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EXISTENCE AND UNIQUENESS OF
PERIODIC WAVES FOR A PERTURBED

SEXTIC GENERALIZED BBM EQUATION

Yanfei Dai1,† and Minzhi Wei2

Abstract This paper is devoted to the existence and uniqueness of periodic
waves for a perturbed sextic generalized BBM equation with weak backward
diffusion and dissipation effects. By applying geometric singular perturbation
theory and analyzing the perturbations of a Hamiltonian system with a hyper-
elliptic Hamiltonian of degree seven, we prove the existence and uniqueness of
periodic wave solutions with each wave speed in an open interval. It is also
proved that the periodic wave solution persists for any energy parameter h in
an open interval and sufficiently small perturbation parameter. Furthermore,
we prove that the wave speed c0(h) is strictly monotonically increasing with
respect to h by analyzing Abelian integral having three generating elements.
Moreover, the upper and lower bounds of the limiting wave speed are obtained.

Keywords BBM equation, hyper-elliptic Hamiltonian system, geometric sin-
gular perturbation theory, periodic waves, Abelian integral.
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1. Introduction
Traveling waves in nonlinear wave equations can describe many nonlinear complex
phenomenon in physics, chemistry, biology, mechanics, optics, etc. Over the past
few decades, the existence, uniqueness and bifurcations of traveling wave solutions
in various shallow water wave models including Korteweg-de Vries (KdV) equa-
tion [25], Benjamin-Bona-Mahony equation [2], Green-Naghdi equation [16] and
Camassa-Holm equation [5, 28, 44], have attracted great attention. The classical,
one dimensional KdV equation

ut + αuux + βuxxx = 0 (1.1)

was first proposed by Korteweg and de Vries [25], where α and β are two parameters.
This nonlinear partial differential equation (NPDE) has played an important role
in describing the traveling of shallow water waves with small amplitudes as well
as other physical and biological problems. The Benjamin-Bona-Mahony (BBM)
equation given by

ut + ux + uux − uxxt = 0 (1.2)
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is a nonlinear, dispersive equation which describes unidirectional propagation of
weakly long surface waves in the presence of dispersion [2]. It also covers cases
of the following type: surface waves of long wavelength in liquids, hydromagnetic
waves in cold plasma, acoustic-gravity waves in compressible fluids, acoustic waves
in anharmonic crystals, etc. Compared with the well-known KdV equation, the
BBM equation has technical advantages, so it is a superior model for investigation
on long waves and attracts much attention from researchers in many fields. It is
worth to point out that the BBM equation is not an evolution equation, although
it is usually considered to be a nonlinear partial differential equation of evolution
type. Micu [30] presented that the BBM equation is approximately controllable
but not spectrally controllable and proved a finite controllability result. Singh et
al. [34] investigated the symmetries of the BBM equation with variable coefficients
by Lie-group method. Besse et al. [3] considered various approximations of artificial
boundary conditions for linearized BBM equation and proved consistency, stability
and convergence of the numerical scheme. Biswas [4] obtained the solitary wave
solutions of BBM equation with dual power law nonlinearity by inverse scattering
transform.

In 2005, Wazwaz [38] analyzed the physical structures of some nonlinear disper-
sive generalized forms of the BBM equation

(um)t + α(un)x + β(ul)xxx = 0, (1.3)

and found their compaction solutions, where α and β are real parameters and m,n
and l are positive integers. The dynamics of the generalized BBM equation have
been extensively studied, see for instance [33,46,47].

However, in the real world, weak influences due to the existence of uncertainties
and perturbations are inevitable, e.g., when shallow water waves travel in nonlin-
ear dissipative media and dispersive media. After taking small perturbations from
diffusion and dissipation into account, one gets the perturbed KdV equation, the
perturbed BBM equation, etc. The question of how bounded solutions, such as
periodic wave and solitary wave solutions, may be affected by weak backward dif-
fusion and dissipation effects naturally arises. In particular, some specific cases of
the perturbed BBM equation with weak backward diffusion and dissipation effects
given by

(um)t + (un)x + uxxx + ε(uxx + uxxxx) = 0 (1.4)

have been considered to some extent in numerous literature, where m and n are
positive integers, 0 < ε ≪ 1 is a perturbation parameter, and uxx and uxxxx
represent the backward diffusion and dissipation, respectively. The traveling wave
solutions for Eq. (1.4) with (m,n) = (1, 2), which belongs to the KdV equation
(1.1) when ε = 0, were investigated in [11, 32]. Eq. (1.4) with (m,n) = (1, 3) was
investigated in [12, 43], where the authors proved the persistence of some solitary
wave and periodic wave solutions with certain wave speeds under small perturbation.
The authors in [6,45,48] established the existence of solitary waves or periodic waves
for Eq. (1.4) with (m,n) = (2, 3). Chen et al. [7] detected the existence of kink waves
and periodic waves for the case when (m,n) = (3, 1). The existence of periodic wave
and solitary wave solutions for Eq. (1.4) with m = 1 and n ∈ Z+ was established by
Yan et al. in [39] and Zhuang et al. in [49], respectively. Sun and Yu [35] studied
the existence of periodic waves for Eq. (1.4) with (m,n) = (3, 4). The existence
of periodic wave and solitary wave solutions for Eq. (1.4) with (m,n) = (3, 5) was
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investigated by Guo and Zhao in [17] and Wang et al. in [36], respectively. Recently,
Wang et al. [37] established the existence of solitary wave solutions for Eq. (1.4)
with m,n ∈ Z+ restricted on the case when its associated ODE system possesses
homoclinic orbits to hyperbolic saddles. More recently, Dai et al. [9] studied the
existence of isolated periodic wave solution with each wave speed in an open interval
for Eq. (1.4) with (m,n) = (4, 5). The geometric singular perturbation theory
established by Fenichel [13] plays an important role in all these research works.

Motivated by the works above, one would ask the question spontaneously:
whether the periodic wave and solitary wave solutions persist or vanish when the or-
der of the first two terms in the perturbed generalized BBM equation (1.4) becomes
higher? To this end, we consider the BBM equation (1.4) with (m,n) = (5, 6),
described by

(u5)t + (u6)x + uxxx + ε(uxx + uxxxx) = 0, (1.5)
where ε > 0 is a perturbation parameter. The associated ODE of (1.5) with ε = 0
has a more degenerate singularity, in fact a nilpotent saddle of order 2. The aim
of this paper is to investigate the existence of periodic waves for Eq. (1.5). The
main mathematical tools used in this paper are based on the relatively new theory
of weak Hilbert’s 16th problem and bifurcation theory.

The rest of this paper is organized as follows. In Section 2, we give some nota-
tions and state our main results. Section 3 is devoted to some preliminary results
including geometric singular perturbation theory, theory of Chebyshev system and
method of discriminant function. In Section 4, we investigate the existence of pe-
riodic wave solutions for system (1.5) and give the proof of our main results. It
will be shown that our method is more effective compared with the Picard-Fuchs
Equation method used in [7,17,39]. With the help of software Maple-17, all results
are proved by real analysis and symbolic computation. Finally, this paper ends
with a conclusion.

2. Some notations and main results
In this section, we give some notations and present our main results for system
(1.5).

