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SOLUTION AND CONSTRUCTION OF
INVERSE PROBLEM FOR STURM-LIOUVILLE
EQUATIONS WITH FINITELY MANY POINT δ

-INTERACTIONS
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Abstract The goal of this paper is to reconstruct a one kind of Sturm-
Liouville problem from its spectral properties. We considered the inverse
spectral problems for a Sturm-Liouville equations with finitely many delta-
interactions. We obtain the effective method and its steps to find the solution
of the inverse problems and then we will give an example to illustrate this
method.
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1. Introduction
In this paper, we shall study inverse problems for the following boundary value
problem

L
(
q (x) , h,H, as, αs, s = 1,m := 1, 2, ...m

)
generated by the differential equation

ly := −y′′ + q (x) y = λy, x ∈
m⋃
s=0

(as, as+1) (0 = a0, am+1 = π) (1.1)

with the boundary conditions
U (y) := y′ (0)− hy (0) = 0, V (y) := y′ (π) +Hy (π) = 0, (1.2)

and the transmission conditions at the points x = as, s = 1,m,

I (y) :=

 y (as + 0) = y (as − 0) ≡ y (as)

y′ (as + 0)− y′ (as − 0) = αsy (as) .
(1.3)
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Where q (x) is a reel-valued function in L2 (0, π) ;h,H and αs’s are real numbers,
and λ is a spectral parameter.

Notice that, we can think the problem (1.1) together with (1.3) as studying the
equation with Dirac potential:

y′′ +

(
λ−

m∑
s=1

αsδ (x− as)− q (x)

)
y = 0, x ∈ (0, π) , (1.4)

where δ (x) is the Dirac Delta function (see [1]). Spectral problems are examined
in two main subjects in the literature. These are direct and inverse investiga-
tions. While direct problems investigate and find some spectral properties of a
differential operator, inverse problems aim to recover an operator using it’s spec-
tral characteristics. These characteristics could be one, two or more spectra, the
spectral function, the normalized constants or Weyl function. Direct and inverse
spectral studies for various Sturm-Liouville operators have been investigated in
books [5, 12, 18] with many references. Some of these are, for instance, direct and
inverse problems for discontinuous boundary value problems have been studied
in [6–9, 16, 17, 19, 21, 22, 24]. Also, inverse problems for Sturm-Liouville operators
which are not self-adjoint and includes discontinuity inside an interval have been
investigated in papers [13,15,20,23].

However, there are many problems where the coefficients must be considered
as generalized functions in mathematical physics . For example, one of the first
applications of quantum theory to the problem of an ideal crystal was based on the
use of the proposed Kronig-Penny model. Kronig and Penny (see, [10]), studying
the quantum-mechanical behavior of an electron in a crystal lattice, presented the
potential of the crystal in terms of a linear set of rectangular wells, which they then
converted into a chain of wells in terms of the Dirac-function such that the area of
each well remained unchanged.

The most crucial point in this study is the more sharpenetion of the asymptotic
formulas of eigenvalues and eigenfuctions. Sharpenetion here means that more pre-
cisely estimation of the asymptotic formulas. Thereby, we can see the contribution
of transmission condition in (1.3) i.e. Delta potential in (1.4) to asymptotic formu-
las. In addition, we will obtain steps for finding solution of inverse spectral problems
of Sturm-Liouville equations with finitely many point δ-interactions.

2. Some properties of the spectral characteristics of
operator L

In this section, we will provide the some spectral characteristics of L and present
the relationship among these spectral characteristics. The technique employed is
similar to those used in [5].

Let y (x) and z (x) be continuously differentiable functions on the intervals
(ai, ai+1) , i = 0,m. Denote ⟨y, z⟩ := yz′ − y′z. If y (x) and z (x) satisfy the
conditions (1.3), then

⟨y, z⟩x=as−0 = ⟨y, z⟩x=as+0 , s = 1,m. (2.1)

This means that ⟨y, z⟩ is continuous on the interval (0, π). If y (x, λ) and z (x, µ)
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are solutions of the equations ly = λy and lz = µz respectively, then

d

dx
⟨y, z⟩ = (λ− µ) yz.

