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Abstract This paper studies two main fractional discontinuous dissipative
Sturm-Liouville type boundary-value problems with boundary conditions and
transmission conditions. In both types of research, with the aid of the operator
theory, we define different classes of new inner products by combining the
parameters in the boundary and transmission conditions, then the boundary
value problems are transferred to operators in the Hilbert spaces such that
the eigenvalues and eigenfunctions of the main problem coincide with those
of operators. And we prove those of operators are dissipative. Moreover, the
fundamental solutions are constructed and the uniqueness of the solutions of
the problem is also given.
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1. Introduction
As is well known Sturm-Liouville(S-L) type boundary-value problems play a vital
role in many fields such as science, engineering and mathematics. After Sturm and
Liouville created S-L theory, quite a few mathematicians have studied it that made
the S-L theory much more complete on this basis. Up to now there are plenty of re-
searches on the regular S-L problems and the singular S-L problems which are very
systematic [8, 12, 20, 27, 28]. When solving a large number of mathematical mod-
els in practical applications, we often encounter discontinuous differential equations
models, and also meet that the eigenparameter appears in the boundary conditions.
Specific research on such issues can be seen concretely in [1–3, 9, 17–19, 21]. Frac-
tional calculus is the theory of arbitrary calculus, which is the extension of integral
calculus. The historical background of fractional calculus can be found in the liter-
ature [13,23]. There are many different types of definitions of fractional derivatives
and integrals, in this paper we use the Riemann-Liouville(R-L) fractional deriva-
tives and integrals and the Caputo fractional derivatives and integrals. Fernandez
and Ustaoğlu [10] obtained special functions such as hypergeometric and Appell’s
functions by the fractional derivatives and integrals, which greatly enriched the
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mathematical theory of fractional calculus. Ozturk [22] applied the discrete frac-
tional calculus operators to solve the solutions of the radial Schrödinger equations
for some physical potentials such as pseudonarmonic and Mie-type potentials.

In recent years, in order to solve the problem in the application field, a growing
number of researchers pay attention to fractional S-L type boundary value prob-
lems [4,5,7,15,16,24–26,29]. In [16], Li and Qi proved that the system of eigenfunc-
tions of fractional S-L problem forms a completely orthogonal system by using the
spectral theory of compact self-adjoint operators in Hilbert space. Rivero, Trujillo
and Velasco [25] proved the applicability of fractional S-L theory by studying the
properties of S-L problems corresponding to each fractional operator. In [29], the
eigenfunctions and eigenvalues of two kinds of regular fractional S-L problems were
studied and the authors extended the results to two new kinds of singular fractional
S-L problems. In [5, 26], Akdogăn and his colleagues used the same approach to
transform discontinuous fractional S-L problems into operator problems, and also
investigated the corresponding eigenvalues and eigenfunctions. Besides, the au-
thors in [11] discussed a fractional discontinuous S-L type boundary value problem
by using operator theory, which provides new ideas for solving the S-L problem.

Generally speaking, in the study of the spectral properties of boundary value
problems, if the operators associated with the problems are self-adjoint operators,
the eigenvalues of the problems are real. On the other hand, there is an important
class of non-self-adjoint operators composed of dissipative operators. In order to
solve the problems in semiconductor physics, the authors [14] discussed the one-
dimensional Schrödinger type operator and its eigenfunction expansion. Further-
more, Baleanu and Uğurlu [6] presented two kinds of fractional dissipative boundary
value problems.

In this paper, we generalize the results of [6] to two classes of discontinuous frac-
tional dissipative boundary value problems. One is the boundary conditions without
spectral parameters, the other is the boundary condition with spectral parameters.
In the latter study, using operator theories and analytical skills, we define a new
inner product depended on the boundary conditions’ coefficients and transmission
conditions’ coefficients by introducing a new Hilbert space. We prove that both
kinds of operators are dissipative operators and investigate their eigenvalues and
eigenfunctions. At the end of the paper, we prove the uniqueness of the solution of
the boundary value problem.