The aim of this paper is to seek travelling wave solutions of Eq. (1.5). They
will be solutions of Eq. (1.5) that are functions of the single variable ξ = x − ct,
where c > 0 is the wave speed. Then the wave u = u(ξ) must satisfy the following
ordinary differential equation (ODE)

− 5cu4(ξ)u′(ξ) + 6u5(ξ)u′(ξ) + u′′′(ξ) + ε (u′′(ξ) + u′′′′(ξ)) = 0, (2.1)

where prime denotes the derivative with respect to ξ. Integrating this equation once
with respect to ξ and omitting the integral constant, we get

− cu5(ξ) + u6(ξ) + u′′(ξ) + ε (u′(ξ) + u′′′(ξ)) = 0. (2.2)

Consider the changes of variables

µ(τ) =
u(ξ)

c
, τ = c

5
2 ξ, (2.3)

then we have

u(ξ) = cµ(τ), u′(ξ) = c
7
2µ′(τ), u′′(ξ) = c6µ′′(τ), u′′′(ξ) = c

17
2 µ′′′(τ).
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Figure 1. The phase portrait of system (2.5).

Taking the transformation (2.3) into the equation (2.2) yields

− µ5(τ) + µ6(τ) + µ′′(τ) + ε
(
c−

5
2µ′(τ) + c

5
2µ′′′(τ)

)
= 0. (2.4)

The discussions above tell us that if µ(τ) a solution of Eq. (2.4) for some ε > 0
and c > 0, then u(ξ) = cµ(τ) is a solution of Eq. (2.1), which corresponds to the
travelling wave solution of the original equation (1.5).

System (1.5) when ε = 0, i.e., −µ5(τ) + µ6(τ) + µ′′(τ) = 0, is called the corre-
sponding unperturbed system, which is equivalent to the following two-dimensional
system by setting ν = µ′(τ) 

dµ

dτ
= ν,

dν

dτ
= µ5 − µ6.

(2.5)

Clearly, system (2.5) is a Hamiltonian system with a Hamiltonian function of degree
seven

H(µ, ν) =
ν2

2
− µ6

6
+
µ7

7
. (2.6)

It is well known that the global dynamics of system (2.5) is determined by its
potential energy function and its equilibria. Obviously, system (2.5) has only two
equilibria (1, 0) and (0, 0). By Section 3.4 of [19], it is not difficult to verify that the
origin (0, 0) is a nilpotent saddle of order 2 and the equilibrium (1, 0) is a center.
A direct calculation shows that H(0, 0) = H(7/6, 0) = 0, H(1, 0) = − 1

42 . The
function H(µ, ν) = h for h ∈ (−1/42, 0) and µ ∈ (0, 7/6), depicted in Figure 1,
shows a family of closed orbits surrounded by a homoclinic loop connecting with a
nilpotent saddle of order 2 at the origin.

For convenience, we use the following notations: Γh denoting the curve in the
µ-ν plane defined by H(µ, ν) = h; µ(τ, h) being the µ-component of Γh; µ(τ, h, c, ε)
representing the traveling wave solutions of system (2.4). Denote µ0(τ) ≜ µ(τ, 0),
which is the orbit of system (2.5) corresponding to Γ0, where Γ0 incudes a homoclinic
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orbit to the origin. Denote c0 = 3
7

5

√
2717
24 ≈ 1.104, then our main results are as

follows.

Theorem 2.1. For the perturbed BBM equation (1.5), the following statements
hold.

(i) For any given c ∈ (1, c0), there exists ε0(c) > 0 such that when 0 < ε < ε0(c),
then Eq. (1.5) has a unique isolated periodic wave solution with the wave speed
c, given by u = cµ(τ, h, c, ε), satisfying

lim
ε→0

µ(τ, h, c, ε) = µ(τ, h), lim
(c,ε)→(1,0)
0<ε<ε0(c)

µ(τ, h, c, ε) → 1,

lim
(c,ε)→(c0,0)
0<ε<ε0(c)

µ(τ, h, c, ε) → µ0(τ),

and
∂

∂τ
µ(0, h, c, ε) = 0,

∂2

∂τ2
µ(0, h, c, ε) > 0.

(ii) For any h ∈ (−1/42, 0), there exists ε∗(h) > 0 such that when 0 < ε < ε∗(h),
there exists a smooth function c(h, ε) in h and ε such that Eq. (1.5) has one
unique isolated periodic wave solution in a sufficiently small neighborhood of
Γh, given by u = c(h, ε)µ(τ, h, c(h, ε), ε), where µ(τ, h, c, ε) satisfies the same
properties of the case (i) above. Furthermore, c(h, ε) satisfies

lim
ε→0

c(h, ε) = c(h),
∂c(h, ε)

∂h
> 0,

where c(h) is a strictly increasing function in h satisfying 1 < c(h) < c0.

3. Some preliminary results
In this section, we introduce some preliminary results, which will be useful for the
proof of our main results.

3.1. Geometric singular perturbation theory
Firstly, we introduce the geometric singular perturbation theory which comes from
Fenichel [13]. One can consult [23,42] and references therein for details.

Consider the singularly perturbed differential system in Rk+l,

ẋ = f(x, y, λ, ε), εẏ = g(x, y, λ, ε), (x, y) ∈ Ω ⊂ Rk × Rl, (3.1)

with k, l ∈ Z+ the set of positive integers and Ω an open and connected subset
of Rk+l, where the dot denotes the derivative with respect to the time t, λ ∈ Rm

are m-dimensional real parameters and ε > 0 is a sufficiently small real parameter.
When ε ̸= 0, with a change of time scaling t = ετ , system (3.1) can be rewritten as

x′ = εf(x, y, λ, ε), y′ = g(x, y, λ, ε), (x, y) ∈ Ω, (3.2)

where ′ = d
dτ . The independent variables t and τ are called slow time and fast time,

respectively. Correspondingly, system (3.1) is called the slow system, while system
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(3.2) is called the fast system. Systems (3.1) and (3.2) when ε = 0 are respectively
the reduced system

ẋ = f(x, y, λ, 0), 0 = g(x, y, λ, 0), (x, y) ∈ Ω, (3.3)

and the layer system

x′ = 0, y′ = g(x, y, λ, 0), (x, y) ∈ Ω. (3.4)

The set
{(x, y) ∈ Ω ⊂ Rk+l |g(x, y, λ, 0) = 0}

is called a critical manifold, denoted by M0. Note that the critical manifold is
formed by the singularities of the layer system. According to (3.4), the variable y
will vary while x will remain constant. Thus x is called the slow variable, whereas
y is called the fast variable.

The critical manifold M0 is normally hyperbolic if the layer system (3.4) has l
eigenvalues with nonzero real parts at all its singularities. We shall compile various
hypotheses about the system (3.1), which are denoted by the letter H.

(H1) The set M0 is a compact manifold, possibly with boundary, and is normally
hyperbolic relative to (3.4).

(H2) The set M0 has an explicit expression (at least locally) y = φ(x, λ), x ∈
K ⊂ Rl, with φ a smooth function and K being a compact, simply connected
domain in Rl whose boundary is an (l − 1)-dimensional C∞ submanifold.

Next we introduce the following results on invariant manifolds which is due to
Fenichel [13].

Lemma 3.1. Under the hypothesis (H1), if ε > 0 is sufficiently small, then there
exists a manifold Mε that lies within O(ε) of M0 and is diffeomorphic to M0.
Moreover it is locally invariant under the flow of (3.1), and Cr in x, y and ε, for
any 0 < r < +∞.

Lemma 3.2. Under the hypotheses (H1)-(H2), if ε > 0 is sufficiently small, then
there is a function y = φε(x, λ), defined for x ∈ K, so that the graph

Mε = {(x, y)|y = φε(x, λ)},

is locally invariant under the flow of (3.1). Moreover, φε(x, λ) is Cr, for any
0 < r < +∞, jointly in x and ε.

