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A NONHOMOGENEOUS BOUNDARY-VALUE
PROBLEM FOR THE MODIFIED

ANISOTROPIC HEISENBERG SPIN CHAIN
POSED ON A FINITE DOMAIN
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Abstract This article is concerned with the Modified Anisotropic Heisenberg
Spin Chain. We prove that the associated nonhomogeneous initial-boundary
value problem has a unique globally smooth solution in H2k+1(m,n) for k ≥ 1.
Our main new ingredient is a technique of spatial difference and crucial uni-
formed estimates of the step-size h. Meanwhile, to prove the global existence,
we overcome drawbacks which are not exist in corresponding Cauchy problem.
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1. Introduction
The Heisenberg Spin Chain occurs in the domain of solid state physics [8] [10]. It is
a strongly coupled nonlinear degenerate parabolic equation with high nonlinearity.
We know that many such integrable equations do posses a similar but slightly
different integrable form known as the modified form such as the KdV and MKdV
cases [3]. At the same time, there is a connection between the usual and the modified
form of the KdV equation: a phenomenon known as deformation [12]. In this
paper, we consider the initial-boundary value problem of the Modified Anisotropic
Heisenberg Spin Chain, which was not previously known and has not been well
resolved. The modified anisotropic Heisenberg spin chain [1]:

Zt = −Z × Zxx − 1

2
{Z(Z,BZ)}x + (α+B)Zx, (1.1)

posed on {(x, t) ∈ Ω×R+}, where Ω = (m,n) is an interval in R, α is an arbitrary
constant. The magnetization Z(x, t) is a three-vector {Z1(x, t), Z2(x, t), Z3(x, t)}
coupled by the constraint (magnetically saturated condition):

Z2
1 (x, 0) + Z2

2 (x, 0) + Z2
3 (x, 0) = 1, (1.2)
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where x ∈ (m,n), B = diag(b1, b2, b3), and bi(i = 1, 2, 3) is constant. (a, b) denotes
the scalar product, and (a × b) denotes the cross product in R3. The modified
system(1.1) can be rewritten as the usual anisotropic Heisenberg spin chain when
α = 0, B = 0.

The initial and boundary value conditions of system (1.1) are given by (without
loss of generality, we choose [m,n] = [0, 1]):

Z(x, 0) = φ(x), for x ∈ [0, 1] (1.3)
Z(0, t) = g0(t), Z(1, t) = g1(t), for t ∈ R+ (1.4)

where φ(t), g0(t), g1(t) are given function. The initial value condition φ(x) and
boundary value conditions g0(t), g1(t) satisfy the magnetically saturated condi-
tion(1.2).

In a contrast, the so-called Landau-Lifshitz equation for the isotropic Heisenberg
spin chain has fared better than that of modified anisotropic Heisenberg spin chain
[4,5,13–15,17]. Zhou, Guo and Tan proved in [18] that the initial value problem with
periodic boundary condition and the Cauchy problem associated with the system of
anisotropic Heisenberg spin chain with the Gilbert damping term existed a unique
smooth solution in Hk(R1) for k ≥ 4. Alouges and Soyeur [2] obtained the globally
weak solutions in R3, the non-uniqueness of weak solutions was demonstrated in [2]
as well. Both results were proved by using the technique of spatial difference and
crucial a priori estimates of high-order derivatives in Sobolev spaces. The local
existence and uniqueness with small energy initial date for strong solution in R3

was shown in [6]. The local existence and uniqueness of strong solution on a bounded
domain was proved in [7].

The case of modified anisotropic Heisenberg spin chain was treated by Tan in
[16]. They obtained the global existence and uniqueness of smooth solutions to the
modified anisotropic Heisenberg spin chain with periodic boundary conditions. But
little is known for the initial-boundary value problem about the modified anisotropic
Heisenberg spin chain. Because we can easily get maximum bound and gradient
estimate in L2 without any difficulty for the usual system of Heisenberg spin chain.
However, it is much more difficult to get correspondent estimates for the initial-
boundary value problem of modified anisotropic Heisenberg spin chain.

The objective of this article is to prove new globally smooth solutions results.
In this direction, we obtain the globally smooth solutions in H2k+1(m,n) for k ≥ 1.
Next are our main results.

Lemma 1.1. Let ϵ be any positive number, g0(t), g1(t) ∈ C2k+1(R+;S2), φ(x) ∈
H2k+1((0, 1);S2). Then the initial-boundary value for two associated systems (2.1)-
(2.3)and (2.5)-(2.7) with Gilbert damping term have local smooth solution Z(x, t) ∈
W s,∞(0, T0;H

2(k−s)+1), where s ∈ [0, k], k ≥ 0, T0 > 0.

Remark 1.1. The two associated systems (2.1)-(2.3)and (2.5)-(2.7) with Gilbert
damping term are give in Section2.1.

Lemma 1.2. Let g0(t), g1(t) ∈ C2k+1(R+;S2), φ(x) ∈ H2k+1((0, 1);S2). Then the
initial-boundary value (1.1)-(1.4) has a unique global smooth solution Z(x, t) ∈
L∞(R+;H2k+1) such that |Z(x, t)| = 1 for any k ≥ 1.

This paper is organized as follows: in the next section we introduce two associ-
ated systems with Gilbert damping term and derive crucial uniformed estimates of
the step-size h. The main new ingredient in the proof of Theorem 1.1 is a technique
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of spatial difference. In Section 3, we establish a priori estimates and overcome
some difficulties that do not exist for corresponding Cauchy problem. Meanwhile,
we get the global existence of smooth solution to the problem (1.1)-(1.4).

2. Local smooth solutions to the system with Gilbert
damping term

In this section, we obtain the local smooth solution to the Modified Anisotropic
Heisenberg Spin Chain with Gilbert damping term.