Let φ (x, λ) , ψ (x, λ) , C (x, λ) , S (x, λ) be solutions of (1.1) under the condi-
tions

C (0, λ) = φ (0, λ) = S′ (0, λ) = ψ (π, λ) = 1,

C ′ (0, λ) = S (0, λ) = 0, φ′ (0, λ) = h, ψ′ (π, λ) = −H,
(2.2)

and the conditions (1.3). Then U (φ) = V (ψ) = 0.
Let’s denote ∆(λ) := ⟨φ (x, λ) , ψ (x, λ)⟩. By virtue of Ostrogradskii-Liouville

theorem (see [3, p83]) and equality (2.1), ∆(λ) that will be called the characteristic
function of L, does not depend on x. Clearly,

∆(λ) = −V (φ) = U (ψ) . (2.3)

It can be seen that, the function ∆(λ) is entire in λ and it has at most a countable
set of zeros {λn} .

Lemma 2.1. The eigenvalues {λn}n≥1 of the boundary value problem L and the ze-
ros of the characteristic function are coincide. The functions φ (x, λn) and ψ (x, λn)
are eigenfunctions of the boundary value problem L, and there exists a sequence {βn}
such that

ψ (x, λn) = βnφ (x, λn) , β ̸= 0.

Now let’s denote

γn =

∫ π

0

φ2 (x, λn) dx. (2.4)

We call set {λn, γn}n≥1 the spectral data of L.

Lemma 2.2. The following equality
.

∆(λn) = βnαn

holds. Here
.

∆(λ) = d
dλ∆(λ).

We omit the proofs of Lemma 2.1 and Lemma 2.2 since their proofs can be
conducted in a similar way to that of the proof for the classical Sturm-Liouville
operators (see [11]).

Now, consider the solution φ (x, λ). Let C0 (x, λ) and S0 (x, λ) be smooth so-
lutions of (1.1) on the interval (0, π) that satisfy the initial conditions C0 (0, λ) =
S′
0 (0, λ) = 1, C ′

0 (0, λ) = S0 (0, λ) = 0. Then

C (x, λ) = C0 (x, λ) , S (x, λ) = S0 (x, λ) , a0 < x < a1, (2.5)C (x, λ) = A2s−1C0 (x, λ) +B2s−1S0 (x, λ) ,

S (x, λ) = A2sC0 (x, λ) +B2sS0 (x, λ) ,
as < x < as+1, s = 1,m, (2.6)
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where
A1 = 1− α1C0 (a1, λ)S0 (a1, λ) , B1 = α1C

2
0 (a1, λ) ,

A2 = −α1S
2
0 (a1, λ) , B2 = 1 + α1C0 (a1, λ)S0 (a1, λ) .

(2.7)

and for s = 2,mA2s−1

B2s−1


=

 s∏
k=2

 1− αkC0 (ak, λ)S0 (ak, λ) −αk [S0 (ak, λ)]
2

αk [C0 (ak, λ)]
2

1 + αkC0 (ak, λ)S0 (ak, λ)

A1

B1

 ,

A2s

B2s


=

 s∏
k=2

 1− αkC0 (ak, λ)S0 (ak, λ) −αk [S0 (ak, λ)]
2

αk [C0 (ak, λ)]
2

1 + αkC0 (ak, λ)S0 (ak, λ)

A2

B2

 .

(2.8)

Let λ = ρ2, ρ = σ + iτ . It is easy to see that C0 (x, λ) satisfies the relations:

C0 (x, λ) = cos ρx+
sin ρx

2ρ

∫ x

0

q (t) dt+
1

2ρ

∫ x

0

q (t) sin ρ (x− 2t) dt

+O

(
1

ρ2
exp (|τ |x)

)
, (2.9)

C ′
0 (x, λ) = −ρ sin ρx+

cos ρx

2

∫ x

0

q (t) dt+
1

2

∫ x

0

q (t) cos ρ (x− 2t) dt

+O

(
1

ρ
exp (|τ |x)

)
. (2.10)