Under the hypothesis (H2), restricted to the critical manifold one has a k-
dimensional differential system

ẋ = f(x, φ(x, λ), λ, 0), x ∈ K.

3.2. Theory of Chebyshev system
In this subsection, we introduce the theory of Chebyshev system. Let us recall
some definitions about Chebyshev system, see for instance [15, 29]. One can also
consult [24,31] and references therein for details.

Definition 3.1. Let f0(x), f1(x), · · · , fn−1(x) be analytic functions defined on an
interval I ⊂ R.
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(i) The family of sets {f0(x), f1(x), · · · , fn−1(x)} is a Chebyshev system (T -
system for short) on I if any nontrivial linear combination

α0(x) + α1f1(x) + · · ·+ αn−1fn−1(x)

has at most n− 1 isolated zeros on I.
(ii) The family of sets {f0(x), f1(x), · · · , fn−1(x)} is an Extended Chebyshev sys-

tem (ET -system for short) on I if any nontrivial linear combination

α0(x) + α1f1(x) + · · ·+ αn−1fn−1(x)

has at most n− 1 isolated zeros on I counted with multiplicities.
(iii) An ordered set of n functions (f0(x), f1(x), · · · , fn−1(x)) is a complete Cheby-

shev system (CT -system for short) on I if {f0(x), f1(x), · · · , fk−1(x)} is a
T -system on I for all k = 1, 2, · · · , n.

(iv) An ordered set of n functions (f0(x), f1(x), · · · , fn−1(x)) is an Extended Com-
plete Chebyshev system (ECT -system for short) on I if for all k = 1, 2, · · · , n,
any nontrivial linear combination

α0(x) + α1f1(x) + · · ·+ αk−1fk−1(x)

has at most k − 1 isolated zeros on I counted with multiplicities.
(Here in these abbreviations “T” stands for Tchebycheff, which in some sources is
the transcription of the Russian name Chebyshev.)

Definition 3.2. Let f0(x), f1(x), · · · , fk−1(x) be analytic functions defined on an
interval I ⊂ R. The continuous Wronskian of (f0(x), f1(x), · · · , fk−1(x)) at x ∈ I is

W [f0, f1, · · · , fk−1](x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f0(x) f1(x) · · · fk−1(x)

f ′0(x) f ′1(x) · · · f ′k−1(x)

...
...

...

f
(k−1)
0 (x) f

(k−1)
1 (x) · · · f (k−1)

k−1 (x)

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where f ′(x) is the first order derivative of f(x) and f (i)(x) is the i-th order derivative
of f(x) with respect to x, i ≥ 2.

The following lemma is well known, see [24].

Lemma 3.3. An ordered set of n smooth functions (f0(x), f1(x), · · · , fn−1(x)) is
an ECT-system on an interval I if and only if for each k = 0, 1, · · · , n − 1, the
continuous Wronskian W [f0, f1, · · · , fk](x) ̸= 0 for all x ∈ I.

This lemma not only shows the relation between an ECT -system and its contin-
uous Wronskian, but also provides an easy-to-operate method to determine whether
(f0(x), f1(x), · · · , fn(x)) is an ECT -system on I.

3.3. Method of discriminant function
In this subsection, we introduce the method of discriminant function, which trans-
forms the problem of Chebyshev property of some Abelian integrals into studying
that of rational polynomial functions of the same number.
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Let H(x, y) = Φ(x) + y2 be an analytic function in some open subset of R2.
Assume that H(0, 0) = 0 and Φ′′(0) > 0, which implies that H(x, y) has a local
minimum at the origin. It follows that there exists a punctured neighborhood P of
the origin foliated by ovals Γh ⊆ {(x, y) : H(x, y) = h, h ∈ (0, h0), h0 = H(∂P)}.
The projection of P on the x-axis is an interval (xl, xr) with xl < x < xr. Under
these assumptions, it is easy to verify that xΦ′(x) > 0 for all x ∈ (xl, xr) \ {0}, and
Φ(x) has a zero of even multiplicity at x = 0. Then there exists a unique analytic
involution function z(x) such that

Φ(x) = Φ(z(x)), z(x) ̸= x, forx ∈ (xl, xr).

Let
Ii(h) =

∮
Γh

fi(x)y
2s−1dx, forh ∈ (0, h0), (3.5)

where fi(x), i = 0, 1, · · · , n−1, are analytic functions on (xl, xr) and s ∈ N. Further,
define a new analytic function in the interval (xl, xr) as follows

li =
fi(x)

Φ′(x)
− fi(z(x))

Φ′(z(x))
,

which is called the discriminant function of fi, i = 0, 1, · · · , n − 1. Then, the
following lemma holds for I = (xl, 0) or (0, xr), see [15].

Lemma 3.4. Under the assumptions above, {I0, I1, · · · , In−1)} is an ECT -system
on (0, h0) if {l0, l1, · · · , ln−1} is an ECT -system on I and s > n− 2.

4. Analysis of systems (2.4)
Now we go back to study system (2.4), which is equivalent to

dµ

dτ
= ν,

dν

dτ
= ω,

ε
dω

dτ
= c−

5
2

(
µ5 − µ6 − ω

)
− c−5νε,

(4.1)

via the transformations ν = dµ
dτ and ω = d2µ

dτ2 . Next we will prove the persistence
of periodic wave solutions of system (4.1) for sufficiently small ε > 0 by using
geometric singular perturbation theory. Taking the time scaling σ = τ

ε into (4.1)
yields 

dµ

dσ
= εν,

dν

dσ
= εω,

dω

dσ
= c−

5
2

(
µ5 − µ6 − ω

)
− c−5νε.

(4.2)

As mentioned in Section 3.1, the time scales τ and σ are the slow time and fast
time, respectively. Correspondingly, system (4.1) is the slow system, while system
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(4.2) is the fast system. Note that the two systems are equivalent when ε ̸= 0. In
(4.2) letting ε→ 0, we obtain the layer system

dµ

dσ
= 0,

dν

dσ
= 0,

dω

dσ
= c−

5
2

(
µ5 − µ6 − ω

)
.

(4.3)

Therefore, the correspondence with our notation is: x = (µ, ν)T ∈ R2 is the slow
variable, and y = ω ∈ R1 is the fast variable. In (4.1) letting ε → 0, we get the
reduced system 

dµ

dτ
= ν,

dν

dτ
= ω,

µ5 − µ6 − ω = 0.

