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Abstract In this paper, we mainly study the almost sure partial practical
stability of stochastic differential equations driven by Lévy noise with a general
decay rate. By establishing a suitable Lyapunov function and using Exponen-
tial Martingale inequality and Borel-Cantelli theorem, giving some sufficient
conditions that can guarantee the almost sure partial practical stability of
equations. At the same time, we also study general conditions that guarantee
the almost sure asymptotic stability of the equation. Finally, we also give two
examples to illustrate our theoretical results.
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1. Introduction
Stochastic differential equations have been used to express the motion laws in the
real world. Their advantage is that they take into account the uncertainty of the
environment. Stochastic differential equations be widely used in physics, mechan-
ics, control engineering, financial market, economics and other scientific fields, at-
tracting the attention of many researchers. Stability, as an important property
of stochastic differential equations, has always been a popular research direction.
Many achievements have been made on various stability problems of stochastic
differential equations, see [12,15,23,24,28,30–32,36].

Stochastic differential equations driven by Lévy noise be an important kind
of stochastic equations. It plays an important role in financial economics, biology,
quantum field theory, stochastic control, and stochastic filtering, etc. The theory of
Lévy process originated in 1930s, and after more than 90 years of development, the
basic theory of Lévy process has been widely studied, see [1,5,11,14,19]. Stochastic
differential equations driven by Lévy noise have the following important properties:
the Lévy process has a random process of steady and independent increment; even
though the Lévy process is not continuous, and the sample paths are right contin-
uous; some random jump discontinuities occur at random time at each finite time
interval. Therefore, compared with stochastic differential equations with Markov

†The corresponding author. Email: xueyang@jlu.edu.cn(X. Yang)
1College of Mathematics, Jilin University, Changchun 130012, China

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220476


554 S. Lu & X. Yang

switching, it is more reasonable and accurate to use stochastic differential equations
driven by Lévy noise to describe random disturbances in some real systems. There
have been many studies on the various stability of such equations. The p-moment
stability of stochastic differential equations with Lévy noise has been studied in
depth in [3, 37–39]. In particular, in [3], Applebaum et al. derived sufficient condi-
tions to guarantee the almost sure stability and the p-moment exponential stability
of solutions of stochastic differential equations (SDEs) driven by Lévy noise. In
general, there is no obvious relationship between moment exponential stability and
almost sure stability. However, in [3], almost sure stability is derived with some
additional conditions when the equations are guaranteed to be moment exponen-
tial stable, and it is worth noting that the paper not only proves the stability of
the system, but also gives an explicit convergence rate. In the paper [34], Xu et
al. studied the stochastic stability of nonlinear systems driven by Lévy noise. And
in [35], Xu et al. again proposed an equivalent linear method to reduce and simplify
the original system, and studied the stochastic stability of nonlinear systems driven
by Lévy processes based on the Lyapunov exponent. In [16], Li et al. studied the
exponential and polynomial stability of a neutral stochastic time-lag differential
equations driven by Lévy noise with a general decay rate using the Lyapunov func-
tion method and convergence theorem for nonnegative semimartingales, and also
obtained some criteria for determining that the system is almost sure exponentially
stable using M -matrix theory.

Lyapunov functions are used to prove the stability of differential systems. A
function is called a Lyapunov candidate function if it has the possibility to prove
the stability of the differential system at an equilibrium. With the development of
Lyapunov’s first and second methods, more and more work is based on Lyapunov
methods to study the stability of differential systems, see [6,13,20,25]. In [4], Arnold
et al. developed Lyapunov’s second method in stochastic dynamical systems and
random sets, and gave the concepts of attractor and stability accordingly. In [17],
Li et al. obtained the stability of the system through some inherited properties of
Lyapunov functions, and also obtained the existence of almost periodic solutions of
the distribution under appropriate conditions other than Lyapunov functions.