The paper is organized as follows: In Section 2, we give some basic theoretical
knowledge about R-L and Caputo fractional calculus for latter use. In Section 3,
we investigate the discontinuous fractional S-L problems without eigenparameter
dependent boundary conditions. In Section 4, in the same way, we investigate the
discontinuous fractional S-L problems with eigenparameter dependent boundary
conditions. In Section 5, we prove the uniqueness of the solution of the problem.

2. Preliminaries
In this section, we shall recall some basic definitions and properties of fractional
calculus which are necessary for the development of the paper. In addition, we shall
introduce some lemmas and give their proofs if needed.

Definition 2.1 (c.f. [13]. Left and right Riemann-Liouville (R-L) fractional inte-
grals). Let [a, b] ⊂ R, Re(α) > 0 and y ∈ L1[a, b]. Then the left and right Riemann-
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Liouville fractional integrals Iαa+ and Iαb− of order α ∈ C are given by

Iαa+y(x) =
1

Γ(α)

∫ x

a

y(t)dt

(x− t)1−α
, x ∈ (a, b],

Iαb−y(x) =
1

Γ(α)

∫ b

x

y(t)dt

(t− x)1−α
, x ∈ [a, b),

respectively.

Definition 2.2 (c.f. [13]. Left and right Riemann-Liouville (R-L) fractional deriva-
tives). Let [a, b] ⊂ R, Re(α) ∈ (0, 1) and y ∈ L1[a, b]. Then the left and right
Riemann-Liouville fractional derivatives of order α ∈ C of function f are defined as

Dα
a+y(x) := DI1−α

a+ y(x), x ∈ (a, b],

Dα
b−y(x) := −DI1−α

b− y(x), x ∈ [a, b),

respectively, where D = d
dx is the usual differential operator.

Definition 2.3 (c.f. [13]. Left and right Caputo fractional derivatives). Let [a, b] ⊂
R, Re(α) ∈ (0, 1) and y ∈ L1[a, b]. Then the left and right Caputo fractional
derivatives of order α ∈ C are

cDα
a+y(x) := I1−α

a+ Dy(x), x ∈ (a, b],
cDα

b−y(x) := −I1−α
b− Dy(x), x ∈ [a, b),

respectively, where D = d
dx is the usual differential operator.

Lemma 2.1 (c.f. [13]).
Dα

a+Iαa+y(x) = y(x),

Dα
b−I

α
b−y(x) = y(x).

and
Iαa+Dα

a+y(x) = y(x)− (x− a)α−1

Γ(α)
I1−α
a+ y(a),

Iαb−D
α
b−y(x) = y(x)− (b− x)α−1

Γ(α)
I1−α
a+ y(b),

where α ∈ (0, 1).
According to the above equations, we can see that R-L derivative is the left

inverse of the R-L integral, but not the right inverse.

Lemma 2.2 (c.f. [13]).
cDα

a+Iαa+y(x) = y(x),
cDα

b−I
α
b−y(x) = y(x).

and
Iαa+

cDα
a+y(x) = y(x)− y(a),

Iαb−
cDα

b−y(x) = y(x)− y(b),

where α ∈ (0, 1).

Now, we state the following lemmas which will be used in the later sections.
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Lemma 2.3 (c.f. [5]). Assume that 0 < α < 1, y ∈ AC[a, b] and z ∈ Lp(a, b)(1 ≤
p ≤ ∞). Then the following equation holds:∫ b

a

y(x)Dα
a+z(x)dx =

∫ b

a

z(x)cDα
b−y(x)dx+ y(x)I1−α

a+ z(x)|x=b
x=a.

3. Discontinuous fractional dissipative Sturm-Liou-
ville problems with transmission conditions

In this section, we consider the following fractional S-L differential expression £α

as follows

£α =

{
cDα

0−p(x)D
α
−1+ + q(x), x ∈ [−1, 0),

cDα
1−p(x)D

α
0+ + q(x), x ∈ (0, 1].