(4.4)

The critical manifold M0 is given by the condition ω = µ5 − µ6 suitably restricted
to any compact domain K of (µ, ν) space. The Jacobian matrix of the layer system
(4.3) is

𝟋 =


0 0 0

0 0 0

c−
5
2 (5µ4 − 6µ5) 0 −c− 5

2

 ,

which always has three eigenvalues λ1 = λ2 = 0, λ3 = −c− 5
2 , with λ1 and λ2

being on the imaginary axis. This follows that the Jacobian matrix 𝟋 has exactly
one eigenvalue with nonzero real part at all its singularities. Thus, the set M0 is
normally hyperbolic relative to (4.3), in fact attracting. Notice that the set M0 is
given as the graph of the C∞ function ω = φ(µ, ν, c) = µ5 − µ6 for (µ, ν) ∈ R2

and c ∈ R+. It is easy to see that the hypotheses (H1)-(H2) in Section 3.1 hold.
From Lemma 3.1, it follows that for sufficiently small ε > 0, there exists a two-
dimensional submanifold Mε in R3, which is locally invariant under the flow of
(4.1), within the Hausdorff distance ε of M0. In addition, Mε is Cr in µ, ν and ε,
for any 0 < r < +∞. Furthermore, it follows from Lemma 3.2 that Mε can be
represented by the graph of a function ω = φε(µ, ν, c), which is Cr in µ, ν and ε,
for any 0 < r < +∞. By smoothness, this function can be expanded in ε, so that

ω = µ5 − µ6 + g1(µ, ν, c)ε+O(ε2). (4.5)

Next we calculate the term g1(µ, ν, c). The only remaining information about Mε

is the local invariance relative to system (4.2) and this can be used to evaluate
g1(µ, ν, c). To this end, we differentiate (4.5) to σ yields

ω′ = 5µ4µ′ − 6µ5µ′ +

(
∂g1
∂µ

µ′ +
∂g1
∂ν

ν′
)
ε+O(ε2), (4.6)

where ′ = d
dσ . Substituting the expressions of µ′, ν′ and ω′, from (4.2), and also the

expression of ω, given by (4.5), into (4.6), we get

c−
5
2

(
−g1ε+O(ε2)

)
− c−5νε =

(
5µ4ν − 6µ5

)
νε+O(ε2). (4.7)
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Equating the term of O(ε) in (4.7), we obtain

g1(µ, ν, c) = −c 5
2 (5µ4 − 6µ5)ν − c−

5
2 ν. (4.8)

Therefore, the slow system (4.1) restricted on Mε is given by
dµ

dτ
= ν,

dν

dτ
= µ5 − µ6 +

[
−c 5

2 (5µ4 − 6µ5)ν − c−
5
2 ν
]
ε+O(ε2),

(4.9)

which can be regarded as a regular perturbed system. For any given h ∈ (− 1
42 , 0),

H(µ, ν) = h contains a periodic orbit Γh of (2.5) (or the system (4.9) with ε = 0),
where H(µ, ν) is defined by (2.6). Let A(α(h), 0) denote the intersection point of
Γh and the positive µ-axis, and T denote the period of Γh. For ε > 0 sufficiently
small, let Γh,ε be the positive orbit of (4.9) starting from the point A(α(h), 0) at
time τ = 0, satisfying a(h) ∈ (0, 1), and B(β(h, ε), 0) be the first intersection point
of the positive orbit Γh,ε returns to the positive µ-axis at time τ = τ∗(ε). The
displacement function between B(β(h, ε), 0) and A(α(h), 0) is defined by

d(h, c, ε) = H(B)−H(A) =

∫
ÂB

dH =

∫
ÂB

Hµdµ+Hνdν

=

∫
ÂB

(−µ5 + µ6)dµ+ νdν

= ε

∫ τ∗(ε)

0

[(
−c 5

2 (5µ4 − 6µ5)ν − c−
5
2 ν
)
+O(ε)

]
νdτ

≜ εF(h, c, ε).

By continuousness theorem, we have

lim
ε→0

Γh,ε = Γh, lim
ε→0

β(h, ε) = α(h), lim
ε→0

τ∗(ε) = T (h).

Thus,
F(h, c, ε) = c−

5
2M(h, c) +O(ε),

where
M(h, c) = c

5
2F(h, c, 0) =

∮
Γh

[
c5(−5µ4 + 6µ5)− 1

]
νdµ. (4.10)

The function M(h, c) is called Abelian integral or Melnikov function [22].
To investigate the persistence of periodic waves for the perturbation problem, we

will consider the zeros of the displacement function d(h, ε) and their distributions.
According to the analysis above, it follows from (4.10) and the Poincaré bifurcation
theory [18,19] that it suffices to consider the Abelian integral M(h, c).

Remark 4.1. It is worth to mention that the Picard-Fuchs equation method is hard
to study the monotonicity of Abelian integral having three generating elements.
Moreover, it has been shown that our approach developed in this paper is much
simpler than the Picard-Fuchs equation method (eg. see [7, 17,39]).

In the following, we study the Abelian integral M(h, c). Let

Jn(h) =

∮
Γh

µnνdµ, (4.11)
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where n ∈ N. Then,

M(h, c) = c5(−5J4(h) + 6J5(h))− J0(h). (4.12)

We first give a lemma about the property of J0(h).

Lemma 4.1. For h ∈ (− 1
42 , 0), we have J ′

0(h) > 0 and J0(h) > 0.

Proof. In the equation H(µ, ν) = h, we can think of ν as a function of µ and
h, that is, ν = ν(µ, h). Taking the derivative on both sides of this equation with
respect to h yields

∂ν

∂h
=

1

ν
.

Thus,
J ′
n(h) =

∮
Γh

µn ∂ν

∂h
dµ =

∮
Γh

µn

ν
dµ, (4.13)

which follows that

J ′
0(h) =

∮
Γh

1

ν
dµ =

∫ T (h)

0

1

ν
νdτ =

∫ T (h)

0

dτ = T (h) > 0,

where the prime denotes the derivative with respect to h and T (h) is the period of
Γh. This implies that J0(h) is strictly increasing for h ∈ (− 1

42 , 0).
When h→ − 1

42 , Γh approaches to the center (1, 0), implying that ν → 0. Thus,
we have

J0

(
− 1

42

)
= lim

h→− 1
42

∮
Γh

νdµ = lim
h→− 1

42

∫ T (h)

0

ν2dτ = 0.

This together with J ′
0(h) > 0 shows that J0(h) > 0 for all h ∈ (− 1

42 , 0). Thus, the
proof is finished.

From Lemma 4.1, we know that the following ratio is well defined,

P (h) = −5
J4
J0

+ 6
J5
J0
. (4.14)

This shows that M(h, c) in (4.12) can be rewritten as

M(h, c) = J0
(
c5P (h)− 1

)
. (4.15)

To prove Theorem 2.1, we will study the monotonicity and range of the function
P (h) for h ∈ (− 1

42 , 0), which can be stated as the following proposition.

Proposition 4.1. For h ∈ (− 1
42 , 0), we have P ′(h) < 0 and

134456

220077
< P (h) < 1, lim

h→− 1
42

P (h) = 1, lim
h→0

P (h) =
134456

220077
.

Before proving this proposition, we first give some lemmas about the limit values
of P (h) at both ends and the property of ratios of two Abelian integrals.

Lemma 4.2. Let B(p, q) =
∫ 1

0
xp−1(1−x)q−1dx, p > 0, q > 0 be the Beta function.

Then we have

J0(0) =
2
√
3

3

(
7

6

)4

B

(
3

2
, 4

)
, J4(0) =

2
√
3

3

(
7

6

)8

B

(
3

2
, 8

)
,
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J5(0) =
2
√
3

3

(
7

6

)9

B

(
3

2
, 9

)
.

Moreover, the following ratio values at h = 0 hold:

J4(0)

J0(0)
=

134456

196911
,
J5(0)

J0(0)
=

7529536

11223927
,
J5(0)

J4(0)
=

56

57
.

Proof. When h = 0, it follows from (2.6) that ν = ±
√

2µ6( 16 − µ
7 ). Then we have

Jn(0) =

∮
Γh

µnνdµ = 2

∫ 7
6

0

µn

√
2µ6

(
1

6
− µ

7

)
dµ =

2
√
3

3

∫ 7
6

0

µn+3

(
1− 6

7
µ

) 1
2

dµ.