In many cases, stochastic differential equations considered may not satisfy suffi-
cient conditions to the stability of solutions. But in many cases, it suffices to study
the partial stability. Therefore, it is also important to find some of the variables
in equations that admit stability. This problem is called “partial stability”. Par-
tial stability has proven to have powerful applications in many branches such as
biotechnology, gimbal gyroscopes, electromagnetic, rotating mechanical vibration,
inertial navigation systems. The reader is referred to [21,27,29], for more details.

When the origin is not a trivial solution, we can study the asymptotic stability
of the solution to a small neighborhood of the origin. The goal is to analyze the
asymptotic stability of a system whose solution behavior is a small ball of state
space or close to it. It is guaranteed that almost all state trajectories are bounded
and close to a sufficiently small neighborhood of the origin. In this sense, the limit
boundedness of solutions of random systems, or the possibility of convergence of
solutions often need to be analyzed on a ball centered on the origin, which is called
“practical stability”. In [7–10], Caraballo et al. gave some results on the practical
stability of nontrivial solutions for several classes of stochastic systems.

Although the concept of partial practical stability was put forward, the suffi-
cient condition of partial practical stability has not been considered. Therefore, this
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paper is based on the basis of Caraballo’s research on the partial practical stability
of stochastic differential equations with general decay rate, and in the present paper
we study and analyze the partial practical stability of stochastic differential equa-
tions driven by Lévy noise with a general decay rate. With the help of stochastic
analysis theory and Lyapunov methods, by establishing the appropriate Lyapunov
function, using Exponential Martingale inequality and Borel-Cantelli theorem, we
provide some sufficient conditions that can guarantee the almost sure partial prac-
tical stability of equations.

The main structure of this paper is as follows: The second part gives the basic
form of stochastic differential equations driven by Lévy noise and related definitions,
the definition of boundedness of solutions and the definition of partial practical
stability. In the third part, we give the sufficient conditions ensuring the almost
sure partial practical stability of stochastic differential equations driven by Lévy
noise. At the same time, we also provide general conditions that guarantee the
almost sure asymptotic stability of the equation. In the fourth part, we give two
examples to illustrate our theoretical results. The last part summarizes the main
results of this paper.

2. Stochastic differential equations driven by Lévy
noise

Let’s assume that (Ω,F , {Ft}t≥0,P) is a complete probability space, {Ft}t≥0 is
a filtration in the probability space. Then F0 is right continuous and contains
all the P-null test sets. We’re going to use ∥·∥ for the Euclidean norm in Rn.
If A is a matrix or a vector, AT is its transpose. If A is a matrix, the norm is
expressed as ∥A∥ =

√
trace(AAT ), if A is an operator, the operator norm with

∥A∥ = sup{∥Ax∥ : ∥x∥ = 1}. We use m ∨ n to represent max{m,n} and m ∧ n to
represent min{m,n}. Let χΣ denote the indicator function of the set Σ and W (t)
be a w dimensional Brownian motion in probability space (Ω,F , {Ft}t≥0,P). We
define N as a Poisson random measure on R+ × (Rn − {0}), and its associated
compensator and intensity measure are Ñ and ν respectively, where we assume
that ν is a Lévy measure satisfying

∫
Rn−{0}(z

2 ∧ 1)νd(z) < ∞ and Ñ(dt,dz) :=

N(dt,dz)−ν(dz). We usually refer to the pair (W,N) as a Lévy noise. Now consider
the nonlinear stochastic differential equation driven by Lévy noise as follows:

dx(t) = f(x(t), t)dt+ g(x(t), t)dW (t) +

∫
∥z∥<c

H(x(t−), z, t)Ñ(dt,dz), (2.1)

where

f : Rn × [0,∞) → Rn, g : Rn × [0,∞) → Rn×w, H : Rn × Rn × [0,∞) → Rn,

c ∈ (0,∞] is the maximum allowable jump size.
Let x ∈ Rn, x = (x1, x2)

T and x1 ∈ Rn1 , x2 ∈ Rn2 , where n1 + n2 = n. At
this point, we define the norm of x to be ∥x∥ =

√
∥x1∥2 + ∥x2∥2. In this paper we

assume that Poisson random measure N and Brownian motion W are independent
each other.

