plane for b = 1, c = 2, d = 3, h = 0.1, the initial condition is (−0.8,−0.6). (c) Maximum
Lyapunov exponents corresponding to (a). (d) Maximum Lyapunov exponents corresponding to (b).

Figure. 3(f), which shows the emergence of the chaotic phenomenon and periodic
structure clearly. Comparing Figure. 3(e) with Figure. 3(f), within the same range,
Figure. 3(f) has more overflow, which is due to the divergence of the forward Euler
scheme. So we infer that applying the NSFD scheme to discretize a continuous-time
system could get more results. Moreover, we can see more complex dynamic phe-
nomena. As we see in Figure. 3(a), the fixed point undergoes the Neimark-Sacker
bifurcation and is enclosed by a closed invariant cycle. When the step size h lies in a
small neighborhood of 1.2299, the corresponding maximum Lyapunov exponents are
positive, which implies the possibility of the occurrence of chaotic phenomena [18].
The occurrence of closed invariant curves and chaotic attractors are displayed in
Figure. 5. Meanwhile, the variation between e1 = |a3 − a1|, e2 = |a2 − a1| and the
step size h is given in Table 1. As seen from Table 1, when h = 0.757785471, e1
is approximately equal to the value of e2 with h = 0.1, which demonstrates the
following conclusions:

1. Taking the same step size h, the error of the NSFD scheme e1 is smaller than
the error of the forward Euler method e2.

2. The step size h in the model (1.3) can be taken in a wide range.
3. The Hopf bifurcation of the model (1.3) obtained by the NSFD method is

much closer to the original model (model (1.1)) than the model (1.2) obtained by
the forward Euler method.

Furthermore, since model (1.1) is independent of h so that a1 is taken as a1 =
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Figure 3. (a) Neimark-Sacker bifurcation diagram of model (1.3) in (h, x) plane for a = 1.2023, b =
1, c = 2, d = 3, the initial condition is (−0.8,−0.6). (b) Neimark-Sacker bifurcation diagram of model
(1.2) in (h, x) plane for a = 1.2277, b = 1, c = 2, d = 3, the initial condition is (−0.8,−0.6). (c) Maximum
Lyapunov exponents corresponding to (a). (d) Maximum Lyapunov exponents corresponding to (b). (e)
Two-dimensional parameter-plane diagram in (h, a) plane corresponding to (a). (f) Two-dimensional
parameter-plane diagram in (h, a) plane corresponding to (b).

1.198557159 in Table 1. From Table 1, it is clear that as h → 0, the critical values of
bifurcation parameter a for the emergence of Hopf bifurcation and Neimark-Sacker
bifurcation are nearly identical, that is, e1 = |a3 − a1| → 0.

5. Conclusions
In this paper, a discrete-time Hindmarsh-Rose model is obtained by the NSFD
scheme in R2. Fortunately, its explicit expression can be solved, which facilitates
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Figure 4. Phase portraits for various values of a corresponding to Figure. 2(a). (a) Orbits for a = 1.207.
(b) Orbits for a = 1.20235. (c) An invariant cycle for a = 1.18.
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Figure 5. Phase portraits for various values of h corresponding to Figure. 3(a). (a) An invariant cycle
for h = 0.855. (b) Period-21 orbits for h = 1.081. (c) A chaotic attractor for h = 1.299, and the
corresponding Maximum Lyapunov exponents is about equal to 0.06967.

Table 1. Variation of a3, |a3 − a1| and a2, |a2 − a1| with different values of h.

h a3 e1 = |a3 − a1| a2 e2 = |a2 − a1|
0.0000001 1.198557163 4× 10−9 1.198557188 2.9× 10−8

0.00001 1.198557526 3.67× 10−7 1.198560149 2.99× 10−6

0.001 1.198593893 0.000036734 1.198856204 0.000299045
0.1 1.202251732 0.003694573 1.227681392 0.029124233
0.3 1.209771941 0.011214782 1.282178621 0.083621462
0.5 1.217473491 0.018916332 1.333333333 0.134776174
0.7 1.225364787 0.026807628 1.382585944 0.184028785

0.757785471 1.227681393 0.029124234 1.396623222 0.198066063

our research. The fold bifurcation and the Neimark-Sacker bifurcation have been
investigated by using the center manifold theorem and bifurcation theory.