Taking the change of variable ϕ = 6
7µ into the integral above, we get

Jn(0) =
2
√
3

3

∫ 1

0

(
7

6

)n+4

ϕn+3 (1− ϕ)
1
2 dϕ =

2
√
3

3

(
7

6

)n+4

B

(
3

2
, n+ 4

)
,

in the last equality we have used the fact that B(p, q) = B(q, p). This proves the
first part of the lemma by setting n = 0, 4, 5.

Next we will prove the second part. Noting that

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
, Γ(s+ 1) = sΓ(s),

where Γ(s) =
∫ +∞
0

xs−1e−xdx (s > 0) is the Gamma function, we have

J4(0)

J0(0)
=

(
7
6

)8
B( 32 , 8)(

7
6

)4
B( 32 , 4)

=

(
7

6

)4 Γ( 32 )Γ(8)

Γ( 192 )
×

Γ( 112 )

Γ( 32 )Γ(4)

=

(
7

6

)4

×
7× 6× 5× 4× Γ(4)× Γ( 112 )

17
2 × 15

2 × 13
2 × 11

2 × Γ( 112 )× Γ(4)
=

134456

196911
.

(4.16)

Similarly, it is not difficult to verify that the following equalities hold.

J5(0)

J0(0)
=

7529536

11223927
,
J5(0)

J4(0)
=

56

57
.

Thus, the proof is completed.

Lemma 4.3. The following ratio values at h = − 1
42 hold:

J4(− 1
42 )

J0(− 1
42 )

= lim
h→− 1

42

J4(h)

J0(h)
= 1,

J5(− 1
42 )

J0(− 1
42 )

= lim
h→− 1

42

J5(h)

J0(h)
= 1,

J5(− 1
42 )

J4(− 1
42 )

= lim
h→− 1

42

J5(h)

J4(h)
= 1.
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Proof. Taking the following change of variables{
µ = 1 + r cos θ,

ν = r sin θ,
(4.17)

and denoting ρ =
√
h+ 1

42 , then the equation H(µ, ν)− h = 0 becomes

G(r, ρ, θ) ≜ 1

7
r7 cos7 θ+

5

6
r6 cos6 θ+2r5 cos5 θ+

5

2
r4 cos4 θ+

5

3
r3 cos3 θ+

1

2
r2−ρ2 = 0.

(4.18)
This equation can be rewritten as

r2

2
(1 + g(r, θ)) = ρ2, (4.19)

where

g(r, θ) =
2

7
r5 cos7 θ +

5

3
r4 cos6 θ + 4r3 cos5 θ + 5r2 cos4 θ +

10

3
r cos3 θ.

Since g(0, θ) = 0 and g(r, θ) ∈ C∞, there exists r1 > 0 such that 1 + g(r, θ) > 0
holds for 0 < r < r1. Noting that r ≥ 0 and ρ ≥ 0, Eq. (4.19) is equivalent to

r√
2

√
1 + g(r, θ) = ρ,

for 0 < r < r1, which can be rewritten as

F̃ (r, ρ, θ) ≜ r
√

1 + g(r, θ)−
√
2ρ = 0. (4.20)

When h→ − 1
42 , then ρ→ 0. It is not difficult to verify that

F̃ (0, 0, θ) = 0, and ∂F̃ (r, ρ, θ)

∂r

∣∣∣∣
(r,ρ)=(0,0)

= 1 ̸= 0.

Applying the implicit function theorem to the equation (4.20) for (r, ρ) in a neigh-
borhood of (0, 0), one gets its solution r = r(ρ, θ), which is an analytic function
of ρ near 0. This together with the fact that r(0, θ) = 0 shows that r(ρ, θ) can be
expanded as a Taylor’s series with respect to ρ, i.e.,

r(ρ, θ) = a1(θ)ρ+ a2(θ)ρ
2 + a3(θ)ρ

3 + a4(θ)ρ
4 +O(ρ5). (4.21)

Substituting (4.21) into (4.20) and letting all coefficients of ρn, n = 1, 2, 3, 4, be
zero, one can get a unique group of solution

a1(θ) =
√
2, a2(θ) = −10

3
cos3 θ, a3(θ) =

5

9

√
2 cos4 θ

(
25 cos2 θ − 9

)
,

a4(θ) = − 4

27
cos5 θ

(
1000 cos4 θ − 675 cos2 θ + 54

)
.

Then r(ρ, θ) can be written as

r(ρ, θ) =
√
2ρ− 10

3
cos3 θρ2 +

5

9

√
2 cos4 θ

(
25 cos2 θ − 9

)
ρ3

− 4

27
cos5 θ

(
1000 cos4 θ − 675 cos2 θ + 54

)
ρ4 +O(ρ5).

(4.22)
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Notice that the direction of curve Γh is clockwise. By Green’s formula and the
variable transformation (4.17), we obtain

Jn(h) =

∮
Γh

µnνdµ =

∫∫
intΓh

µndµdν =

∫ 2π

0

dθ

∫ r(ρ,θ)

0

(1 + r cos θ)nrdr. (4.23)

Noticing ρ =
√
h+ 1

42 and substituting (4.22) into (4.23) yields

J0(h) = 2π

(
h+

1

42

)
+

40

3
π

(
h+

1

42

)2

+O

((
h+

1

42

)3
)
,

J1(h) = 2π

(
h+

1

42

)
+

25

3
π

(
h+

1

42

)2

+O

((
h+

1

42

)3
)
,

J2(h) = 2π

(
h+

1

42

)
+

13

3
π

(
h+

1

42

)2

+O

((
h+

1

42

)3
)
,

J3(h) = 2π

(
h+

1

42

)
+

4

3
π

(
h+

1

42

)2

+O

((
h+

1

42

)3
)
,

J4(h) = 2π

(
h+

1

42

)
− 2

3
π

(
h+

1

42

)2

+O

((
h+

1

42

)3
)
,

J5(h) = 2π

(
h+

1

42

)
− 5

3
π

(
h+

1

42

)2

+O

((
h+

1

42

)3
)
,

for 0 < h+ 1
42 ≪ 1. Therefore,

Ji(− 1
42 )

Jj(− 1
42 )

= lim
h→− 1

42

Ji(h)

Jj(h)
= 1, i, j = 0, 1, · · · , 5.

This completes the proof.

Lemma 4.4. Jn(h) =
n∑

i=0

(−1)iCi
nIi(h), where Ii(h) =

∮
H∗(µ̃,ν̃)=h

µ̃iν̃dµ̃, in which

µ̃ = 1− µ, ν̃ = −ν, and
H∗(µ̃, ν̃) = H(1− µ̃,−ν̃). (4.24)

In particular,

J0(h) = I0(h),

J4(h) = I4(h)− 4I3(h) + 6I2(h)− 4I1(h) + I0(h),

J5(h) = −I5(h) + 5I4(h)− 10I3(h) + 10I2(h)− 5I1(h) + I0(h).

(4.25)

Proof. Taking the change of variables{
µ̃ = 1− µ,

ν̃ = −ν,
(4.26)
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into Jn(h) yields

Jn(h) =

∮
Γh

µnνdµ =

∮
H(1−µ̃,−ν̃)=h

(1− µ̃)n(−ν̃)d(1− µ̃)

=

∮
H∗(µ̃,ν̃)=h

[
n∑

i=0

Ci
n(−1)iµ̃iν̃

]
dµ̃ =

n∑
i=0

Ci
n(−1)i

∮
H∗(µ̃,ν̃)=h

µ̃iν̃dµ̃

=

n∑
i=0

Ci
n(−1)iIi(h).

Then, we can obtain (4.25) by setting n = 0, 4, 5, respectively.