2.1. The associated systems with Gilbert damping term.
Firstly, we introduce two associated systems with Gilbert damping term. we Re-
placing (1.1)-(1.4) by the following viscosity approximation

Zt = −ϵZ × (Z × Zxx)− Z × Zxx − 1

2
{Z(Z,BZ)}x + (α+B)Zx, (2.1)

Z(x, 0) = φ(t), for x ∈ [0, 1], (2.2)
Z(0, t) = g0(t), Z(1, t) = g1(t), for t ∈ R+. (2.3)

where ϵ is a non-negative number. The initial date satisfies magnetically saturated
condition: |Z(x, 0)|2 = 1, then we get the following property.

Lemma 2.1. Let ϵ be any positive number, g0(t), g1(t) ∈ C2k+1(R+;S2), φ(x) ∈
H2k+1((0, 1);S2). The smooth solution of the initial-boundary value (2.1)-(2.3) sat-
isfies W s,∞(0, T0;H

2(k−s)+1), where s ∈ [0, k], k ≥ 0, T0 > 0. Then we have

|Z(x, t)| = 1, x ∈ [0, 1], t ≥ 0. (2.4)

Proof. Multiplying (2.1) by Z(x, t) and integrating over [0, 1], we get

1

2

d

dt

∫ 1

0

|Z|2dx =− 1

4

∫ 1

0

(|Z|2)x(Z,BZ)dx− 1

2

∫ 1

0

|Z|2(Z,BZ)xdx

+
α

2

∫ 1

0

(|Z|2)xdx+
1

2

∫ 1

0

(Z,BZ)xdx.

Set V = |Z|2 − 1, then (2.1)-(2.3) can be rewritten as

Vt = −1

2
Vx(Z,BZ)− V (Z,BZ)x + αVx,

V (x, 0) = 0, for x ∈ [0, 1],

V (0, t) = g20(t)− 1, V (1, t) = g21(t)− 1, for t ∈ R+.

Multiplying the above identity by V (x, t) and integrating over [0, 1], by integration
by parts, we have

d

dt
∥V ∥22 =−1

2
[V 2(Z,BZ)|1x=0−

∫ 1

0

V 2(Z,BZ)xdx]−2

∫ 1

0

V 2(Z,BZ)xdx+

∫ 1

0

|V 2|xdx

= −3

2

∫ 1

0

V 2(Z,BZ)xdx ≤ C(α, g0, g1)∥(Z,BZ)x∥∞∥V ∥22.
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Thus, we get (2.4) by using Gronwall inequality.
Then in the classical sense problem (2.1)-(2.3) is equivalent to the following

problem:

Zt = ϵZxx − Z × Zxx − 1

2
{Z(Z,BZ)}x + (α+B)Zx + ϵ|Zx|2Z, (2.5)

Z(x, 0) = φ(t), for x ∈ [0, 1], (2.6)
Z(0, t) = g0(t), Z(1, t) = g1(t), for t ∈ R+. (2.7)

As described in the following Lemma:

Lemma 2.2. Assuming that ϵ is any positive number, Z0(x) ∈ Hk, |Z0(x)| = 1.
Then in the classical sense, Z is a solution of problem (2.1)-(2.3) if and only if Z
is a solution of the problem (2.5)-(2.7).

Proof. Let Z(x, t) be a classical solution of the problem (2.1)-(2.3). From Lemma
2.1, we know that |Z(x, t)| = 1,∀(x, t) ∈ [0, 1] × [0, T ]. Combining the formula
a× (b× c) = (a · c)b− (a · b)c, we obtain

−ϵZ × (Z × Zxx) = ϵ|Z|2Zxx − ϵ(Z · Zxx)Z

= ϵZxx + ϵ|Zx|2Z − ϵ(Z · Zx)xZx

= ϵZxx + ϵ|Zx|2Z.

On the other hand, let Z(x, t) be a classical solution of problem (2.5)-(2.7). Multi-
plying (2.5) by Z(x, t), we get

d

dt
|Z|2=ϵ|Z2|xx+2ϵ|Zx|2(Z2−1)−Z2(Z,BZ)x−

1

2
|Z2|x(Z,BZ)+α|Z2|x+(Z,BZ)x,

set u(x, t) = |Z(x, t)|2, (2.5)-(2.7) can be rewritten as

ut = ϵuxx + 2ϵ|Zx|2(u− 1)− u(Z,BZ)x − 1

2
ux(Z,BZ) + αux + (Z,BZ)x, (2.8)

u(x, 0) = 1,

u(0, t) = g20(t) = 1, u(1, t) = g21(t) = 1.

Set W (x, t) = u(x, t)− 1 = |Z(x, t)|2 − 1, we get

Wt=ϵWxx+2ϵ|Zx|2W −W (Z,BZ)x−(Z,BZ)x−
1

2
Wx(Z,BZ)+αWx+(Z,BZ)x,

(2.9)
W (x, 0) = 0, (2.10)
W (0, t) = g20(t)− 1,W (1, t) = g21(t)− 1. (2.11)

Multiplying (2.9) by W (x, t), we get

1

2

d

dt

∫ 1

0

|W |2dx+ ϵ

∫ 1

0

|Wx|2dx

=ϵWxW |1x=0 + 2ϵ

∫ 1

0

|Zx|2|W |2dx−
∫ 1

0

|W |2(Z,BZ)x
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− 1

4

∫ 1

0

|W 2|x(Z,BZ)dx+
α

2

∫ 1

0

|W 2|xdx

≤C(α,B, ϵ, g0, g1)(maxx,t|Zx|2 +maxx,t|Z|2)
∫ 1

0

|W |2dx.