In order to ensure the existence and uniqueness of the above system solutions,
the following assumptions are made:
(H1) f , g and H satisfy the following conditions:
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1) There exists a nonnegative function η1(t), for all x ∈ Rn, such that

∥f(x, t)∥2 + ∥g̃(x, x, t)∥+
∫
∥z∥<c

∥H(x, z, t)∥2 νd(z) ≤ η1(t)(1 + ∥x∥2),

where g̃(x, y, t) = g(x, t)gT (y, t) represents an n× n matrix;
2) There exists a nonnegative function η2(t), for all x, y ∈ Rn, such that

∥f(x, t)− f(y, t)∥2 + ∥g̃(x, x, t)− 2g̃(x, y, t) + g̃(y, y, t)∥

+

∫
∥z∥<c

∥H(x, z, t)−H(y, z, t)∥2 νd(z)

≤η2(t) ∥x− y∥2 .

It is known ( [2] or [33]) that if system (2.1) satisfies the above conditions (H1), then
for any standard initial condition, there exists a unique solution interval [t0, T ) that
defines initial values x0 ∈ Rn. Since we study the asymptotic behavior of solutions,
we assume T = +∞. In addition, the solution process x(t) is adapted and right
continuous with a left limit. And for any t > t0, if E ∥x(0)∥2 < ∞, then

E ∥x(t)∥2 < ∞. (2.2)

For the convenience of description, we will give the following definitions:
Definition 2.1. Let’s say that C2,1(Rn × R+;R+) denotes the family of all non-
negative functions V (x, t) on Rn × R+ which are continuously twice differentiable
in x and once differentiable in t. Suppose V (x, t) ∈ C2,1(Rn × R+;R+) has the
following:

Vt =
∂V (x, t)

∂t
, Vx = (

∂V (x, t)

∂x1
,
∂V (x, t)

∂x2
), Vxx = (

∂2V (x, t)

∂xi∂xj
)n×n.

Then we define an operator L that operates on V (x, t) and LV : Rn × R+ → R,
where

LV (x, t) =Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
+

∫
∥z∥<c

(V (x+H(x, z, t), t)− V (x, t)−H(x, z, t)Vx(x, t))ν(dz).
(2.3)

The general attenuation function α(t) is used to define the convergence of the
solutions towards a small ball centered at the origin, then the definition of globally
uniformly practical stability is given. Mao [22] first introduced the concept of
stability with polynomial decay rate. Then, as more and more people pay attention
to the stability of stochastic differential systems and other related problems, the
concept is gradually extended to stability with general decay rate. In the following,
we will give the relevant concepts of partial practical stability of systems with
general decay rates, and the specific contents can also be found in [7, 10]:
Definition 2.2. Let α(t) > 0, such that α(t) → +∞ as t → +∞. A non-trivial
solution x(t) = (x1(t), x2(t)) of equation (2.1) is deemed to converge to the ball
Br := {x ∈ Rn : ∥x∥ ≤ r}, r > 0 with respect to x1 with attenuation function α(t)
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and order at least γ > 0, if its generalized Lyapunov exponent is less than or equal
to −γ with probability one, i.e.,

lim
t→+∞

sup
ln(∥x1(t)∥ − r)

lnα(t)
≤ −γ, a.s. (2.4)

Definition 2.3.

1. The ball Br is said to be uniformly stable in probability, if for each ε ∈ [0, 1]
and k > r, there exists T ≥ t0 and δ = δ(ε, k) > 0, for all ∥x0∥ < δ such that

P(∥x(t; t0, x0)∥ < k, ∀t ≥ T ) < 1− ε. (2.5)

2. The ball Br is said to be globally uniformly stable in probability if it is uni-
formly stable in probability, and the solution of (2.1) is globally uniformly
bounded in probability.