Then we shall consider the following fractional S-L problem on I, where I = [−1, 0)∪
(0, 1],

£αy + λwα(x)y = 0, (3.1)
with boundary conditions:

L1(y) := cosβI1−α
−1+y(−1) + sinβp1D

α
−1+y(−1) = 0, (3.2)

L2(y) := I1−α
0+ y(1)− hp2D

α
0+y(1) = 0, (3.3)

and transmission conditions:

L3(y) := r1I
1−α
−1+y(0−)− I1−α

0+ y(0+) = 0, (3.4)
L4(y) := Dα

−1+y(0−)− r2D
α
0+y(0+) = 0, (3.5)

where 1
2 ≤ α ≤ 1, λ ∈ C and λ is eigenparameter.

θ =
r1
r2

> 0.

p(x) =

{
p1, x ∈ [−1, 0),

p2, x ∈ (0, 1],

q(x) is real-valued and continuous in both [−1, 0) and (0, 1], wα(x) is the real-valued
function such that wα(x) > 0 on I, r1, r2 ̸= 0, r1, r2 are real numbers, p1, p2 are
all positive real numbers and h is a complex number such that h = h1 + ih2 with
h2 > 0.

We define the following inner product in the Hilbert space L2
wα

(I) by

⟨y, z⟩ = θ

p1

∫ 0

−1

y(x)z(x)wα(x)dx+
1

p2

∫ 1

0

y(x)z(x)wα(x)dx, (3.6)

for arbitrary y, z ∈ L2
wα

(I). In the Hilbert space L2
wα

(I), consider the operator L
which is defined by

L : D(L) → L2
wα

(I),

where the domain D(L) consists of those functions y such that cDα
b−(p(x)D

α
a+y)

is meaningful satisfying (3.2),(3.3) and 1
wα(x)£αy ∈ L2

wα
(I) with the rule Ly =

1
wα(x)£αy, y ∈ D(L). Then Ly = λy coincides with the problem (3.1)-(3.5).
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Theorem 3.1. The operator L is dissipative in L2
wα

(I).

Proof. For any y ∈ D(L).

< Ly, y >2
wα

(I)=<
1

wα(x)
£αy, y > .

<
1

wα(x)
£αy, y >=

θ

p1

∫ 0

−1

(cDα
0−p1D

α
−1+y(x))y(x)dx+

θ

p1

∫ 0

−1

q(x)y(x)y(x)dx

+
1

p2

∫ 1

0

(cDα
1−p2D

α
0+y(x))y(x)dx+

1

p2

∫ 1

0

q(x)y(x)y(x)dx.

By Lemma 2.3, we get

<
1

wα(x)
£αy, y >=θ(

∫ 0

−1

Dα
−1+y(x)D

α
−1+y(x)dx−Dα

−1+y(x)I
1−α
−1+y(x)|

0
−1)

+
θ

p1

∫ 0

−1

q(x)y(x)y(x)dx

+

∫ 1

0

Dα
0+y(x)D

α
0+y(x)dx−Dα

0+y(x)I
1−α
0+ y(x)|10

+
1

p2

∫ 1

0

q(x)y(x)y(x)dx.

Similarly,

< y,Ly >L2
wα

(I)=< y,
1

wα(x)
£αy > .

< y,
1

wα(x)
£αy >=

θ

p1

∫ 0

−1

(cDα
0−p1D

α
−1+y(x))y(x)dx+

θ

p1

∫ 0

−1

q(x)y(x)y(x)dx

+
1

p2

∫ 1

0

(cDα
1−p2D

α
0+y(x))y(x)dx+

1

p2

∫ 1

0

q(x)y(x)y(x)dx.