Compared with the forward Euler scheme, our investigation demonstrates that
the difference equation obtained by the NSFD scheme is closer to the original contin-
uous system. The convergence and stability of the NSFD scheme are much better
than the forward Euler scheme, which has been demonstrated by comparing the
relevant properties between model (1.2) and model (1.3). When the step size h
increases, the forward Euler method diverges earlier than the NSFD method, which
makes the model (1.3) obtained by the NSFD method get more dynamic behaviors.
Moreover, taking the Hopf bifurcation as an example, with the same step size h, the
bifurcation parameter of the model (1.3) is closer to the original continuous model
than the model (1.2). Therefore, it is much better to use the NSFD scheme to
discretize continuous systems than the forward Euler scheme from the perspective
of retaining the structure of the original system as much as possible.

Due to the complexity of this Hindmarsh-Rose model, it is hard to obtain the
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direct relationship of the eigenvalues of the Jacobian matrices between the differ-
ential equations and the resulting difference equations in a strictly theoretical way.
So it limits the strict theoretical deduction concerning the comparison between the
differential equations and the resulting difference equations in depth. Therefore,
what we can do depends on mostly the bifurcation analysis and numerical simula-
tions, respectively. Even so, it is worthwhile to take into account these comparisons
between the NSFD scheme and the forward Euler scheme. This is because through
these comparisons, on the one hand, we can build up much more experience to deal
with a similar problem. On the other hand, these confirmed methods can guarantee
the accuracy of numerical results for complex neuron dynamical systems.

Appendix A
A NSFD scheme is applied to the model (1.1) as shown in the following formula:

xn+1 − xn

h
=

c(xn + xn+1)

2
− cx2

nxn+1

3
− c(yn + yn+1)

2
,

yn+1 − yn
h

=
xnxn+1 +

d(xn+xn+1)
2 − b(yn+yn+1)

2 + a

c
,

where h > 0 is the step size and the approximations xn 7→ xn+xn+1

2 , x2
n 7→ xnxn+1,

x3
n 7→ x2

nxn+1 and yn 7→ yn+yn+1

2 are used to approximate xn, x2
n, x3

n and yn terms.
Notice that xn+1 and yn+1 in the above formula can be solved. Writing the

discrete system in the form of mapping, the model (1.3) is obtained.

Appendix B

J11 =
−24

(
xk

2 − 4xkyk + 3
2

)
h2c4 + 48h

(((
− 1

2xk
2 + xkyk − 3

4

)
b+ dxk

2

4 + axk + 3d
4 + 3yk

2

)
h2 − xk

2
)
c3

M2(k)

+

(
144 +

((
−6xk

2 −9)b2 +
(
6dxk

2 + 24axk + 18d
)
b− 9d2 + 36a

)
h4 − 48bh2xk

2
)
c2

M2(k)

+

(
−12b2h3xk

2 + 144bh
)
c+ 36b2h2

M2(k)
,

J12 =
−12c2h

M(k)
,

J21 =−
12ch2

((
−dxk

4

9 +
(
d
2 − 2yk

3

)
xk

2 +
(
1− 2dyk

3

)
xk − yk

)
c2 −

(
db
6 + 1

)
xk

2 − dxk + db
2 − d2

2 + a
)

M2(k)

24h3
(
c2

(
bdxk

4

6 + dxk
3 + a+ 3

2 − 3
4db

)
xk

2 +
((
a+ 3

2

)
d− 3b

2

)
xk + 3a

2

)
M2(k)

+
4h

((
dxk

2 − 3d− 6yk
)
c2 + 3b(d+ 2xk)

)
h+ 6c(d+ 2xk))

M2(k)
,

J22 =
h
(
4xk

2 − 6
)
c2 +

(
12−

(
2bxk

2 − 3b+ 3d+ 6xk

)
h2

)
c− 6bh

M(k)
,
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Appendix C

B =
(24bxk + 36)c2h4 + 48c3xkh

3

M2(k)
,

C =
−4c2h4

(
b2x4

k + 6bx3
k +

(
− 3

2b
2 + 9 + 3

2bd
)
x2
k + 9(d− b)xk + 9(b−d)2

2

)
M2(k)

+
4ch3

((
(6b− 3d)x2

k − 12bxkyk + 9b− 9d− 18yk
)
c2 + 9b

(
bx2

k − b+ d+ 2xk

))
M2(k)

+
12

((
− 1

3x
3
k + 3

2xk − 2yk
)
c2 + bxk

)
xkc

2h2 +
((
36− 12x2

)
c2 − 36b

)
ch− 72c2

M2(k)
,

D =
48c3xkh

3 − (24bxk + 36)c2h4

M2(k)
,

E =
−24h2c4(x2

k − 4xkyk + 3
2 )− 48hc3((− 3dx2

k

4 + (byk − 3
2 )xk + 3yk

2 )h2 + x2
k)

M2(k)

+
(144 + 6(b− d)(x2

k + 3
2 (b− d))h4 + (72d+ 144xk)h

2)c2 + 12b2ch3x2
k − 36b2h2

M2(k)
.