Thus, we get W (x, t) ≡ 0 by using Gronwall inequality, where (x, t) ∈ [0, 1]× [0, T ].
Namely, the classical solution of problem (2.5)-(2.7) satisfies |Z(x, t)|2 ≡ 1. So we
come to the following conclusion

Zxx + |Zx|2Z = |Z|2Zxx − (Z · Zxx)Z + (Z · Zx)xZ

= −Z × (Z × Zxx).

Therefore we obtain this Lemma.

2.2. Uniformed estimates of the step-size.
In this subsection, the existence of smooth solution to the problem (2.5)-(2.7) is
proved by the spatial difference method and a priori estimates in the Sobolev space.
We now consider the following ordinary differential-difference equations:

dZj

dt
= ϵ

∆+∆−Zj

h2
− Zj ×

∆+∆−Zj

h2
+ (α+B)

∆+Zj

h

− 1

2

∆+{Zj(Zj , BZj)}
h

+ ϵ|∆+Zj

h
|2Zj , (2.12)

Zj |t=0 = φ(x), for x ∈ (0, 1), (2.13)
Z0 = g0(t), ZJ = g1(t), for t ∈ R+, (2.14)

where 0 ≤ j ≤ J−1, h = 1
J , J > 0, j = 0, 1, 2, ..., J.x1 = h, xJ = 1.∆+,∆− represent

the forward and backward difference operators, respectively. We define discrete
functions Zj(t) = Z(xj , t) on grid point (xj , t) satisfies ∆+Zj = Zj+1−Zj ,∆−Zj =
Zj+1 − Zj . It follows from the standard theory on ordinary differential-difference
equations that the problem (2.12)-(2.14) admits unique local smooth solution Zh =
{Zj(t), j = 0, ..., J}. To verify the local existence of the smooth solution to question
(2.5)-(2.7), we need only prove that Zh(t)maintains the bounds of h → 0 and
t ∈ [0, T ∗], in which T ∗ is a constant independent of h. In addition, Zh converges to
Z(x, t) as h → 0 such that we can easily see that Z(x, t) is the local smooth solution
of the initial-boundary value problem (2.5)-(2.7). By convention, we denote

∥δkuh∥p = (

J−k∑
j=0

|
△k

+uj

hk
|ph)

1
p ,

∥δkuh∥∞ = max0≤j≤J−k|
△k

+uj

hk
|,

∥uh∥H̃k = (

k∑
i=0

∥δiuh∥22)
1
2 ,

where uh = {uj |j = 0, 1, ..., J.}, h = 1
J , 0 ≤ k < J. Meanwhile, we recall some well-

known Sobolev and Caliarrdo-Nirenberg inequalities which were given in [9, 19].
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Lemma 2.3. Assuming that j,m ∈ N ∪ {0}, q, r ∈ R+, 0 ≤ j < m, 1 ≤ q, r ≤ ∞.
Then

∥Dju∥p ≤ C∥Dmu∥ar∥u∥1−a
q , (2.15)

for u ∈ Wm,r(Ω) ∩ Lq(Ω), where Ω ⊆ R1, j
m ≤ α ≤ 1, 1

p = j + a( 1r −m) + (1− a) 1q .

Lemma 2.4. Assuming that p ∈ R1, j,m ∈ N ∪ {0}, 2 ≤ p ≤ ∞, 0 ≤ j < m. Then

∥δjuh∥p ≤ C∥uh∥1−a
2 (∥δnuh∥2 + (2D)−m∥uh∥2)a, (2.16)

for a = 1
m (j + 1

2 − 1
p ), where uh = {uj = u(xj)}, j = 0, 1, 2, ..., J}, h = 2D

J .

Moreover, we get the following Lemma, which can be proved easily by using the
definition of the forward and backward difference operators.

Lemma 2.5. Assume that uh = {uj = u(xj), j = 0, 1, 2, ..., J}, vh = {vj =
v(xj), j = 0, 1, 2, ..., J}. Then we have

(i)

J∑
j=1

vj∆−uj = −
J−1∑
j=0

uj∆+vj − u0v0 + uJvJ ,

(ii) ∆+∆−uj = ∆−∆+uj = ∆2
+uj−1,

(iii) ∆+(ujvj) = uj+1∆+vj + vj∆+uj ,

where ∆+,∆− represent the forward and backward difference operators, respectively.

Now we derive crucial uniformed estimates of the step-size h for the solutions of
the problem (2.12)-(2.14).

Lemma 2.6. Assuming that g0(t), g1(t) ∈ C1(R+;S2), φ(x) ∈ H1((0, 1); S2). Then
for the smooth solution Zh(t) of the problem (2.12)-(2.14) we have the following
estimates

sup0≤t≤T0∥Zh(t)∥H̃1 ≤ C, (2.17)
where the constant C is independent of h.

Proof. Multiplying (2.12) by hZj , summing up the products for j = 1, 2, ..., J−1,
we get

1

2

d

dt
∥Zh∥22 + ϵ∥δZh∥22 =ϵg0(t)

△+Z0

h
− ϵg1(t)

△+ZJ

h
+ (α+B)

J−1∑
j=1

h
△+Zj

h
Zj

− 1

2

J−1∑
j=1

hZj
△+{Zj(Zj , BZj)}

h
,

then we have
1

2

d

dt
∥Zh∥22+ ϵ∥δZh∥22 ≤ (α+B)∥δZh∥2∥Zh∥2+∥δZh∥∞∥Zh∥33+2ϵ∥δZh∥∞. (2.18)

Multiplying (2.12) by 1
h△+△−Zj , summing up the products for j = 1, 2, ..., J − 1,

we get

− 1

2

d

dt
∥δZh∥22 + g′1(t)

△+ZJ

h
− g′0(t)

△+Z0

h
− ϵ∥δ2Zh(t)∥22
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=
α+B

h

J−1∑
j=1

△2
+Zj−1

△+Zj

h
− B

2

J−1∑
j=1

|Zj |2h
△+ZJ

h

△+△−ZJ

h2
,

then

1

2

d

dt
∥δZh∥22 + ϵ∥δ2Zh∥22 ≤(|g′0(t)|+ |g′1(t)|)∥δZh∥∞ + ∥δ2Zh∥2∥δZh∥2

+
B

2
∥Zh∥22∥δZh∥∞∥δ2Zh∥∞. (2.19)

Adding (2.18)(2.19) together, one gets

d

dt
∥Zh∥2H̃1 + ϵ∥Zh∥2H̃2 ≤ C(1 + ∥Zh∥3H̃1),

where C is given by ϵ, α,B, gi(t), i = 0, 1. C is independent of h.