By Lemma 2.3, we get

< y,
1

wα(x)
£αy >=θ(

∫ 0

−1

Dα
−1+y(x)D

α
−1+y(x)dx−Dα

−1+y(x)I
1−α
−1+y(x)|

0
−1)

+
θ

p1

∫ 0

−1

q(x)y(x)y(x)dx

+

∫ 1

0

Dα
0+y(x)D

α
0+y(x)dx−Dα

0+y(x)I
1−α
0+ y(x)|10

+
1

p2

∫ 1

0

q(x)y(x)y(x)dx,

Hence, we have

< Ly, y >L2
wα

(I) − < y,Ly >L2
wα

(I)

=θ(Dα
−1+y(x)I

1−α
−1+y(x)|

0
−1 −Dα

−1+y(x)I
1−α
−1+y(x)|

0
−1)

+Dα
0+y(x)I

1−α
0+ y(x)|10 −Dα

0+y(x)I
1−α
0+ y(x)|10.
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By boundary conditions (3.2) and (3.3)and transmission conditions (3.4) and (3.5),
we get

< Ly, y >L2
wα

(I) − < y,Ly >L2
wα

(I) = 2ip2Imh|Dα
0+y(1)|

2.

Hence we see that L is dissipative in L2
wα

(I).

Corollary 3.1. Let λ be an eigenvalue of the operator L. Then Imλ ≥ 0.

4. Discontinuous fractional dissipative Sturm-Liou-
ville problems with eigen-dependent boundary
and transmission conditions

In this section, we also consider the following fractional S-L differential expression
£α as follows

£α =

{
cDα

0−p(x)D
α
−1+ + q(x), x ∈ [−1, 0),

cDα
1−p(x)D

α
0+ + q(x), x ∈ (0, 1].

Then we shall consider the following fractional S-L problem on I, where I = [−1, 0)∪
(0, 1],

£αy + λwα(x)y = 0 (4.1)

with boundary conditions:

L1(y) :=γ1I
1−α
−1+y(−1)− γ2p1D

α
−1+y(−1)

− λ(γ′
1I

1−α
−1+y(−1)− γ′

2p1D
α
−1+y(−1)) = 0, (4.2)

L2(y) :=I1−α
0+ y(1)− hp2D

α
0+y(1) = 0, (4.3)

and transmission conditions:

L3(y) := r1I
1−α
−1+y(0−)− I1−α

0+ y(0+) = 0, (4.4)

L4(y) := Dα
−1+y(0−)− r2D

α
0+y(0+) = 0, (4.5)

where 1
2 ≤ α ≤ 1, λ ∈ C and λ is eigenparameter.

γ = γ′
1γ2 − γ1γ

′
2 > 0; θ =

r1
r2

> 0.

p(x) =

{
p1, x ∈ [−1, 0),

p2, x ∈ (0, 1],

q(x) is real-valued and continuous in both [−1, 0) and (0, 1], wα(x) is the real-valued
function such that wα(x) > 0 on I, γ1, γ2, γ′

1, γ
′
2 are real number, r1, r2 ̸= 0, r1, r2

are real numbers, p1, p2 are all positive real numbers and h is a complex number
such that h = h1 + ih2 with h2 > 0.

We define the following inner product in the Hilbert space L2
wα

(I) by

⟨y, z⟩1 =
θ

p1

∫ 0

−1

y(x)z(x)wα(x)dx+
1

p2

∫ 1

0

y(x)z(x)wα(x)dx, (4.6)
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for arbitrary y, z ∈ L2
wα

(I). Obviously, H1 = (L2
wα

(I), ⟨·, ·⟩1) is a Hilbert space.
Then we define the following inner product in the Hilbert space H := H1 ⊕ C as

⟨Y, Z⟩H = ⟨y, z⟩1 +
θ

γp1
y1z1. (4.7)

for Y = (y(x), y1), Z = (z(x), z1) ∈ H, y(x), z(x) ∈ H1, y1, z1 ∈ C.
In the Hilbert space H, consider the operator Lλ which is defined by

Lλ : D(Lλ) → H,

where the domain D(Lλ) is defined as follows

D(Lλ) = {(y(x), y1) ∈ H|y(x), Dα
−1+y(x),

c Dα
1−y(x) ∈ AC([−1, 0) ∪ (0, 1];

y(0±), Dα
−1+y(0±), I1−α

−1+y(0±)all have finite limits;
Liy = 0, i = 2, 3, 4;

y1 = γ′
1I

1−α
−1+y(−1)− γ′

2p1D
α
−1+y(−1)}

LλY = Lλ(y(x), y1) = (
1

wαx
£αy, γ1I

1−α
−1+y(−1)− γ2p1D

α
−1+y(−1)),

for
Y = (y(x), γ′

1I
1−α
−1+y(−1)− γ′

2p1D
α
−1+y(−1)).