Remark. M(k) is equal to the value of M at x = xk.

Appendix D
The proofs of Proposition 2.1 and Proposition 2.2 are as follow:

Proof. 1. ∆ < 0:
When ∆ < 0, that is −BC+2D−2

√
B2E−BCD+D2

B2 <a< −BC+2D+2
√
B2E−BCD+D2

B2 , then
there exist two pairs of conjugate complex eigenvalues of model (3) as follows:

λ1,2 =
1

2

(
Ba+ C ± i

√
4(Da+ E)− (Ba+ C)

2

)
.

The modules of these eigenvalues at the fixed point Ek are easily calculated and
found to be |λ1,2| =

√
Da+ E. Next, the following two cases should be considered.

Case 1: The fixed point Ek is a stable focus if |λ1,2| < 1, i.e., the following
conditions are satisfied:∆ < 0,

|λ1,2| < 1.
⇒


−BC+2D−2

√
B2E−BCD+D2

B2 < a < −BC+2D+2
√
B2E−BCD+D2

B2 ,

a < 1−E
D (D > 0); a > 1−E

D (D < 0).

(5.1)

From the inequalities (5.1), we obtain
−BC+2D−2

√
B2E−BCD+D2

B2 < a < −BC+2D+2
√
B2E−BCD+D2

B2 , a < 1−E
D (D > 0)

or −BC+2D−2
√
B2E−BCD+D2

B2 < a < −BC+2D+2
√
B2E−BCD+D2

B2 , a > 1−E
D (D < 0).
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Case 2: The fixed point Ek is an unstable focus if |λ1,2| > 1, i.e., the following
conditions are satisfied:∆ < 0,

|λ1,2| > 1.
⇒


−BC+2D−2

√
B2E−BCD+D2

B2 < a < −BC+2D+2
√
B2E−BCD+D2

B2 ,

a > 1−E
D (D > 0); a < 1−E

D (D < 0).

(5.2)

From the inequalities (5.2), we obtain
−BC+2D−2

√
B2E−BCD+D2

B2 < a < −BC+2D+2
√
B2E−BCD+D2

B2 , a > 1−E
D (D > 0)

or −BC+2D−2
√
B2E−BCD+D2

B2 < a < −BC+2D+2
√
B2E−BCD+D2

B2 , a < 1−E
D (D < 0).

2. ∆ ≥ 0:
When ∆ ≥ 0, that is a ≥ 2D−BC+2

√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,
then there exist two different real eigenvalues of model (3) as follows:

λ1,2 =
1

2

(
Ba+ C ±

√
(Ba+ C)

2 − 4(Da+ E)

)
.

There are three cases depending on the modules of |λ1,2|.
Case 1: The fixed point Ek is a stable sink if |λ1,2| < 1, i.e., the following

conditions are satisfied:

∆ ≥ 0,

h(1) > 0,

h(−1) > 0,

−2<λ1+λ2<2,

−1<λ1λ2<1.

⇒



a≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,

a < 1+E−C
B−D (B −D > 0); a > 1+E−C

B−D (B −D < 0),

a < −1−E−C
B+D (B +D < 0); a > −1−E−C

B+D (B +D > 0),

−C−2
B < a < −C+2

B (B > 0); −C+2
B < a < −C−2

B (B < 0),

−1 < Da+ E < 1.

(5.3)
It is easy to calculate that there is no solution to the inequalities (5.3).
Case 2: The fixed point Ek is an unstable source if |λ1,2| > 1, i.e., the following

conditions are satisfied:
∆ ≥ 0,

h(1) > 0,

h(−1) < 0.

⇒


a≥ 2D−BC+2

√
B2E−BCD+D2

B2 or a≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,

a < 1+E−C
B−D (B −D < 0); a > 1+E−C

B−D (B −D > 0),

a < −1−E−C
B+D (B +D > 0); a > −1−E−C

B+D (B +D < 0).

(5.4)
or

∆ ≥ 0,

Ba+C
2 < −1,

h(−1) > 0.

⇒


a≥ 2D−BC+2

√
B2E−BCD+D2

B2 or a≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,

a < −C+2
B (B > 0); a > −C+2

B (B < 0),

a < −1−E−C
B+D (B +D < 0); a > −1−E−C

B+D (B +D > 0).