Analogously,

S0 (x, λ) =
sin ρx

ρ
− cos ρx

2ρ2

∫ x

0

q (t) dt+
1

2ρ2

∫ x

0

q (t) cos ρ (x− 2t) dt

+O

(
1

ρ3
exp (|τ |x)

)
, (2.11)

S′
0 (x, λ) = cos ρx+

sin ρx

2ρ

∫ x

0

q (t) dt− 1

2ρ

∫ x

0

q (t) sin ρ (x− 2t) dt

+O

(
1

ρ2
exp (|τ |x)

)
. (2.12)

By virtue of (2.7), (2.8) and (2.9)-(2.12),

A2s−1 = 1− 1
2ρ

s∑
l=1

αl sin 2ρal +O
(

1
ρ2

)
, B2s−1 = 1

2

s∑
l=1

αl (1 + cos 2ρal) +O
(

1
ρ

)
,

A2s = O
(

1
ρ2

)
, B2s = 1 +O

(
1
ρ

)
, s = 1,m.
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Since φ (x, λ) = C (x, λ) + hS (x, λ) , using (2.5)-(2.12), we calculate:

φ (x, λ) = cos ρx+

(
h+

1

2

∫ x

0

q (t) dt

)
sin ρx

ρ

+O

(
1

ρ2
exp (|τ |x)

)
, a0 < x < a1, (2.13)

φ (x, λ) = cos ρx+

(
h+

1

2

s∑
l=1

αl +
1

2

∫ x

0

q (t) dt

)
sin ρx

ρ

− 1

2

s∑
l=1

αl
sin ρ (2al − x)

ρ
+O

(
1

ρ2
exp (|τ |x)

)
,

as < x < as+1, s = 1,m, (2.14)

φ′ (x, λ) = −ρ sin ρx+

(
h+

1

2

∫ x

0

q (t) dt

)
cos ρx

+O

(
1

ρ
exp (|τ |x)

)
, a0 < x < a1, (2.15)

φ′ (x, λ) = −ρ sin ρx+

(
h+

1

2

s∑
l=1

αl +
1

2

∫ x

0

q (t) dt

)
cos ρx

+
1

2

s∑
l=1

αl cos ρ (2al − x) +O

(
1

ρ
exp (|τ |x)

)
,

as < x < as+1, s = 1,m. (2.16)

It follows from (2.3), (2.14) and (2.16) that

∆(λ) = ρ sin ρπ − ω cos ρπ − 1

2

m∑
l=1

αl cos ρ (2al − π) +O

(
1

ρ

)
, (2.17)

where

ω = h+H +
1

2

m∑
l=1

αl +
1

2

∫ x

0

q (t) dt.

Using (2.17) and applying Rouche’s theorem ( [4, p125]), and the well-known
method given in [2] as n→ ∞

ρn = n− 1 + o (1) .

Similarly, again using Rouche’s theorem, it can be shown that for sufficiently large
values of n, every circle σn (δ) = {ρ : |ρ− n| ≤ δ} contains exactly one zero of
∆
(
ρ2
)
. Since δ > 0 is arbitrary, we have

ρn = n− 1 + εn, εn = o (1) , n→ ∞. (2.18)

Since ρn are zeros of ∆
(
ρ2
)
, from (2.17) we get

n. sin εnπ − ω cos εnπ − 1

2

(
m∑
l=1

αl cos 2nal cos 2alεn

)
. cos εnπ + σn = 0, (2.19)
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where σn = εn sin εnπ − 1
2

(
m∑
l=1

αl sin 2 (n+ εn) al

)
. sin εnπ + o (exp |τn|π) and

τn = Imρn. Hence sin εnπ = O
(
1
n

)
, that is, εn = O

(
1
n

)
. Using (2.19) we get more

precisely

εn =
1

πn

(
ω +

1

2

m∑
l=1

αl cos 2nal

)
+ o

(
1

n

)
. (2.20)

Substituting (2.20) into (2.18), we get

ρn = n− 1 +
1

πn

(
ω +

1

2

m∑
l=1

αl cos 2nal

)
+ o

(
1

n

)
. (2.21)

Since the boundary value problem L is self-adjoint (see [14]), all eigenvalues {λn}n≥1

are real and simple.
At last, using (2.4), (2.13), (2.14) and (2.21) one can calculate

γn =
π

2
+
ωn

n
+ o

(
1

n

)
, (2.22)

where

ωn = −1

2

m∑
s=1

(as+1 − as)

s∑
l=1

αl. sin 2nal.