For simplicity, let

N(y) = γ1I
1−α
−1+y(−1)− γ2p1D

α
−1+y(−1),

N ′(y) = γ′
1I

1−α
−1+y(−1)− γ′

2p1D
α
−1+y(−1).

Now, we can rewrite the considered problem (4.1)-(4.5) in operator form

LλY = λY. (4.8)

Obviously, the following lemma holds.

Lemma 4.1. (i) The eigenvalues of boundary value problem (4.1)-(4.5) consist
with those of operator Lλ.

(ii) The eigenfunctions of boundary value problem (4.1)-(4.5) are the first compo-
nent of corresponding eigen element of operator Lλ.

Theorem 4.1. The operator Lλ is dissipative in H.

Proof. For any Y ∈ D(Lλ), Y = (y(x), N ′(y)),LλY = ( 1
wα(x)£αy,N(y)).

< LλY, Y >H=<
1

wα(x)
£αy, y >1 +

θ

γp1
N(y)N ′(y).

<
1

wα(x)
£αy, y >1=

θ

p1

∫ 0

−1

(cDα
0−p1D

α
−1+y(x))y(x)dx+

θ

p1

∫ 0

−1

q(x)y(x)y(x)dx

+
1

p2

∫ 1

0

(cDα
1−p2D

α
0+y(x))y(x)dx+

1

p2

∫ 1

0

q(x)y(x)y(x)dx.
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By Lemma 2.3, we get

<
1

wα(x)
£αy, y >1=θ(

∫ 0

−1

Dα
−1+y(x)D

α
−1+y(x)dx−Dα

−1+y(x)I
1−α
−1+y(x)|

0
−1)

+
θ

p1

∫ 0

−1

q(x)y(x)y(x)dx

+

∫ 1

0

Dα
0+y(x)D

α
0+y(x)dx−Dα

0+y(x)I
1−α
0+ y(x)|10

+
1

p2

∫ 1

0

q(x)y(x)y(x)dx,

Similarly,

< Y,LλY >H=< y,
1

wα(x)
£αy >1 +

θ

γp1
N ′(y)N(y).

< y,
1

wα(x)
£αy >1=

θ

p1

∫ 0

−1

(cDα
0−p1D

α
−1+y(x))y(x)dx+

θ

p1

∫ 0

−1

q(x)y(x)y(x)dx

+
1

p2

∫ 1

0

(cDα
1−p2D

α
0+y(x))y(x)dx+

1

p2

∫ 1

0

q(x)y(x)y(x)dx.

By Lemma 2.3, we get

< y,
1

wα(x)
£αy >1=θ(

∫ 0

−1

Dα
−1+y(x)D

α
−1+y(x)dx−Dα

−1+y(x)I
1−α
−1+y(x)|

0
−1)

+
θ

p1

∫ 0

−1

q(x)y(x)y(x)dx

+

∫ 1

0

Dα
0+y(x)D

α
0+y(x)dx−Dα

0+y(x)I
1−α
0+ y(x)|10

+
1

p2

∫ 1

0

q(x)y(x)y(x)dx.

Hence, we have

< LλY, Y >H − < Y,LλY >H=θ(Dα
−1+y(x)I

1−α
−1+y(x)|

0
−1 −Dα

−1+y(x)I
1−α
−1+y(x)|

0
−1)

+Dα
0+y(x)I

1−α
0+ y(x)|10 −Dα

0+y(x)I
1−α
0+ y(x)|10

+
θ

γp1
(N(y)N ′(y)−N ′(y)N(y)).