Definition 2.4. The ball Br is said to be almost sure globally uniformly practically
stable with respect to the decay function α(t), if for any initial value x0 ∈ Rn where
x0 ̸= 0 such that for all t ≥ t0 ≥ 0, ∥x(t; t0, x0)∥ − r > 0, it holds that

lim
t→+∞

sup
ln(∥x(t; t0, x0)∥ − r)

lnα(t)
≤ 0, a.s. (2.6)

The systems (2.1) is said to be almost sure globally uniformly practically stable
with respect to the decay function α(t), if there exists r > 0 such that the ball Br

is said to be almost sure globally uniformly practically stable with respect to the
decay function α(t). Similarly, a solution x(t) = (x1(t), x2(t)) to system (2.1) is said
to be almost sure partial practical stable with respect to x1 with decay function
α(t), if x1(t) is almost sure globally uniformly practically stable with respect to the
decay function α(t) and x2(t) is globally uniformly bounded in probability.

In addition, if 0 is a solution to the equation, then the zero solution is said to
be almost suer practically asymptotically stable with respect to the decay function
α(t) and order at least γ > 0, if any solution to system (2.1) tends to the boundary
of the ball Br with respect to the decay function α(t) and order at least γ > 0, for
all r > 0 is small enough.

Remark 2.1. Clearly, in the above definition, replacing the decay function α(t)
with O(et) leads to almost sure uniformly practically asymptotic exponential sta-
bility, which is studied in [8].

Below we will give the definition of globally uniformly bounded with probability
one about the solutions.

Definition 2.5. The solution of system (2.1) is globally uniformly bounded with
probability one, if for every β > 0, there exists G > 0 (G only related to β and
independent of t0), for all t0 ≥ 0 and all x0 ∈ Rn, if ∥x0∥ ≤ β such that

sup {∥x(t, t0, x0)∥ : t ≥ t0} ≤ G, a.s.

See reference [8] for details.
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The following lemmas will play important roles in our derivation, which is a
generalization of Caraballo’s work in the Lemma 3.1 of [10]. We will prove that,
under some conditions, if x(t0) = x0 ̸= 0, then almost all sample paths of the
solution of system (2.1) can never reach the origin.
(H2) We suppose that H(x, z, t) always satisfies:

ν{z ∈ B̂c, t ≥ t0,∃x ̸= 0, such that x+H(x, z, t) = 0} = 0,

where Bc represents the ball with the origin as the center and c as the radius, and
B̂c = Bc − {0}. We require that assumption (H2) holds for the rest of this paper.

Lemma 2.1. Assume that, for any ι > 0, there exist positive constants K1 and K2

such that for any ∥x∥ < ι,

∥f(x, t)∥ ∨ ∥g(x, t)∥ ∨ 2

∫
∥z∥<c

∥H(x, z, t)∥ (∥x∥+ ∥H(x, z, t)∥
∥x+H(x, z, t)∥

)ν(dz)

≤K1 ∥x∥+K2.

(2.7)

If x0 ∈ Rn and x0 ̸= 0, then

P(x(t, t0, x0) ̸= 0,∀t ≥ t0) = 1.

This means that almost all sample paths of any solution beginning from a
nonzero state will never arrive at the origin.
Proof. Suppose that the conclusion of the above lemma is false. It means that
for some initial values x0 ̸= 0 of system (2.1), there will be a stopping time τ(P{τ <
+∞} > 0) when the solution of the system is zero for the first time:

τ = inf{t ≥ t0 : x(t) = 0}.

Let’s simply write x(t, t0, x0) as x(t). Since the solution path of system (2.1) is
almost sure right continuous, there exist T > t0, ζ > 1 such that P(Θ) > 0, where

Θ = {ω ∈ Ω : τ ≤ T and ∥x(t)∥ ≤ ζ − 1 for all t0 ≤ t ≤ τ}.

According to the existing assumptions, there is a small normal number e such that
for any 0 < e ≤ ∥x∥ ≤ ι, t0 ≤ t ≤ T ,

∥f(x, t)∥∨∥g(x, t)∥ ∨ 2

∫
∥z∥<c

∥H(x, z, t)∥ (∥x∥+ ∥H(x, z, t)∥
∥x+H(x, z, t)∥

)ν(dz) ≤ K1 ∥x∥+K2.