Lemma 2.7. Under conditions of Lemma 2.6, for the smooth solution Zh(t) of the
problem (2.12)-(2.14), there exists a constant T0 > 0 such that

sup0≤t≤T0
∥δZht∥2 +

∫ T0

0

∥δ2Zht(t)∥22dt ≤ C (2.20)

where the constant C is independent of h.

Proof. Differentiating (2.12) with respect to t, we have

Zjtt =ϵ
△+△−Zjt

h2
− Zj ×

△+△−Zjt

h2
− Zjt

△+△−Zj

h2
+ (α+B)

△+Zjt

h

− B

2
(|Zj |2

△+Zj

h
)t

multiplying above equation by △+△−Zjt

h
, summing up the products for j=1, 2, ..., J−

1, we get

1

2

d

dt
∥δZht∥22 + ϵ∥δ2Zht∥22

=g′′1 (t)
△+ZJ,t

h
− g′′0 (t)

△+Z0,t

h
− h

J−1∑
j=1

△+△−Zjt(Zjt ×
△+△−Zj

h2
)

+
B

2h

J−1∑
j=1

(|Zj |2
△+Zj

h
)t△+△−Zjt +

α+B

h

J−1∑
j=1

△2
+Zj−1,t

△+Zjt

h
.

Meanwhile, we have ∥Zht∥2 ∼ ∥δ2Zh∥2, therefore

d

dt
∥Zht∥2H̃1

+ ϵ∥Zht∥2H̃2
≤ C(1 + ∥Zht∥3H̃1

),

where C is independent of h.
According to Lemma 2.6 and 2.7, we can easily prove the following result by

generalizing k.
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Lemma 2.8. Assuming that k≥0, g0(t), g1(t)∈C2k+1(R+; S2), φ(x)∈H2k+1((0, 1); S2)),

for the smooth solution Zh(t) of the problem (2.12)-(2.14), there exists constants
C, T0 such that

sup0≤t≤T0∥δZhtk(t)∥2 +
∫ T0

0

∥δ2Zhtk(t)∥22dt ≤ C, (2.21)

where constants C, T0 are independent of h. And

sup0≤t≤T0
∥Zht(t)∥H̃2k+1 +

∫ T0

0

∥Zht(t)∥2H̃2k+2dt ≤ C, (2.22)

where constants C, T0 are independent of h.

From Lemma 2.8 we conclude that the solution Zh of problem (2.12)-(2.14) for
t ∈ [0, T0] is uniformly bounded in the space W s,∞(0, T0;H

2(k−s)+1) relative to the
step-size h → 0. One could therefore repeat the same procedure in [11] and then
achieve a smooth solution to the local existence of problem (2.5)-(2.7). Therefore,
we propose Theorem 1.1.

3. Global smooth solutions to the system without
Gilbert damping term

In this section, we consider the global existence of smooth solution to the problem
(1.1)-(1.4). A common approach is to establish a priori estimates which are not
dependent on α, t in the Sobolev space. However there is a serious drawback to this
approach, that is, we can not get the estimate ∥Z(·, t)∥H1 as followes:

Lemma 3.1. Under conditions of Theorem 1.1, for the smooth solution Z(x, t) of
the problem (2.5)-(2.7) , there exists constants C1=C(∥φ∥H1(Ω)), C2=C(T, ∥g∥0,∞),
C3=C(T, ∥g∥1,∞), C4=C(T, α,B) such that

∥Zx(·, t)∥22 ≤ C1 + C3

∫ t

0

∥Zx(·, τ)∥∞dτ + C(C2, C4)

∫ t

0

∥Zx(·, τ)∥2∞dτ, (3.1)

where t ∈ [0, T ], α > 0.

Proof. Multiplying (2.5) by Zxx and integrating over [0, 1], we get∫ 1

0

ZxxZtdx = ϵ

∫ 1

0

|Zxx|2dx−
∫ 1

0

Zxx · {1
2
[Z(Z,BZ)]x − (α+B)Zx}dx,

noting that∫ 1

0

Zxx · {Z(Z,BZ)}xdx = −3

2

∫ 1

0

|Zx|2(Z,BZ)xdx+
1

2
{|Zx|2(Z,BZ)}|1x=0,

where we have used the integration by parts and identities:

Z · Zx = 0, Z · Zxx = −|Zx|2.

Hence, we have

d

dt

∫ 1

0

|Zx|2dx+ 2ϵ

∫ 1

0

|Zxx|2dx
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=− 3

2

∫ 1

0

|Zx|2(Z,BZ)xdx+ {2ZxZt + |Zx|2(Z,BZ) + (α+B)|Zx|2}|1x=0,

thus

∥Zx(·, t)∥22

≤∥Zx(·, 0)∥22 +
3

2

∫ t

0

{(Z,BZ)|1x=0∥Zx∥2∞}dτ + 2

∫ t

0

[Zx(1, τ)Zt(1, τ)

− Zx(0, τ)Zt(0, τ)]dτ +

∫ t

0

[|Zx(1, τ)|2(Z(1, τ), BZ(1, τ))− |Zx(0, τ)|2

(Z(0, τ), BZ(0, τ))]dτ + (α+B)

∫ t

0

[|Zx(1, τ)|2 − |Zx(0, τ)|2]dτ

then we yield (3.1).
Noting that this disadvantage dose not exist in corresponding Cauchy problem.