By boundary conditions (4.2) and (4.3) and transmission conditions (4.4) and (4.5),
we get

< LλY, Y >H − < Y,LλY >H = 2ip2Imh|Dα
0+y(1)|

2.

Hence we see that Lλ is dissipative in H.

Corollary 4.1. Let λ be an eigenvalue of the operator Lλ. Then Imλ ≥ 0.
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5. Uniqueness of solutions for discontinuous frac-
tional dissipative Sturm-Liouville problems

Lemma 5.1. The equivalent integral form of equation (4.1) with fractional condi-
tions (4.4)-(4.5) is given as

y(x) = y0(x) +
1

p2
I2α0+ [Ny(x) + (−1)1−α(q(x) + λwα(x))y(x)], (5.1)

where y0(x) =
xα−1

Γ(α) (r1I
1−α
−1+y(0−)) + Iα0+(

1
r2
Dα

−1+y(0−)) .

Proof. The proof of this lemma can be referred to [11].
Next, we use the conclusion of Lemma 5.1 to construct yn(x, λ), and then discuss

the successive approximations.

yn(x, λ) = y0(x, λ) +

∫ x

0
(x− t)2α−1[Nyn−1(t) + (−1)1−α(λwα(t) + q(t))yn−1(t)]dt

p2Γ(2α)
.

(5.2)
If α = 1, the above problem becomes classical S-L problem.

Lemma 5.2. Let

Q := max
x∈(0,1]

|q(x)|, PR := max
|λ|≤R

P (λ), P (λ) := max
x∈(0,1]

|y0(x, λ)|.

Then, for any m, the following estimate

∥ym(x, λ)− ym−1(x, λ)∥ ≤ PR{
|λwα(x)|+ 2kα +Q

p2Γ(2α+ 1)
}m (5.3)

holds, where kα := 1
(2−α)Γ(1−α) .

Proof. The proof of this lemma can be referred to [26].
For the following initial value problem

cDα
0−p1D

α
−1+y(x) + (q(x) + λwα(x))y(x) = 0, x ∈ [−1, 0),

I1−α
−1+y(−1) = (γ2 − λγ′

2)p1,

Dα
−1+y(−1) = γ1 − λγ′

1.

(5.4)

If we use a similar way in Lemma 5.1, we can get a corresponding integral
equation of the problem (5.4) as follows:

y(x) = y0(x) +
1

p1
I2α−1+ [Ny(x) + (−1)1−α(q(x) + λwα(x))y(x)], (5.5)

where y0(x) =
(x+1)α−1

Γ(α) p1(γ2 − λγ′
2) +

(x+1)α

Γ(α+1) (γ1 − λγ′
1).

Lemma 5.3. The initial value problem (5.4) has a unique solution on [−1, 0)
provided that 1

p1Γ(2α+1) (|λwα(x)|+ 2kα +Q) < 1.

Proof. The proof of this lemma can be referred to [11].
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Next, for the following initial value problem
cDα

1−p2D
α
0+y(x) + (q(x) + λwα(x))y(x) = 0, x ∈ (0, 1],

I1−α
0+ y(0+) = r1I

1−α
−1+y(0−),

Dα
0+y(0+) =

1

r2
Dα

−1+y(0−).

(5.6)

We establish the sequence yn(x, λ) for x ∈ (0, 1] (5.5) and n = 1, 2, ... Obviously,
each of the functions yn(x, λ) is an entire function of λ for each x ∈ (0, 1]. Now let
us consider the series

y∗(x, λ) = lim
n→∞

(yn(x, λ)− y0(x, λ) =

∞∑
j=1

(yj(x, λ)− yj−1(x, λ))). (5.7)

According to the (5.3), for x ∈ (0, 1], the absolute value of its terms is less than the
corresponding terms of the convergent numeric series PR

∑∞
j=1{

|λwα(x)|+2kα+Q
p2Γ(2α+1) }j

Hence, series (5.7) converges uniformly. Obviously, each term (yj(x, λ)−yj−1(x, λ))
of series (5.7) is continuous on x ∈ (0, 1]. Therefore, the sum of series (5.7) is
continuous on x ∈ (0, 1] and

ϕ2(x, λ) = lim
n→∞

yn(x, λ) = y0(x, λ) + y∗(x, λ)

is continuous on x ∈ (0, 1]. The uniform convergency of the sequence yn(x, λ) allows
us to take n → ∞ in the relation (5.2). We can get the initial value problem (5.6) has
a unique solution ϕ2(x, λ) on (0,1] provided that 1

p2Γ(2α+1) (|λwα(x)|+2kα+Q) < 1,
in what follows, we will always assume that this condition holds.