Let U(x) = 1
∥x∥ . According to the definition of operator L and assumption

(H2), we have

LU(x) ≤∥f(x, t)∥
∥x∥2

+
∥g(x, t)∥2

∥x∥3

+ 2

∫
∥z∥<c

∥H(x, z, t)∥
∥x∥2

(
∥x∥+ ∥H(x, z, t)∥
∥x+H(x, z, t)∥

)ν(dz)

≤2(K1 ∥x∥+K2)

∥x∥2
+

(K1 ∥x∥+K2)
2

∥x∥3

=(2K1 +K2
1 )U(x) +K2(

2

∥x∥
+

2K1

∥x∥
+

K2

∥x∥2
)U(x)

≤(2K1 +K2
1 +K3)U(x),

(2.8)
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where K3 = K2(
2
e + 2K1

e + K2

e2 ). Now, for any ℓ ∈ (0, ∥x0∥), define the stopping
time

τℓ = inf{t ≥ t0 : ∥x∥ /∈ (ℓ, ζ)}.

Applying Itô formula for (2.1) yields

E[e−(2K1+K2
1+K3)(τℓ∧T−t0)U(x(τℓ ∧ T ))]

=EU(x(t0)) + E[
∫ τℓ∧T

t0

e−(2K1+K2
1+K3)s[L2U(x(s))− (2K1 +K2

1 +K3)U(x(s))]ds],

by (2.8)

E[e−(2K1+K2
1+K3)(τℓ∧T−t0)U(x(τℓ ∧ T ))] ≤ EU(x(t0)).

We note that if ω ∈ Θ, then τℓ ≤ T and x(τℓ) = ℓ. Then we can get from the above
inequality:

E[e−(2K1+K2
1+K3)(T−t0)ℓ−1χΘ] ≤ U(x0).

Hence

P(Θ) ≤ ℓ

∥x0∥
e(2K1+K2

1+K3)(T−t0).

Letting ℓ → 0, we obtain that P(Θ) = 0, but this contradicts the definition of Θ.
In summary, the proof of Lemma 2.1 is complete.

Before we present the Exponential Martingale inequality, we will introduce two
spaces F(T ) and F(T,A):

F(T ) =

{
F : [0, T ]× Ω → Rn|P

[∫ T

0

∥F (t)∥2 dt < ∞

]
= 1

}
;

F(T,A) =

{
H : [0, T ]×A× Ω → Rn|P

[∫ T

0

∫
A

∥H(s, z)∥2 ν(dz)ds < ∞

]
= 1

}
,

where A is a Borel set in Rn − {0}.

Lemma 2.2. (Exponential Martingale inequality) Let F (t) ∈ F(T ), H(t, z) ∈
F(T,A), and T , ϵ, η be any positive numbers. Then the following inequality holds

P [sup {Y (t)|0 ≤ t ≤ T} > η] ≤ e−ϵη, (2.9)

where

Y (t) =

∫ t

0

F (s)dW (s)− ϵ

2

∫ t

0

∥F (s)∥2 ds+
∫ t

0

∫
∥z∥<c

H(s, z)Ñ(ds, dz)

− 1

ϵ

∫ t

0

∫
∥z∥<c

[
eϵH(s,z) − 1− ϵH(s, z)

]
ν(dz)ds.

The details of the Exponential Martingale inequality can be found in Theorem
1.7.4 of [2].