Our approach to solve the this problem is to combine (3.1) with H2− estimate.
Then we can get ∥Z(·, t)∥H2 is not dependent on α. Before that, straightforward
computations give the following Lemma.

Lemma 3.2. Under conditions of Theorem 1.1, Z(x, t) is a smooth solution of the
problem (2.5)-(2.7). Set

Ai(t) = Zxx(i, t),

Bi(t) = Z(i, t)× Zxx(i, t),

Ci(t) = Z(i, t) · (Zx(i, t)× Zxx(i, t)),

Di(t) = Zx(i, t) · Zxx(i, t),

Ei(t) = Zx(i, t) · Zxxt(i, t),

where i = 0, 1. Then we get

Ai(t)=
1

ϵ2+1
(gi × g′i)−|Zx(i, t)|2gi+

ϵ

2(ϵ2+1)
Zx(i, t)(gi, Bgi)−

ϵ(α+B)

ϵ2+1
Zx(i, t)

− 1

2(ϵ2+1)
(gi, Bgi)Zx(i, t)×gi+

α+B

ϵ2+1
Zx(i, t)×gi+

ϵ

ϵ2+1
g′i−

2ϵ

ϵ2+1
gi ·g′i,

(3.2)

Bi(t) =
ϵ

ϵ2 + 1
gi × g′i −

1

2(ϵ2 + 1)
Zx(i, t)(gi, Bgi) +

α+B

ϵ2 + 1
Zx(i, t)−

1

ϵ2 + 1
g′i

− ϵ

2(ϵ2 + 1)
(gi, Bgi)Zx(i, t)× gi +

ϵ(α+B)

ϵ2 + 1
Zx(i, t)× gi +

2

ϵ2 + 1
gi · g′i,

(3.3)

Ci(t) =
1

ϵ2 + 1
g′i · Zx(i, t)−

ϵ

ϵ2 + 1
(gi × g′i) · Zx(i, t)

+
1

2(ϵ2 + 1)
|Zx(i, t)|2(gi, Bgi) +

α+B

ϵ2 + 1
|Zx(i, t)|2, (3.4)

Di(t) =
ϵ

ϵ2 + 1
g′i · Zx(i, t) +

1

ϵ2 + 1
(gi × g′i) · Zx(i, t)

+
ϵ

2(ϵ2 + 1)
|Zx(i, t)|2(gi, Bgi) +

ϵ(α+B)

ϵ2 + 1
|Zx(i, t)|2, (3.5)
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Ei(t) =
1

ϵ
g′′i · Zx(i, t), (3.6)

where i = 0, 1.

Proof. Multiply (2.5) with Z(x, t), we get

−2gi · g′i = (Z(i, t), BZ(i, t))x,

moreover, (2.5) can be rewritten as

−ϵAi(t) +Bi(t) = −1

2
Zx(i, t)(gi, Bgi) + (α+B)Zx(i, t) + ϵ|Zx(i, t)|2gi.

Cross Z(x, t) to both sides of (2.5), we get

−gi×g′i=−ϵBi(t)−Ai(t)−|Zx(i, t)|2gi−
1

2
(gi, Bgi)Zx(i, t)× gi+(α+B)Zx(i, t)×gi.

(3.2)(3.3) can be proved above. On the other hand, multiply (2.5) with Zx(i, t), we
get

g′i · Zx(i, t) = ϵDi + Ci −
1

2
|Zx(i, t)|2(gi, Bgi) + (α+B)|Zx(i, t)|2,

multiply (2.5) with (Z(i, t)× Zx(i, t)), we have

−Zx(i, t) · (gi × g′i) = ϵCi −Di,

so we get (3.4)(3.5). Similarly, both sides of the equation compute derives about t,
we get

g′′i = ϵZxxt(i, t)− g′i × Zxx(i, t)− Z × Zxxt(i, t)−
1

2
{Z(i, t)(Z(i, t), BZ(i, t))}xt

+ (α+B)Zxt(i, t) + 2ϵZx(i, t) · Zxt(i, t) · Z(i, t) + ϵ|Zx(i, t)|2g′i

Cross Z(x, t) and Zx(x, t) to both sides of the above equation, then multiply with
Z(x, t), we have

g′′i · Zx(i, t) = −ϵ(Zx(i, t) · Zxxt(i, t))

thus we get (3.6).

Lemma 3.3. Under conditions of Theorem 1.1, for the smooth solution Z(x, t) of
the problem (2.5)-(2.7) , there exists constants C1=C(∥φ∥H1(Ω)), C2=C(T, ∥g∥0,∞),
C3 = C(T, ∥g∥1,∞), C4 = C(T, α,B), C5 = C(T, ∥g∥2,∞), C6 = C(∥φ∥H2(Ω)) such
that

∥Zxx(·, t)∥22 −
5

4
∥Zx(·, t)∥44 ≤C6 + C2∥Zx(·, t)∥2∞ + C(C2, C5, ϵ)

∫ t

0

∥Zx(·, τ)∥4∞dτ

+C(C2, C5, ϵ)

∫ t

0

∥Zx(·, τ)∥102 dτ+C4

∫ t

0

∥Zxx(·, τ)∥22dτ,

(3.7)

where t ∈ [0, T ], ϵ > 0.
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Proof. Using the integration by parts, we get

d

dt

∫ 1

0

|Zxx(x, t)|2 = 2

∫ 1

0

ZxxZxxtdx = −2

∫ 1

0

ZxxxZxtdx+ 2ZxxZxt|1x=0

which means

∥Zxx(·, t)∥22 = ∥φxx∥22 − 2

∫ t

0

∫ 1

0

ZxxxZxtdxdτ + 2

∫ t

0

Zxx(x, τ)Zxt(x, τ)dτ |1x=0.