If q (x) is a smooth function, we can obtain sharper asymptotics for the spectral
data.

3. Solution and construction of the inverse problem
In this section, we first study the inverse problems to recover the boundary value
problem L. To do this, we will use the method of spectral mappings together with
Cauchy’s integral formula and Residue theorem. Then by using the solution of the
main equation, we construct the algorithms for the solution of the inverse problems.

For this purpose we agree that together with L we consider a boundary value
problem L̃ of the same form but with different coefficients q̃ (x) , h̃, H̃; ãs and α̃s,
s = 1,m. Everywhere below if a certain symbol e denotes an object related to L,
then the corresponding symbol ẽ with tilde denotes the analogous object related to
L̃.

For the sake definiteness, we just consider the inverse problem of recovering L
from the spectral data {λn, γn}n≥1. Let boundary value problems L and L̃ be such
that

as = ãs, s = 1,m,

∞∑
n=1

ξn |λn| <∞, (3.1)

where ξn :=
∣∣∣λn − λ̃n

∣∣∣+ |γn − γ̃n|. Denote

λn0 = λn, λn1 = λ̃n, γn0 = γn, γn1 = γ̃n,
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φni (x) = φ (x, λni) , φ̃ni (x) = φ̃ (x, λni) ,

Qkj (x, λ) =
⟨φ (x, λ) , φkj (x)⟩
γkj (λ− λkj)

=
1

γkj

∫ x

0

φ (t, λ)φkj (t) dt,

Qni,kj (x) = Qkj (x, λni)

for i, j = 0, 1 and n, k = 1, 2, ..., where φ̃ (x, λ) is the solution of (1.4) with the
potential q̃ under the initial conditions φ̃ (0, λ) = 1, φ̃′ (0, λ) = h̃. Similarly, we can
define Q̃kj (x, λ) by replacing φ with φ̃ in the above definition.

Using Schwarz’s lemma ( [4, p130]) and (2.13)-(2.16), (2.21) we obtain the fol-
lowing asymptotic estimates:∣∣∣φ(υ)

nj (x)
∣∣∣ ≤ C (n+ 1)

υ
, (3.2)

|Qni,kj (x)| ≤
C

|n− k|+ 1
,

∣∣∣Q(υ+1)
ni,kj (x)

∣∣∣ ≤ C (n+ k + 1)
υ
, (3.3)

where n, k = 1, 2, ..., i, j, υ = 0, 1 and C is a positive constant. Analogous estimates
are also valid for φ̃ni (x) , Q̃ni,kj (x).

Lemma 3.1. Let φnj (x) and Qni,kj (x) be defined as above. Then the following
representations hold for i, j = 0, 1 and n, k = 1, 2, ...:

φ̃ni (x) = φni (x) +

∞∑
k=1

(
Q̃ni,k0 (x)φk0 (x)−Qni,k1 (x)φk1 (x)

)
. (3.4)

The series in (3.4) converge absolutely and uniformly with respect to x∈(0, π)\{as}ms=1 .

The proof of this lemma is similar to that of the lemma given in [15] and hence
is omitted.

From all arguments mentioned above, it is seen that, for each fixed x∈(0, π)\{as}ms=1,
the relation (3.4) can be thought as a system of linear equations with respect to
φni (x) for n = 1, 2, ... and i = 0, 1. But the series in (3.4) converges only ”with
brackets”. So, it is not convenient to use (3.4) as a main equation of the inverse
problem.

Let V be a set of indexes u = (n, i) , n = 1, 2, ... and i = 0, 1. For each fixed
x ∈ (0, π) \ {as}ms=1, we define the vectors

ϕ (x) = [ϕu (x)]u∈V =

ϕn0 (x)
ϕn1 (x)


n=1,2,...