With the above preparation, we aim to seeking sufficient conditions about the
partial practical stability of stochastic differential equations driven by Lévy noise.
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3. Partial practical stability of stochastic differen-
tial equations driven by Lévy noise

In recent years, ones are interested in noise-driven stochastic differential equations
(SDEs) with discontinuous jumps. Various stability problems of this kind of equa-
tions have been well studied, such as p-moment stability, probabilistic stability and
almost sure exponential stability. Based on the definition of partial practical stabil-
ity, we explore the sufficient conditions to guarantee the partial practical stability
of the system (2.1), mainly using Exponential Martingale inequality, Borel-Cantelli
Lemma and so forth. We are in a position to state the first result:

Theorem 3.1. Suppose besides (2.7) that there are continuous function V (x, t) ∈
C2,1(Rn × R+;R+), G(t) > 0, h1(t) ∈ R, µ(t) > 0 and h2(t) ≥ 0, constants
p ∈ N+,m ≥ 0,M ≥ 0, ϑ1 ∈ R, ϑ2 ≥ 0, such that for all t ≥ 0 and x = (x1, x2) ∈ Rn,
the following conditions hold:

(I) α(t)m ∥x1∥p ≤ G(t)V (x, t) and lim
t→+∞

sup lnG(t)
lnα(t) = a, a ∈ R;

(II) LV (x, t) ≤ h1(t)V (x, t) + µ(t) and lim
t→+∞

sup
∫ t
0
h1(s)ds
lnα(t) ≤ ϑ1;

(III) lim
t→+∞

sup t
lnα(t) = M and lim

t→+∞
µ(t)
α(t)m = σ > 0;

(IV) ∥Vx(x, t)g(x, t)∥2 ≥ h2(t)V
2(x, t) and lim

t→+∞
inf

∫ t
0
h2(s)ds
lnα(t) ≥ ϑ2.

Let x0 ∈ Rn, x0 ̸= 0 and E ∥x0∥2 < ∞, such that the corresponding solution
x(t, t0, x0) = (x1(t, t0, x0), x2(t, t0, x0)) with the initial value x(t0) = x0 ∈ Rn satis-
fies:

(1) x2(t, t0, x0) is globally uniformly bounded with probability one.

Then there is σ0 ≥ σ > 0, with ∥x1(t, t0, x0)∥ > σ0, such that the following formula
holds

lim
t→+∞

sup
ln(∥x1(t)∥ − (σ0)

1
p )

lnα(t)
≤ −γ∗, a.s. (3.1)

where γ∗ =

m− ϑ1 − 3
2M − a, M > ϑ2

m− ϑ1 − a+ 1
2ϑ2 −M −

√
Mϑ2, M ≤ ϑ2

.

Further, if γ∗ > 0, the solution x1(t) of equation (2.1) is deemed to converge
to the ball Br := {x ∈ Rn : ∥x∥ ≤ (σ0)

1
p } with respect to x1(t) with attenuation

function α(t) and order at least γ∗. So the solution x(t) = (x1(t), x2(t)) of system
(2.1) is almost sure partial practical stable with respect to x1 with decay function
α(t).

Proof. Without loss of generality, we assume that the initial moment is t0 = 0,
so for any standard initial value of x0 ∈ Rn, x0 ̸= 0, there exists a unique solution
x(t, 0, x0) = (x1(t, 0, x0), x2(t, 0, x0)) of system (2.1), and lemma 2.1 states that the
sample paths of solution x(t, 0, x0) cannot return to the origin at any time, i.e.,
x(t) = (x1(t), x2(t)) ̸= 0, ∀t ≥ 0 almost surely. In the following, we will simply set
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x(t, 0, x0) as x(t). We divide the proof into the following two cases:
case 1 Let D1 = {t ∈ [0,+∞) : ∥x1(t, 0, x0)∥p ≤ σ0}, then

∥x1(t, 0, x0)∥ ≤ (σ0)
1
p , t ∈ D1.

case 2 Except for case 1 above, for any t ∈ D2 := [0,+∞) \ D1, such that
∥x1(t, 0, x0)∥p > σ0. And then we know from condition (III),

lim
t→+∞

µ(t)

α(t)m
= σ > 0.

By σ0 ≥ σ > 0, there exists T1 such that for any t ≥ T1, µ(t)
α(t)m ≤ σ0, and thus we

can obtain

∥x1(t, t0, x0)∥ >
µ(t)

α(t)m
, t ∈ [T1,+∞) ∩D2.