(5.5)
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or 
∆ ≥ 0,

Ba+C
2 > 1,

h(1) > 0.

⇒


a≥ 2D−BC+2

√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,

a > −C+2
B (B > 0); a > −C+2

B (B < 0),

a < 1+E−C
B−D (B −D > 0); a > 1+E−C

B−D (B −D < 0).

(5.6)
Case 3: The fixed point Ek is a saddle if |λ1| < 1, |λ2| > 1, or |λ1| > 1, |λ2| < 1,

i.e., the following conditions are satisfied:∆ > 0,

h(−1)h(1) < 0.
⇒

a ≥ 2D−BC+2
√
B2E−BCD+D2

B2 or a ≤ 2D−BC−2
√
B2E−BCD+D2

B2 ,

D−BC+
√

(E+1)2B2−2BCD+D2(C2−E2−2E)

B2−D2 <a<
D−BC−

√
(E+1)2B2−2BCD+D2(C2−E2−2E)

B2−D2

(D2 −B2 > 0);

a <
D−BC−

√
(E+1)2B2−2BCD+D2(C2−E2−2E)

B2−D2

or a >
D−BC+

√
(E+1)2B2−2BCD+D2(C2−E2−2E)

B2−D2

(D2 −B2 < 0).

(5.7)

Appendix E

b1 = − 2(6hc2+((3b−3d)h2+12)c+6bh)(−8hc2xk+(−4bxk+6)h2c)
(4h(− 3

2+xk
2)c2+(12+(2bxk

2−3b+3d−6xk)h2)c+6bh)
2

− (6h(−xk+2yk)c
2+(((3d−3b)xk−6a)h2−12xk)c−6bhxk)(4bch2+8hc2)

(4h(− 3
2+xk

2)c2+(12+(2bxk
2−3b+3d−6xk)h2)c+6bh)

2

+
2(6h(−xk+2yk)c

2+(((3d−3b)xk−6a)h2−12xk)c−6bhxk)(−8hc2xk+(−4bxk+6)h2c)
2

(4h(− 3
2+xk

2)c2+(12+(2bxk
2−3b+3d−6xk)h2)c+6bh)

3 ,

b2 =
4c(byk−3dxk+2a+3)h2+(−8c2yk+24)h

c(2bxk
2−3b+3d−6xk)h2+((4xk

2−6)c2+6b)h+12c

− (8c(
3(yk+dx2

k)

2 −2xk(a+
byk+3

2 ))h2+8(2c2xkyk+3d−6xk)h)((6−4bxk)h
2c−8hxkc

2)

(c(2bxk
2−3b+3d−6xk)h2+((4xk

2−6)c2+6b)h+12c)2

+
2(ch2(4x2

k(a+
byk+3

2 )−6(xkyk+a)−dx3
k−3yk(b−a))+(12(a+x2

k)+c2yk(6−4x2
k)+6byk−12dxk)h−12cyk)

(c(2bx2
k−3b+3d−6xk)h2+((4x2

k−6)c2+6b)h+12c)
2

× ((6−4bxk)h
2c−8hxkc

2)
2

(c(2bxk
2−3b+3d−6xk)h2+((4xk

2−6)c2+6b)h+12c)3

− (ch2(4x2
k(a+

byk+3

2 )−6(xkyk+a)−dx3
k−3yk(b−a))+(12(a+x2

k)+c2yk(6−4x2
k)+6byk−12dxk)h−12cyk)

(c(2bx2
k−3b+3d−6xk)h2+((4x2

k−6)c2+6b)h+12c)
2

× 4(bch2+2hc2)

(c(2bx2
k−3b+3d−6xk)h2+((4x2

k−6)c2+6b)h+12c)
2 ,

b3 =
12hc2(−8hxkc

2+(−4bxk+6)h2c)
(4h(− 3

2+xk
2)c2+(12+(2bxk

2−3b+3d−6xk)h2)c+6bh)
2 ,
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b4 =
4(ch2(bxk− 3

2 )−2hxkc
2)

c(2bx2
k−3b+3d−6xk)h2+((4x2

k−6)c2+6b)h+12c

− (ch2(6xk−2bx2
k+3(b−d))+((4xk

2−6)c2−6b)h+12c)((6−4bxk)h
2c−8hxkc

2)

(c(2bx2
k−3b+3d−6xk)h2+((4x2

k−6)c2+6b)h+12c)
2 ,

c1 = 6(6hc2+((3b−3d)h2+12)c+6bh)((6−4bxk)h
2c−8hxkc

2)
2

(4hc2(xk
2− 3

2 )+(12+(2bxk
2−3b+3d−6xk)h2)c+6bh)3

− 12(6hc2+((3b−3d)h2+12)c+6bh)(bch2+2hc2)