Lemma 4.5. For h ∈ (−1/42, 0), J4(h)
J0(h)

is strictly decreasing from 1 to 134456
196911 , and

J5(h)
J4(h)

is strictly decreasing from 1 to 56
57 .

Proof. By Lemmas 4.2 and 4.3, we only need to prove that both J4(h)
J0(h)

and J5(h)
J4(h)

are strictly monotonous on the interval (−1/42, 0). This is equivalent to proving
that both of any nontrivial linear combinations α1J0(h) + α2J4(h) and α∗

1J4(h) +
α∗
1J5(h) have at most one zero on (−1/42, 0) counted with multiplicities, i.e., both

{J0(h), J4(h)} and {J4(h), J5(h)} are ECT -systems on (−1/42, 0). Next we will
use the method of discriminant function introduced in Section 3.3 to solve these
problems.

Under the variable transformation (4.26), the expression of (4.24) becomes

H∗(µ̃, ν̃) = H(1−µ̃,−ν̃) = − 1

42
+
ν̃2

2
+
1

2
µ̃2− 5

3
µ̃3+

5

2
µ̃4−2µ̃5+

5

6
µ̃6− 1

7
µ̃7. (4.27)

Denoting h̃ = h+ 1
42 , then H∗(µ̃, ν̃) = h, h ∈ (−1/42, 0) becomes H̃(µ̃, ν̃) = h̃, h̃ ∈

(0, 1/42), with

H̃(µ̃, ν̃) = H∗(µ̃, ν̃) +
1

42
= Φ(µ̃) +

ν̃2

2
, (4.28)

where
Φ(µ̃) =

1

2
µ̃2 − 5

3
µ̃3 +

5

2
µ̃4 − 2µ̃5 +

5

6
µ̃6 − 1

7
µ̃7.

It is easy to verify that H̃ satisfies the assumptions as mentioned in Section 3.3.
Then for any given µ̃ ∈ (− 1

6 , 1), there exists a unique analytic involution function
z(µ̃) ∈ (− 1

6 , 1) such that

Φ(µ̃) = Φ(z(µ̃)), z(µ̃) ̸= µ̃. (4.29)

Let

f0(µ̃)=1, f4(µ̃)= µ̃
4−4µ̃3 +6µ̃2−4µ̃+1, f5(µ̃)=−µ̃5+5µ̃4 − 10µ̃3 +10µ̃2 − 5µ̃+1.

By Lemma 4.4, we have

J̃i

(
h̃
)
≜ Ji(h)=Ji

(
h̃+

1

42

)
=

∮
H∗=̃h+ 1

42

µiνdµ=

∮
H̃=̃h

fi(µ̃)ν̃dµ̃, i = 0, 1, · · · , 5.

Then, the discriminant function associated to fi(µ̃) (i = 0, 4, 5) is

li(µ̃) =

(
fi
Φ′

)
(µ̃)−

(
fi
Φ′

)
(z(µ̃)). (4.30)
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Factorizing Φ(µ̃)− Φ(z), we obtain Φ(µ̃)− Φ(z) = − 1
42 (µ̃− z)φ(µ̃, z), where

φ(µ̃, z) =6

6∑
i=0

µ̃iz6−i − 35

5∑
i=0

µ̃iz5−i + 84

4∑
i=0

µ̃iz4−i − 105

3∑
i=0

µ̃iz3−i

+ 70

2∑
i=0

µ̃iz2−i − 21

1∑
i=0

µ̃iz1−i.

From (4.29), it follows that z(µ̃) is defined implicitly by the equation φ(µ̃, z) = 0.
Then, we have

dz

dµ̃
= −∂φ(µ̃, z)

∂µ̃

/∂φ(µ̃, z)
∂z

and
d

dµ̃
li(µ̃) =

d

dµ̃

(
fi
Φ′ (µ̃)

)
− d

dz

[(
fi
Φ′

)
(z(µ̃))

]
dz

dµ̃
.

It follows from Lemma 3.4 that we only need to prove that both {l0, l4} and {l4, l5}
are ECT -systems on (0, 1). From Lemma 3.3, it suffices to prove that the four Wron-
skians W [l0(µ̃)], W [l0(µ̃), l4(µ̃)], W [l4(µ̃)] and W [l4(µ̃), l5(µ̃)] are all non-vanishing
on (0, 1). With aids of Maple-2017, a direct computation shows that

W [l0(µ̃)] =
(µ̃− z)w1(µ̃, z)

µ̃z(µ̃− 1)5(z − 1)5
, W [l0(µ̃), l4(µ̃)] =

(µ̃− z)3w2(µ̃, z)

µ̃2z2(µ̃− 1)7(z − 1)7w0(µ̃, z)
,

W [l4(µ̃)] =
(µ̃− z)(µ̃+ z − 1)

µ̃z(µ̃− 1)(z − 1)
, W [l4(µ̃), l5(µ̃)] =

(µ̃− z)3w3(µ̃, z)

µ̃2z2(µ̃− 1)2(z − 1)2w0(µ̃, z)
,

where

w0(µ̃, z) =6µ̃5 + 12µ̃4z + 18µ̃z2 + 24µ̃2z3 + 30µ̃z4 + 36z5 − 35µ̃4 − 70µ̃3z

− 105µ̃2z2 − 140µ̃z3 − 175z4 + 84 µ̃3 + 168µ̃2z + 252µ̃z2 + 336z3

− 105µ̃2 − 210µ̃z − 315z2 + 70µ̃+ 140z − 21,

w1(µ̃, z) =

5∑
i=0

µ̃iz5−i − 5

4∑
i=0

µ̃iz4−i + 10

3∑
i=0

µ̃iz3−i − 10

2∑
i=0

µ̃iz2−i

+ 5

1∑
i=0

µ̃iz1−i − 1,

w2(µ̃, z) =− 144µ̃11 − 552µ̃10z − 1104µ̃9z2 − 1680µ̃8z3 − 2160µ̃7z4 − 2424µ̃6z5

− 2424µ̃5z6 − 2160µ̃4z7 − 1680µ̃3z8 − 1104µ̃2z9 − 552µ̃z10 − 144z11

+1708µ̃10+6272µ̃9z+12204µ̃8z2+18016µ̃7z3+22220µ̃6z4+23724µ̃5z5

+ 22220µ̃4z6 + 18016µ̃3z7 + 12204µ̃2z8 + 6272µ̃z9 + 1708z10 − 9232µ̃9

− 32365µ̃8z − 60911µ̃7z2 − 86382µ̃6z3 − 101190µ̃5z4 − 101190µ̃4z5

− 86382µ̃3z6 − 60911µ̃2z7 − 32365µ̃z8 − 9232z9 + 30017µ̃8 + 99969µ̃7z

+ 180383µ̃6z2 + 242866µ̃5z3 + 266160µ̃4z4 + 242866µ̃3z5 + 180383µ̃2z6

+ 99969µ̃z7+30017z8−65218µ̃7−204805µ̃6z−350037µ̃5z2−440300µ̃4z3

− 440300µ̃3z4 − 350037µ̃2z5 − 204805µ̃z6 + 65218z7 + 99352µ̃6
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+ 290927µ̃5z + 463069µ̃4z2 + 530840µ̃3z3 + 463069µ̃2z4 + 290927µ̃z5

+ 99352z6 − 108122µ̃5 − 290367µ̃4z − 419615µ̃3z2 − 419615µ̃2z3

− 290367µ̃z4 − 108122z5 + 83832µ̃4 + 201257µ̃3z + 252882µ̃2z2

+ 201257µ̃z3 + 83832z4 − 45178µ̃3 − 92862µ̃2z − 92862µ̃z2 − 45178z3

+ 15995µ̃2 + 25830µ̃z + 15995z2 − 3304µ̃− 3304z + 294,

w3(µ̃, z) =36µ̃6 + 66µ̃5z + 84 µ̃4z2 + 90µ̃3z3 + 84µ̃2z4 + 66µ̃z5 + 36z6 − 211µ̃5

− 375µ̃4z − 457µ̃3z2 − 457µ̃2z3 − 375µ̃z4 − 211z5 + 511µ̃4 + 868µ̃3z

+ 987µ̃2z2 + 868µ̃z3 + 511z4 − 651µ̃3 − 1029µ̃2z − 1029µ̃z2 − 651z3

+ 455µ̃2 + 630µ̃z + 455z2 − 161µ̃− 161z + 21.