(3.8)

Next, we estimate (3.8) in two steps.
Step1. For the third term on the right of (3.8), we have

2

∫ t

0

Zxx(x, τ)Zxt(x, τ)dτ |1x=0

= −2

∫ t

0

Zxxt(x, τ)Zx(x, τ)dτ |1x=0 + 2Zxx(x, τ)Zx(x, τ)|1x=0|tτ=0

= −2

∫ t

0

(E1(τ)− E0(τ))dτ + 2(D1(τ)−D0(τ))|tτ=0

≤ C(∥g∥2,∞)

∫ t

0

∥Zx∥∞dτ + C(T, ∥g∥0,∞)∥Zx∥2∞. (3.9)

Step2. For the second term on the right of (3.8), we know that Z ·Zxxx = −3Zx ·Zxx,
thus

− 2

∫ t

0

∫ 1

0

ZxxxZxtdxdτ

= −2

∫ t

0

∫ 1

0

Zxxx{ϵZxx−Z × Zxx − 1

2
{Z(Z,BZ)}x + (α+B)Zx + ϵ|Zx|2Z}xdxdt

= −2ϵ

∫ t

0

∫ 1

0

|Zxxx|2dxdτ+2

∫ t

0

∫ 1

0

Zxxx ·(Zx×Zxx)dxdτ−2ϵ

∫ t

0

∫ 1

0

Zxxx · {|Zx|2Zx

+(|Zx|2)xZ}dxdτ+
∫ t

0

∫ 1

0

Zxxx ·{Z(Z,BZ)}xxdxdτ−2(α+B)

∫ t

0

∫ 1

0

Zxxx ·Zxxdxdτ

≤−2ϵ

∫ t

0

∫ 1

0

|Zxxx|2dxdτ+2

∫ t

0

∫ 1

0

Zxxx ·(Zx × Zxx)dxdτ+2ϵ

∫ t

0

{∥Zxxx∥2∥Zx∥36

+ ∥Zxx∥2∞∥Zx∥22}dτ+C(B)

∫ t

0

∥Zxx∥2∥Zx∥36dτ+C(α,B)

∫ t

0

∥Zxxx∥2∥Zxx∥2dτ

≤ −C(ϵ)

∫ t

0

∫ 1

0

|Zxxx|2dxdτ + 2

∫ t

0

∫ 1

0

Zxxx · (Zx × Zxx)dxdτ

+ C(α,B)

∫ t

0

∥Zxx∥22dτ + C(ϵ, B)

∫ t

0

∥Zx∥102 dτ. (3.10)

Combining (3.8) with (3.9)(3.10), we get

∥Zxx(·, t)∥22 ≤C6 + C2∥Zx∥2∞ + C5

∫ t

0

∥Zx∥∞dτ + C(ϵ, C5)

∫ t

0

∥Zx∥102 dτ
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+ C(α,B)

∫ t

0

∥Zxx∥22dτ + 2

∫ t

0

∫ 1

0

Zxxx · (Zx × Zxx)dxdτ. (3.11)

Now, we consider the last term on the right of (3.11). Noticing that

Z · Zx = 0, Z · Zxx = −|Zx|2, Z · Zxxx = −3Zx · Zxx, (3.12)

and (x, t) ∈ S = {x ∈ [0, 1], t ∈ [0, T ]; |Zx(x, t)| ̸= 0}, then from the orthogonality
of the three vectors Z,Zx, Z × Zx, we know that

Zxx = αZ + βZx + γZ × Zx (3.13)

where α = −|Zx|2, β = Zx · Zxx/|Zx|2, γ = (Z × Zx) · Zxx/|Zx|2 then we get

2

∫ t

0

∫ 1

0

Zxxx · (Zx × Zxx)dxdτ

= 2

∫ t

0

∫ 1

0

Zxxx · {Zx × (αZ + βZx + γZ × Zx)}dxdτ

= 2

∫ t

0

∫ 1

0

|Zx|2(Z×Zx)·Zxxxdxdτ+2

∫ t

0

∫ 1

0

(Z × Zx)·Zxx

|Zx|2
{Zx×(Z × Zx)}·Zxxxdxdτ

= 5

∫ t

0

∫ 1

0

|Zx|2(Z×Zx)·Zxxxdxdτ+3

∫ t

0

{|Zx(1, τ)|2C1(τ)−|Zx(0, τ)|2C0(τ)}dτ

= 5

∫ t

0

∫ 1

0

|Zx|2(Z × Zx) · Zxxxdxd+ C3

∫ t

0

∥Zx∥3∞dτ + (ϵ, C2, C5)

∫ t

0

∥Zx∥4∞dτ,

(3.14)

where

5

∫ t

0

∫ 1

0

|Zx|2(Z × Zx) · Zxxxdxdτ

= 5

∫ t

0

∫ 1

0

|Zx|2Zx · {Zt − ϵZxx − ϵ|Zx|2Z +
1

2
{Z(Z,BZ)}x − (α+B)Zx}xdxdτ

≤ 5

4
∥Zx(·, t)∥44 −

5

4
∥φx∥44 + 5ϵ

∫ t

0

∥Zxxx∥2∥Zx∥36dτ

+ 15ϵ

∫ t

0

∥Zx∥66dτ + C4

∫ t

0

∥Zx∥36∥Zxx∥2dτ

≤ 5

4
∥Zx(·, t)∥44 +

C(ϵ)

2

∫ t

0

∥Zxxx∥22dτ + ϵC5

∫ t

0

∥Zx∥102 dτ + C4

∫ t

0

∥Zxx∥22dτ + C.

Combining (3.11) with (3.14), we get (3.7).