ϕ̃ (x) =
[
ϕ̃u (x)

]
u∈V

=

 ϕ̃n0 (x)
ϕ̃n1 (x)


n=1,2,...

by the formulas ϕn0 (x)
ϕn1 (x)

 =

 ξ−1
n −ξ−1

n

0 1

φn0 (x)

φn1 (x)

 , ϕ̃n0 (x)
ϕ̃n1 (x)

 =

 ξ−1
n −ξ−1

n

0 1

 φ̃n0 (x)

φ̃n1 (x)

 .
(3.5)
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If ξn = 0 for a certain n, then we put ϕn0 (x) = ϕ̃n0 (x) = 0.
Further, we define the block matrix

H (x) = [Hu,v (x)]u,v∈V =

Hno,ko (x) Hno,k1 (x)

Hn1,ko (x) Hn1,k1 (x)


n,k=1,2,...

,

where u = (n, i) , v = (k, j) andHno,ko (x) Hno,k1 (x)

Hn1,ko (x) Hn1,k1 (x)

 =

 ξ−1
n −ξ−1

n

0 1

Qno,ko (x) Qno,k1 (x)

Qn1,ko (x) Qn1,k1 (x)

 ξk ξk

0 −1

 .
Analogously we define ϕ̃ (x) , H̃ (x) by replacing in the previous definitions φni (x) ,

Qni,kj (x) by φ̃ni (x) , Q̃ni,kj (x), respectively. It follows from (2.13)-(2.16), (2.21),
(2.22), (3.2), (3.3) and Schwarz’s lemma that∣∣∣ϕ(υ)nj (x)

∣∣∣ , ∣∣∣ϕ̃(υ)nj (x)
∣∣∣ ≤ C (n+ 1)

υ
, υ = 0, 1,

|Hni,kj (x)| ,
∣∣∣H̃ni,kj (x)

∣∣∣ ≤ Cξk
|n− k|+ 1

,
(3.6)

∣∣∣H(υ+1)
ni,kj (x)

∣∣∣ , ∣∣∣H̃(υ+1)
ni,kj (x)

∣∣∣ ≤ C (n+ k + 1)
υ
, υ = 0, 1. (3.7)

Let us consider the Banach space B of bounded sequences α = [αu]u∈V with the
norm ∥α∥B = supu∈V |αu| and define an operator E + H̃ (x) from B to B. Here
E is the identity operator. It follows from (3.6), (3.7) that for each fixed x, this
operator is linear bounded operator, and∥∥∥H̃ (x)

∥∥∥ ≤ C sup
n

∞∑
k=1

1

|n− k|+ 1
<∞.

Now we are ready to give the main result of the section.

Theorem 3.1. For each fixed x ∈ (0, π) \ {as}ms=1, the vector ϕ (x) ∈ B satisfies
the equation

ϕ̃ (x) =
(
E + H̃ (x)

)
ϕ (x) , (3.8)

in the Banach space B. Moreover, the operator E + H̃ (x) has a bounded inverse
operator, i.e. the equation (3.8) is uniquely solvable.

Proof. Using the notation ϕ̃ (x) , we rewrite (3.4) as

ϕ̃ni (x) = ϕni (x) +
∑
k,j

H̃ni,kj (x)ϕkj (x) , (n, i) ∈ V, (k, j) ∈ V,

which is equivalent to (3.4). Interchanging places for L and L̃, we obtain analogously

ϕ (x) = (E −H (x)) φ̃ (x) , (E −H (x))
(
E + H̃ (x)

)
= E.
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Hence the operator
(
E + H̃ (x)

)−1

exists, and it is a linear bounded operator.
Let,

M (λ) =
∆1 (λ)

∆ (λ)
, (3.9)

where ∆1 (λ) = ψ (0, λ) = V (S) is the characteristic function of the boundary
value problem L1, which is equation (1.4) with the boundary conditions U (y) =
0, y (π) = 0. Let {µn}n≥1 be zeros of ∆1 (λ), in other words the eigenvalues of L1.

Equation (3.8) is named as basic equation of the inverse problem. Solving (3.8)
we find the vector ϕ (x), and hence, the functions φni (x). Thus, we get the following
algorithms to find the solution of inverse problems.