Computing the resultant of µ̃+ z − 1 and φ(µ̃, z) with respect to z yields

Res(µ̃+ z − 1, φ, z) = 6µ̃6 − 18µ̃5 + 33µ̃4 − 36µ̃3 + 17µ̃2 − 2µ̃− 1 ≜ ψ(µ̃). (4.31)

By Sturm’s theorem in Appendix, the polynomial ψ(µ̃) has no real root for µ̃ ∈
(0, 1). This implies that ψ(µ̃) is sign-definite for µ̃ ∈ (0, 1). Noting that ψ(0) = −1,
we know that ψ(µ̃) < 0 for all µ̃ ∈ (0, 1). From Lemma 5.2 in Appendix, it follows
that φ(µ̃, z) and µ̃+ z− 1 have no common real root for µ̃ ∈ (0, 1). This combining
with φ(µ̃, z) = 0 shows that µ̃+ z − 1 ≠ 0 and hence W [l4(µ̃)] ̸= 0 for µ̃ ∈ (0, 1).

Similarly, we can also conclude that W [l0(µ̃)] ̸= 0, W [l0(µ̃), l4(µ̃)] ̸= 0 and
W [l4(µ̃), l54(µ̃)] ̸= 0 for µ̃ ∈ (0, 1) by verifying the resultants Res(wj , φ, z) ̸= 0,
j = 0, 1, 2, 3. This implies that both {J0(h), J4(h)} and {J4(h), J5(h)} are ECT -
systems on (−1/42, 0). Thus, J4(h)

J0(h)
and J5(h)

J4(h)
are strictly monotonic on (−1/42, 0).

By Lemmas 4.2 and 4.3, the assertion in this lemma is proved.
Proposition 4.1 is easy to prove by Lemmas 4.2–4.5.

Proof of Proposition 4.1. From Lemma 4.5, it is easy to see that(
J4(h)

J0(h)

)′

< 0,
134456

196911
<
J4(h)

J0(h)
< 1

and (
J5(h)

J4(h)

)′

< 0,
56

57
<
J5(h)

J4(h)
< 1

hold for h ∈ (− 1
42 , 0). This follows that

17

19
< −5 + 6

J5(h)

J4(h)
< 1.

Thus, for h ∈ (− 1
42 , 0), we have

P ′(h) =

(
J4(h)

J0(h)

)′(
−5 + 6

J5(h)

J4(h)

)
+ 6

J4(h)

J0(h)

(
J5(h)

J4(h)

)′

< 0,

and hence
134456

220077
= lim

h→0
P (h) < P (h) < lim

h→− 1
42

P (h) = 1.

This completes the proof of Proposition 4.1.
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Now, we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. It follows from Proposition 4.1 that for h ∈ (− 1

42 , 0), we
have

P (h) ∈
(
134456

220077
, 1

)
, (P (h))

− 1
5 ∈ (1, c0),

where c0 = 3
7

5

√
2717
24 . For any c ∈ (1, c0), it follows from (4.15) that M(h, c) has a

unique solution at h = P−1
(
c−5
)
≜ h∗(c), where P−1 is the inverse function of P .

Notice that
d(h, c, ε) = εF(h, c, ε) = ε

(
c−

5
2M(h, c) +O(ε)

)
. (4.32)

From Analytic Implicit Function Theorem and Theorem 2.1 of [20], it follows that
for any c ∈ (1, c0), there exists ε0(c) > 0 such that d(h, c, ε) has a unique isolated
zero at h = h(c, ε) = h∗(c)+O(ε) when 0 < ε < ε0(c), which means that system (4.9)
has a unique limit cycle near Γh∗(c), or system (1.5) has a unique isolated periodic
wave solution given by u = cµ(τ, h, c, ε), where µ(τ, h, c, ε) = µ(τ, h∗(c))+O(ε). By
continuousness theorem, it is not difficult to obtain that when (c, ε) → (1, 0) with
0 < ε < ε0(c), then Γh,ε → (1, 0) and hence µ(τ, h, c, ε) → 1. Similarly, Γh,ε → Γ0

when (c, ε) → (c0, 0) with 0 < ε < ε0(c), which gives µ(τ, h, c, ε) → µ0(τ).
Next we will consider the signs of ∂

∂τ µ(0, h, c, ε) and ∂2

∂τ2µ(0, h, c, ε). Note that
when ε ̸= 0, µ(τ, h, c, ε) is the travelling wave solution of system (2.4) and hence
is the solution of system (4.1) (or system (4.2)). From the fact that Γh,ε is the
positive orbit of (4.9) starting from the point A(a(h), 0) at time τ = 0 satisfying
a(h) ∈ (0, 1), we know that µ(0, h, c, ε) ∈ (0, 1) and ν(0, h, c, ε) = 0. From (4.1), it
is easy to see that ∂

∂τ µ(0, h, c, ε) = ν(0, h, c, ε) = 0.
Noting that µ(0, h, c, ε) ∈ (0, 1), we have µ5(0, h, c, ε) − µ6(0, h, c, ε) > 0. By

local inheriting order property, it follows from (4.9) and ν(0, h, c, ε) = 0 that

∂2

∂τ2
µ(0, h, c, ε) =

∂

∂τ
ν(0, h, c, ε) = µ5(0, h, c, ε)− µ6(0, h, c, ε) +O(ε2) > 0

for sufficiently small ε > 0. This proves the first part of Theorem 2.1.
Now we are going to prove the second part of of Theorem 2.1. For any h ∈

(−1/42, 0), it follows from (4.15) that M(h, c) has a unique solution at c = c(h) =

(P (h))
− 1

5 . From Analytic Implicit Function Theorem and Theorem 2.1 of [20], we
know that for any h ∈ (−1/42, 0), there exists ε1(h) > 0 such that when 0 <
ε < ε1(h), then d(h, c, ε) has a unique isolated zero at c = c(h, ε) = c(h) + O(ε),
which means that system (4.9) has a unique limit cycle near Γh, or system (1.5)
has a unique isolated periodic wave solution given by u = c(h, ε)µ(τ, h, c(h, ε), ε),
where µ(τ, h, c(h, ε), ε) = µ(τ, h)+O(ε). The proof for the properties of µ(τ, h, c, ε)
is similar as above. At this time, it is easy to see that lim

ε→0
c(h, ε) = c(h) and

c(h) ∈ (1, c0). On the other hand, we have c′(h, ε) = c′(h)+O(ε), where ′ represents
the derivative by h. From Proposition 4.1, it follows that

c′(h) = −1

5
(P (h))

− 6
5 P ′(h) > 0,

for h ∈ (−1/42, 0). Then for any h ∈ (−1/42, 0), there exists ε2(h) > 0 such that
c′(h, ε) > 0 for 0 < ε < ε2(h). Choose ε∗(h) = min{ε1(h), ε2(h)}, then for any
h ∈ (−1/42, 0), the conclusions of (ii) of Theorem 2.1 hold for 0 < ε < ε∗(h). Thus,
the proof of Theorem 2.1 is completed.
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Remark 4.2. Note that system (2.5) posses a homoclinic orbit to a nilpotent saddle
of order 2. We have not discussed the existence of homoclinic orbit in system (4.9)
(corresponds to solitary wave of system (1.5)) in the present paper.