Lemma 3.4. Under conditions of Theorem 1.1, for the smooth solution Z(x, t) of
the problem (2.5)-(2.7) , we have

∥Zxx(·, t)∥2 ≤ C, (3.15)

where t ∈ [0, T ], ϵ ∈ (0, ϵ0] and ϵ is a positive constant. The constant C is only
depends on T, ∥φ∥H2

, ∥g∥2,∞.
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Proof. Setting F (t) = ∥Zxx(·, t)∥22 + λ∥Zx(·, t)∥22 + λ∥Zx(·, t)∥52 + λ∥Zx(·, t)∥62,
where t ∈ [0.T ], λ is a constant to be determined. Combining (3.1) with (3.7), we
get

F (t) ≤C6 + C2∥Zx(·, t)∥2∞ + C(C2, C5, ϵ)

∫ t

0

∥Zx(·, τ)∥4∞dτ

+ C(C2, C5, ϵ)

∫ t

0

∥Zx(·, τ)∥102 dτ + C4

∫ t

0

∥Zxx(·, τ)∥22dτ +
5

4
∥Zx(·, t)∥44,

using the Gagliardo-Nirenberg inequality and the Young inequality, we have

F (t) ≤C +
1

2
∥Zxx(·, τ)∥22 + C0(∥Zx(·, τ)∥22 + ∥Zx(·, τ)∥62)

+ C

∫ t

0

F (τ)dτ + Cϵ

∫ t

0

F 2(τ)dτ,

where C0 is independent of λ, ϵ, t. Setting λ ≥ 2C0, we get

F (t) ≤ E1 + E2

∫ t

0

F (τ)dτ + ϵE3

∫ t

0

F 2(τ)dτ

where E1, E2, E3 are positive constants independent of ϵ.

Lemma 3.5. Under conditions of Theorem 1.1, for the smooth solution Z(x, t) of
the problem (2.5)-(2.7) , we have

∥Zxt(·, t)∥2 + ∥Zxxx(·, t)∥2 ≤ C, (3.16)

where t ∈ [0, T ], ϵ ∈ (0, ϵ0] and ϵ is a positive constant. The constant C is only
depends on T, ∥φ∥H3

, ∥g∥3,∞.

Proof. Using the integration by parts, we get

d

dt

∫ 1

0

|Zxt(x, t)|2dx = 2

∫ 1

0

Zxt · Zxttdx = −2

∫ 1

0

Zxxt · Zttdx+ 2Zxt · Ztt|1x=0,

which means

∥Zxt(·, t)∥22 − ∥Zxt(0, t)∥22 = −2

∫ t

0

∫ 1

0

Zxxt · Zttdxdτ + 2

∫ t

0

Zxt · Zttdτ |1x=0,

(3.17)

where

Zxt(x, 0) =[−ϵφ(x)× (φ(x)× φ′′(x))− φ(x)× φ′′(x)

− 1

2
{φ(x)(φ(x), Bφ(x))}x + (α+B)φ(x)]′

and

2

∫ t

0

Zxt · Zttdτ |1x=0

=− 2

∫ t

0

Zx · Ztttdτ |1x=0 + 2Zx · Ztt|1x=0|tτ=0
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=−2

∫ t

0

(Zx(1, τ)·g′′′1 (τ)−Zx(0, τ)·g′′′0 (τ))dτ+2(Zx(1, τ) · g′′1 (τ)−Zx(0, τ)·g′′0 (τ))|tτ=0

≤C.

For the first term on the right of (3.17), we have

− 2

∫ t

0

∫ 1

0

Zxxt · Zttdxdτ

=− 2

∫ t

0

∫ 1

0

Zxxt · {ϵZxx − Z × Zxx − 1

2
{Z(Z,BZ)}x + (α+B)Zx + ϵ|Zx|2Z}t

≤− 2ϵ

∫ t

0

∥Zxxt(·, τ)∥22dτ+2

∫ t

0

∫ 1

0

Zxxt ·(Zt×Zxx)dxdτ

+

∫ t

0

∫ 1

0

Zxxt · {Z(Z,BZ)}xtdxdτ − 2(α+B)

∫ t

0

∫ 1

0

Zxxt · Zxtdxdτ

− 2ϵ

∫ t

0

∫ 1

0

Zxxt(|Zx|2)tZdxdτ − 2ϵ

∫ t

0

∫ 1

0

Zxxt(|Zx|2)Ztdxdτ

≤− 2ϵ

∫ t

0

∥Zxxt(·, τ)∥22dτ + 2

∫ t

0

∫ 1

0

Zxxt · (Zt × Zxx)dxdτ

+ C(C3, C4)

∫ t

0

∥Zxt(·, τ)∥22dτ + C, (3.18)

combining (3.17) with (3.18), we get

∥Zxt(·, t)∥22 + 2ϵ

∫ t

0

∥Zxxt(·, t)∥22dτ

≤ 2

∫ t

0

∫ 1

0

Zxxt · (Zt × Zxx)dxdτ + C(C3, C4)

∫ t

0

∥Zxt(·, τ)∥22dτ + C. (3.19)

Now, we consider the first term on the right of (3.19). Noticing the orthogonality
of the three vectors Z,Zt, Z × Zt, we get

Zxxt = µZ + νZt + ωZ × Zt

where µ = −2Zx · Zxt − Zt · Zxx, ν = Zt · Zxxt/|Zt|2, ω = (Z × Zt) · Zxxt/|Zt|2,
thus we have

2

∫ t

0

∫ 1

0

Zxxt · (Zt × Zxx)dxdτ

=− 2

∫ t

0

∫ 1

0

{(µZ + νZt + ωZ × Zt)× Zt} · Zxxdxdτ

=− 2

∫ t

0

∫ 1

0

(2Zx · Zxt − Zt · Zxx)(Z × Zt) · Zxxdxdτ

+ 2

∫ t

0

∫ 1

0

(Z × Zt) · Zxxt|Zx|2dxdτ

≤C

∫ t

0

(∥Zxt∥2∥Zxx∥2∥Zt∥∞+∥Zt∥2∞∥Zxx∥22)dτ −
∫ t

0

∫ 1

0

Zt · (Z × Zxx)t|Zx|2dxdτ
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≤C(1 +