(4hc2(xk
2− 3

2 )+(12+(2bxk
2−3b+3d−6xk)h2)c+6bh)2

− 6(6h(−xk+2yk)c
2+(((3d−3b)xk−6a)h2−12xk)c−6bhxk)(−8hxc2+(−4bxk+6)h2c)

3

(4h(− 3
2+xk

2)c2+(12+(2bxk
2−3b+3d−6xk)h2)c+6bh)

4

− 6(6h(−xk+2yk)c
2+(((3d−3b)xk−6a)h2−12xk)c−6bhxk)(−8hc2xk+(−4bxk+6)h2c)(4bch2+8hc2)

(4h(− 3
2+xk

2)c2+(12+(2bxk
2−3b+3d−6xk)h2)c+6bh)

3 ,

c2 = 12cdh2

ch2(2bxk
2−3b+3d−6xk)+((4xk

2−6)c2+6b)h+12c

− 3(4c(byk−3dxk+2a+3)h2+(24−8c2yk)h)((6−4bxk)h
2c−8hxkc

2)

(ch2(2bxk
2−3b+3d−6xk)+((4xk

2−6)c2+6b)h+12c)2

+
6

(
4c

(
−2xk

(
a+

byk
2 + 3

2

)
+

3yk
2 +

3dxk
2

2

)
h2+(8c2xkyk+12d−24xk)h

)
(−8hc2xk+(−4bxk+6)h2c)

2

(c(2bxk
2−3b+3d−6xk)h2+((4xk

2−6)c2+6b)h+12c)3

−
3

(
4c

(
−2xk

(
a+

byk
2 + 3

2

)
+

3yk
2 +

3dxk
2

2

)
h2+(8c2xkyk+12d−24xk)h

)
(4bch2+8hc2)

(c(2bxk
2−3b+3d−6xk)h2+((4xk

2−6)c2+6b)h+12c)2

− 6(4ch2(xk
2(a+

byk+3

2 )− 3(xkyk+a+dxk
3)

2 − 3yk(b−1)

4 )+(12(a+x2)+c2(6y−4x2y)+6by−12xd)h−12cy)

(c(2bx2−3b+3d−6x)h2+((4xkx2−6)c2+6b)h+12c)4

× ((6−4bx)h2c−8hxc2)
3

(c(2bx2−3b+3d−6x)h2+((4xkx2−6)c2+6b)h+12c)4

+
6(4ch2(x2

k(a+
byk+3

2 )− 3(xkyk+a+dx3
k)

2 − 3yk(b−1)

4 )+(12(a+x2
k)+c2yk(6−4x2

k)+6byk−12dxk)h−12cyk)

(c(2bx2
k−3b+3d−6xk)h2+((4x2

k−6)c2+6b)h+12c)
3

× ((6−4bxk)h
2c−8hxkc

2)(4bch2+8hc2)

(c(2bx2
k−3b+3d−6xk)h2+((4x2

k−6)c2+6b)h+12c)
3 ,

c3 = − 24hc2(−8hxkc
2+(−4bxk+6)h2c)

2

(4h(− 3
2+xk

2)c2+(12+(2bxk
2−3b+3d−6xk)h2)c+6bh)

3

+
12hc2(4bch2+8hc2)

(4h(− 3
2+xk

2)c2+(12+(2bxk
2−3b+3d−6xk)h2)c+6bh)

2 ,

c4 = 4(−bch2+2hc2)
ch2(2bxk

2−3b+3d−6xk)+((4xk
2−6)c2+6b)h+12c

− 2(4ch2(bxk− 3
2 )−8hxkc

2)((6−4bxk)h
2c−8hxkc

2)

(ch2(2bxk
2−3b+3d−6xk)+((4xk

2−6)c2+6b)h+12c)2

+
2(4c(− 1

2 bxk
2+ 3

2xk+
3
4 b−

3
4d)h

2+((4xk
2−6)c2−6b)h+12c)(−8hxkc

2+(−4bxk+6)h2c)
2

(c(2bxk
2−3b+3d−6xk)h2+((4xk

2−6)c2+6b)h+12c)3

− (4c(− 1
2 bxk

2+ 3
2xk+

3
4 b−

3
4d)h

2+((4xk
2−6)c2−6b)h+12c)(4bch2+8hc2)

(c(2bxk
2−3b+3d−6xk)h2+((4xk

2−6)c2+6b)h+12c)2
.
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