5. Conclusion
In this paper, the existence of periodic waves in a perturbed sextic BBM equa-
tion with weak backward diffusion and dissipation effects has been established. By
applying geometric singular perturbation theory and Melnikov theory, this prob-
lem can be reduced to the number of real zeros of hyper-elliptic Abelian integrals
with three generating elements. We introduced the transformation (4.26) to use
Chebyshev criteria to overcome the difficulty arising from higher-order degenerate
singularities. It has been shown that periodic wave solutions with certain wave
speeds persist under small perturbation. It has also been shown that periodic wave
solutions persist for any energy parameter h in an open interval and sufficiently
small perturbation parameter. In addition, the signs of several derivatives of the
travelling wave solution with respect to time at the initial value, and the upper and
lower bounds of the limiting wave speeds are obtained. Furthermore, it has been
proven that the wave speed c(h) is strictly monotonically increasing with respect to
the energy parameter h.

One interesting problem that whether the solitary waves of system (1.5) persist
or vanish remains unsolved, see Remark 4.2. This is a very challenging problem
since it is difficult to guarantee the existence of invariant manifolds at the nilpo-
tent saddle of order 2 connected by a homoclinic loop. It should be pointed out
that the proof for the persistence of homoclinic orbit by letting Hamiltonian value
h tends to the critical value 0, which corresponds to Hamiltonian value at homo-
clinic loop, is invalid (eg. see [6, 35, 39]). There are many different ways to discuss
the persistence of homoclinic orbit in a perturbed Hamiltonian system under small
perturbation with the corresponding Hamiltonian system having a homoclinic orbit
to a hyperbolic saddle, such as Melnikov method [19] and the theory of general-
ized rotated vector field [42]. For Eq. (1.4), some researchers have established the
existence of homoclinic orbits of the associated ODE for the case when the corre-
sponding unperturbed system possesses homoclinic orbits to hyperbolic saddles, see
for instance [36, 37, 43, 45, 48, 49]. The bifurcations near a homoclinic loop with a
nilpotent singular point or near a nilpotent singular point have been studied ex-
tensively, see for example [1, 21, 26, 27, 40, 41]. To the best of our knowledge, at
present, there is no general theory dealing with the persistence of homoclinic orbits
in a perturbed Hamiltonian system under small perturbation with the correspond-
ing unperturbed Hamiltonian system having a homoclinic orbit to an equilibrium
point but not hyperbolic saddle type. This remains for future research.

Acknowledgements. The authors are grateful to the reviewers for their valuable
constructive comments, which certainly improved the quality of original paper.

Appendix
In this appendix, we introduce some results about symbolic computation, includ-
ing resultant elimination theory, Fourier-Budan theorem and Sturm’s theorem.
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Let K be an algebraically closed field. Given two polynomials A(x1, x2, · · · , xn),
B(x1, x2, · · · , xn) ∈ K[x1, x2, · · · , xn], (x1, x2, · · · , xn) ∈ Kn, of the forms

A(x1, x2, · · · , xn) =
k∑

i=1

Ai(x1, x2, · · · , xn−1)x
i
n,

B(x1, x2, · · · , xn) =
l∑

i=1

Bi(x1, x2, · · · , xn−1)x
i
n,

where both k and l are positive integers. Denote Res(A,B, xn) the Sylvester resul-
tant of A and B with respect to xn, see [14]. Then the following lemma holds, see
Theorem 5 in [8].

Lemma 5.1. Denote C(x1, x2, · · · , xn−1) ≜ Res(A,B, xn). If (a1, a2, · · · , an) is a
common zero of A and B, then we have C(a1, a2, · · · , an−1) = 0. Conversely, if
C(a1, a2, · · · , an−1) = 0, then at least one of the following holds:

(a) Ak(a1, a2, · · · , an−1) = · · · = A0(a1, a2, · · · , an−1) = 0,
(b) Bl(a1, a2, · · · , an−1) = · · · = B0(a1, a2, · · · , an−1) = 0,
(c) Ak(a1, a2, · · · , an−1) = Bl(a1, a2, · · · , an−1) = 0,
(d) For some an ∈ K, (a1, a2, · · · , an) is a common zero of A and B.

Clearly, C = 0 is a necessary condition of A = B = 0, but not sufficient. This
fact not only gives a criterion for the existence of common zeros for two polynomials,
but also provides a method of finding the common zeros of multivariate polynomial
systems [10]. In particular, setting n = 2, the following lemma is obvious.

Lemma 5.2. If Res(A,B, x2) (resp. Res(A,B, x1) ) has no real root on an interval
I (resp. J), then A(x1, x2) and B(x1, x2) has no common real root on I× R (resp.
R × J). If Res(A,B, x2) has a unique real root on an interval I and Res(A,B, x1)
has a unique real root on an interval J , then A(x1, x2) and B(x1, x2) have at most
one common real root on I× J.

Next we will introduce some known results about the number of real roots of
univariate polynomial. Assume that f(x) is a polynomial of degree n with real
coefficients, a < b are two real numbers, f(a) ̸= 0, f(b) ̸= 0, and the derivatives of
f(x) are

f(x), f ′(x), f ′′(x), · · · , f (n)(x).

For a real series c = [c0, c1, · · · , cn], we denote by

var(c) = var[c0, c1, · · · , cn]

the number of variations of c (skip zero(s), if it appears in this series). Let

sgn(c) = [sgn(c0), sgn(c1), · · · , sgn(cn)]

denote the sign sequence of c. Then var(c) = var(sgn(c)). Denote num(f, I) the
number of real roots (counting the multiplicity) in the interval I of polynomial f in
x and num+(f, I) the number of positive real roots (counting the multiplicity) in
the interval I of polynomial f in x, respectively. To find the number of real roots
of f(x) for x ∈ (a, b), the following two lemmas are well known.
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Lemma 5.3 (Fourier-Budan theorem). If

var[f(a), f ′(a), · · · , f (n)(a)] = p,

var[f(b), f ′(b), · · · , f (n)(b)] = q,

then p ≥ q, and the number of real roots (counting the multiplicity) of f(x) for
x ∈ (a, b) is equal to either p− q or p− q− r, where r is a positive even integer. In
particular, if p = q (resp. p = q + 1), then f(x) has no (resp. has a unique) real
root in (a, b).

Lemma 5.4 (Sturm’s theorem). Assume that f(x) has no multiple root in (a, b),
and we construct the series [f0(x), f1(x), · · · , fs(x)] as follows: f0(x) = f(x), f1(x) =
f ′(x). Divide f0(x) by f1(x), and take the remainder with negative sign as f2(x),
then divide f1(x) by f2(x), and take the remainder with negative sign as f3(x), · · · ,
the last remainder with negative sign (a non-zero number) is fs(x). If

var[f0(a), f1(a), f2(a), · · · , fs(a)] = p,

var[f0(b), f1(b), f2(b), · · · , fs(b)] = q,

then p ≥ q, and num(f, (a, b)) = p− q.
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