∫ t

0

∥Zxt∥22dτ)− 2

∫ t

0

∫ 1

0

Zt · {Zt − ϵZxx − ϵ|Zx|2Z +
1

2
{Z(Z,BZ)}x

− (α+B)Zx}t|Zx|2dxdτ

≤C + C

∫ t

0

∥Zxt(·, τ)∥22dτ + ϵ

∫ t

0

∥Zxxt(·, τ)∥22dτ, (3.20)

combining with (3.19), we get

∥Zxt(·, t)∥22 + ϵ

∫ t

0

∥Zxxt(·, t)∥22dτ ≤ C + C

∫ t

0

∥Zxt(·, τ)∥22dτ,

using the Gronwall inequality, we have

∥Zxt(·, t)∥22 ≤ C. (3.21)

Meanwhile, we know that

Zxt = ϵZxxx − (Z × Zxx)x + ϵ(|Zx|2Z)x − 1

2
{Z(Z,BZ)}xx + (α+B)Zxx,

and

−(Z × Zt)x =− ϵ(Z × Zxx)x − Zxxx − (|Zx|2Z)x

+
1

2
(Z × Zx)(Z,BZ)− (α+B)Z × Zxx,

we get

Zxxx=
1

ϵ2+1
{ϵZxt+(Z × Zt)x+

1

2
(Z × Zx)(Z,BZ)−(α+B)Z×Zxx}+(|Zx|2Z)x

(3.22)

thus we can easily get (3.16).
Then we repeat the same procedure in Lemma(3.4)(3.5) and easily prove the

following result by induction.

Lemma 3.6. Under conditions of Theorem 1.1, for the smooth solution Z(x, t) of
the problem (2.5)-(2.7) , we have

Σr+2s≤k∥Zxrts(·, t)∥2 ≤ C, (3.23)

where t ∈ [0, T ], ϵ ∈ (0, ϵ0] and ϵ is a positive constant. The constant C is only
depends on T, ∥φ∥Hk

, ∥g∥k,∞.

This completes the proof of Theorem1.2 by passing to the limit in equation(2.5)
as ϵ → 0.

References
[1] K. D. Archan and R. C. A., On the inverse problem and prolongation structure

for the modifed anisotropic Heisenberg spin chain, J. Math. Phys., 1987, 28,
319–322.

[2] F. Alouges and A. Soyeur, On global weak solutions for Landau-Lifshitz equa-
tions: existence and nonuniquness, Nonlinear Analysis, 1992, 18, 1071–1084.



Solution to the modified anisotropic Heisenberg spin chain 485

[3] R. K. Bullough, Soliton–current topics in physics, Springer, Berlin, 1980.
[4] A. Berti and C. Giorgi, Derivation of the Landau-Lifshitz-Bloch equation from

continuum thermodynamics, Phys. B., 2016, 500, 142–153.
[5] T. Buckmaster and V. Vicol, Nonuniqueness of weak solutions to the Navier-

Stokes equation, Annals of Mathematics, 2019, 89, 101–144.
[6] G. Carbou and P. Fabrie, Regular solutions for Landau-Lifshitz equation in R3,

Commun. Appl. Anal., 2001, 5(1), 17–30.
[7] G. Carbou and P. Fabrie, Regular solutions for Landau-Lifshitz equation in a

bounded domain, Differ. Integral Equ., 2001, 14(2), 213–229.
[8] R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, Solitons and

nonlinear wave equations, Academic, New York, 1982.
[9] A. Friedman, Partial Differential Equations, Holt, Rinehadt and Winston,

1969.
[10] H. C. Fogedby, Theoretical aspects of mainly low dimensional magnetic systems,

Lecture Notes in Physics, 1982, 131.
[11] S. Klainerman and G. Ponce, Global, small amplitude solutions to nonlinear

evolution equations Commun. Pure Appl. Math., 1983, 37, 133–141.
[12] B. Kuperschmidt, Integrable and superintegrable systems Los Alamos National

Laboratory, 1981.
[13] Q. Li, B. Guo, F. Liu and W. Liu, Weak and strong solutions to Landau-

Lifshitz-Bloch-Maxwell equations with polarization, J. Differ. Equ., 2021, 286,
47–83.

[14] B. Li and M. Han, Exact peakon solutions given by the generalized hyperbolic
functions for some nonlinear wave equations, Journal of Applied Analysis and
Computation, 2020, 10(4), 1708–1719.

[15] K. Ngan Le, Weak solutions of the Landau-Lifshitz-Bloch equation, Journal of
Differential Equation, 2016, 261, 6699–6717.

[16] S. Tan, Solution to the modified anisotropic Heisenberg spin chain, Journal of
Mathematical Research Exposition, 1993, 13, 203–213.

[17] T. Tao and L. Zhang, On the continous periodic weak solutions of Boussinesq
equations, SIAM J. Math. Anal., 2018, 50(1), 1120–1162.

[18] Y. Zhou, B. Guo and S. Tan, Existence and uniqueness of smooth solution for
system of ferromagnetic, Science in China A, 1991, 34, 257–266.

[19] Y. Zhou, Finite Difference Solutions of the Nonlinear Mutual Boundary Prob-
lems for the Systems of Ferro-Magnetic Chain J. C. M., 1984, 2, 276–281.


	Introduction
	Local smooth solutions to the system with Gilbert damping term
	The associated systems with Gilbert damping term.
	Uniformed estimates of the step-size.

	Global smooth solutions to the system without Gilbert damping term