Algorithm 3.1. Given the spectral data {λn, γn}n≥1, to construct q (x) and h, H;

as, αs, s = 1,m.
(i) Choose L̃ and find ϕ̃ (x) and H̃ (x);
(ii) Find ϕ (x) by solving the equation (3.8) and calculate φn0 (x) via (3.5);
(iii) Choose some (e.g., n = 0) and construct q (x) and h, H; as, αs, s = 1,m

by following formulas

q (x) =
φ′′
n0 (x)

φn0 (x)
+ λn, h = φ′

n0 (0) , H = −φ
′
n0 (π)

φn0 (π)
,

φn0 (as + 0) = φn0 (as − 0) , αs =
φ′
n0 (as + 0)− φ′

n0 (as − 0)

φn0 (as − 0)
, s = 1,m.

Algorithm 3.2. Given M (λ), to construct q (x) and h, H; as, αs, s = 1,m.
(i) According to M (λ) =

∞∑
k=1

1
γk(λ−λk)

construct the spectral data {λn, γn}n≥1;

(ii) Using Algorithm 3.1, construct q (x) and h, H; as, αs, s = 1,m.

Algorithm 3.3. Given two spectra {λn, µn}n≥1, to construct q (x) and h, H; as, αs,

s = 1,m.
(i) Using (3.9) find M (λ);
(ii) Using Algorithm 3.2, construct q (x) and h, H; as, αs, s = 1,m.

4. Example
In this section we give an example that exhibits the algorithm obtained above.
Here we construct q (x) and h, H; as, αs, s = 1,m when the spectral data set
{λn, γn}n≥1 is given.

(i) Take such that q̃ (x) = 0, h̃ = H̃ = 0; ã1 = π
4 , α̃1 = 1 (m = 1) . Let{

λ̃n, γ̃n

}
n≥1

be the spectral data of L̃. Clearly,

λ̃1=1, γ̃1=
5π+2

16
, φ̃10 (x)=cosx

(
x<

π

4

)
, φ̃10=

√
2

2
sin
(
x+

π

4

) (
x>

π

4

)
.
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Let λn = λ̃n (n ≥ 1) , γn = γ̃n (n ≥ 2), and let γ1 > 0 be an arbitrary
positive number. Denote Q := 1

γ1
− 1

γ̃1
. Then

H̃ (x) = Q

∫ x

0

φ̃2
10 (t) dt =


Q

4
(2x+ sin 2x) , x < π

4 ,

Q

4

(
x+ π

2 + 1− cos 2x
)
, x > π

4 .

(ii) Find ϕ (x) by solving the equation (3.8) and calculate φ10 (x) via (3.5), that

φ10 (x) =


[
1 +

Q

4
(2x+ sin 2x)

]−1

, x < π
4 ,[

1 +
Q

4

(
x+ π

2 + 1− cos 2x
)]−1

, x > π
4 .

(iii) We calculate

q (x) =



2
[
1 + Q

4 (2x+ sin 2x)
]−2 (

Q
2 + Q

2 cos 2x
)2

+Q. sin 2x
[
1 + Q

4 (2x+ sin 2x)
]−1

+ 1
, x < π

4 ,

2
[
1 + Q

4

(
x+ π

2 + 1− cos 2x
)]−2 (

Q
4 + Q

2 cos 2x
)2

+Q. cos 2x
[
1 + Q

4

(
x+ π

2 + 1− cos 2x
)]−1

+ 1
, x > π

4 ,

h = −Q, H =
Q

4

(
1 +

3π

8
Q

)−1

,

α1 =

[
1 + Q

4

(
π
2 + 1

)]−2

.Q2 −
[
1 + Q

4

(
3π
4 + 1

)]−2

. 3π4[
1 + Q

4

(
π
2 + 1

)]−1 .

-10 -8 -6 -4 -2 0 2 4 6 8 10

x

-5

0

5

10

15

q
(x

)

Figure 1. The graph of q(x), which has a discontinuity point at x = π/4, constructed by the given
spectral data set
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