For any λ ∈ C, let ϕ1,λ(x) := ϕ1(x, λ) be the solution of equation (4.1) on
interval [−1, 0), and satisfies initial conditions:{

I1−α
−1+y(−1) = (γ2 − λγ′

2)p1,

Dα
−1+y(−1) = (γ1 − λγ′

1).
(5.8)

ϕ1(x, λ) is an entire function of λ for each x ∈ [−1, 0). By considering Lemma 5.3,
the equation (4.1) with initial conditions (5.8) has a unique solution ϕ1(x, λ). Let
ϕ2,λ(x) := ϕ2(x, λ) be the solution of equation (4.1) on interval (0, 1], and satisfy

I1−α
0+ ϕ2(0+) = r1I

1−α
−1+ϕ1(0−, λ),

Dα
0+ϕ2(0+) =

1

r2
Dα

−1+ϕ1(0−, λ).
(5.9)

ϕ2(x, λ) also is an entire function of λ for each x ∈ (0, 1].
Hence,we have the following theorem.

Theorem 5.1. For any λ ∈ C, the differential equation £αy + λwα(x)y = 0 has a
unique solution

ϕ(x, λ) =

{
ϕ1(x, λ), x ∈ [−1, 0),

ϕ2(x, λ), x ∈ (0, 1],

satisfying the boundary conditions (4.2), and both transmission conditions (4.4) and
(4.5) for each x ∈ [−1, 0) ∪ (0, 1].
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Similarly, we see that the problem (4.1) with initial conditions:{
I1−α
0+ y(1) = hp2,

Dα
0+y(1) = 1.

(5.10)

has a unique solution χ2(x, λ), which is an entire function of the parameter λ for
each fixed x ∈ (0, 1]. As the same as above discussion, we can define the solution
χ1(x, λ) of equation (4.1) by initial conditions:{

I1−α
−1+y(0−) = 1

r1
I1−α
0+ χ2(0+, λ),

Dα
−1+y(0−) = r2D

α
0+χ2(0+, λ).

(5.11)

χ1(x, λ) is an entire function of the parameter λ for each fixed x ∈ [−1, 0).

Theorem 5.2. For any λ ∈ C, the differential equation £αy + λwα(x)y = 0 has a
unique solution

χ(x, λ) =

{
χ1(x, λ), x ∈ [−1, 0),

χ2(x, λ), x ∈ (0, 1],

satisfying the boundary conditions (4.3), and both transmission conditions (4.4) and
(4.5) for each x ∈ [−1, 0) ∪ (0, 1].

6. Conclusions
In this paper, we use the R-L fractional and Caputo fractional operator to re-
search two classes of discontinuous dissipative S-L type boundary-value problem.
We study the eigenvalues and eigenfunctions of fractional S-L problem and prove
that fractional operator is dissipative, as well as the imaginary part of eigenvalues
corresponding to different boundary value problems are greater than or equal to
zero. In addition, we prove the uniqueness of the solutions of the problems. This
conclusion provides a basis for getting the asymptotic formula of eigenvalues of
fractional S-L problems in the forthcoming work.

Acknowledgements
The authors thank the referees for their comments and detailed suggestions. These
have significantly improved the presentation of this paper. This Project was sup-
ported by the National Nature Science Foundation of China(11561050, 11801286),
the Natural Science Foundation of Shandong Province(ZR2020QA009) and the
Youth Creative Team Sci-Tech Program of Shandong Universities(2019KJI007).

References
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