Form condition (I) and µ(t) > 0, we obtain

α(t)m ∥x1(t)∥p − µ(t) ≤ α(t)m ∥x1(t)∥p ≤ G(t)V (x(t), t). (3.2)

Let’s study the formula α(t)m ∥x1(t)∥p − µ(t), obviously

α(t)m ∥x1(t)∥p − µ(t) = α(t)m
(
∥x1(t)∥p −

µ(t)

α(t)m

)
= αm(t)

(
∥x1(t)∥p −

((
µ(t)

α(t)m

) 1
p

)p)
,

(3.3)

thanks to p ∈ N∗(
∥x1(t)∥p −

((
µ(t)

α(t)m

) 1
p

)p)

=

(
∥x1(t)∥ −

(
µ(t)

α(t)m

) 1
p

)
p∑

n=1

∥x1(t)∥p−n

(
µ(t)

α(t)m

)n−1
p

,

(3.4)

by condition (IV)

lim
t→+∞

µ(t)

α(t)m
= σ.

By limit, we get: ∀θ ∈ (0, σ), ∃T2 ≥ 0

µ(t)

α(t)m
≥ θ, ∀t ≥ T2. (3.5)

Again by condition (I)

∥x1(t)∥ >

(
µ(t)

α(t)m

) 1
p

, (3.6)

we get

∥x1(t)∥p−n ≥
(

µ(t)

α(t)m

) p−n
p

≥ θ
p−n
n . (3.7)
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It follows from (3.5), (3.6) and (3.7) that

p∑
n=1

∥x1(t)∥p−n

(
µ(t)

α(t)m

)n−1
p

= ∥x1(t)∥p−1
+ ∥x1(t)∥p−2

(
µ(t)

α(t)m

) 1
p

+ ∥x1(t)∥p−3

(
µ(t)

α(t)m

) 2
p

+ ...+

(
µ(t)

α(t)m

) p−1
p

≥pθ
p−1
p , ∀t ≥ T. (3.8)

Let θ̃ = pθ
p−1
p , by (3.3) and (3.8),

α(t)m ∥x1(t)∥p − µ(t) ≥ α(t)m

(
∥x1(t)∥ −

(
µ(t)

α(t)m

) 1
p

)
θ̃. (3.9)

Form (3.2), we obtain

α(t)m

(
∥x1(t)∥ −

(
µ(t)

α(t)m

) 1
p

)
θ̃ ≤ α(t)m ∥x1(t)∥p − µ(t) ≤ G(t)V (x(t), t). (3.10)

Because of the basic form of LV (x) and the Itô formula (see [26]), for the solution
x(t) of system (2.1), we have

V (x(t), t) = V (x(0), 0) +Mt +

∫ t

0

LV (x(s), s)ds, (3.11)

where

Mt =

∫ t

0

Vx(x(s), s)g(x(s), s)dW (s)

+

∫ t

0

∫
∥z∥<c

[V (x(s) +H(x(s−), z, s), s)− V (x(s), s)] Ñ(ds,dz),

and

LV (x, t) =Vt(x, t) + Vx(x, t)f(x, t) +

∫
∥z∥<c

V (x+H(x, z, t), t)− V (x, t)

−H(x, z, t)Vx(x, t)ν(dz) +
1

2
trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
.

(3.12)

Next, let use the Itô formula to study ln(V (x(t), t)),

ln(V (x(t), t))

= ln(V (x(0), 0)) +

∫ t

0

(
Vt(x(s), s)

V (x(s), s)
+

Vx(x(s), s)f(x(s), s)

V (x(s), s)
)ds

+

∫ t

0

∫
∥z∥<c

ln(V (x(s) +H(x(s−), z, s), s)− lnV (x(s), s))

− H(x(s−), z, s)Vx(x(s), s)

V (x(s), s)
ν(dz)ds− 1

2

∫ t

0

∥Vx(x(s), s)g(x(s), s)∥2

V 2(x(s), s)
ds
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+
1

2V (x(s), s)
trace

[
gT (x(s), s)Vxx(x(s), s)g(x(s), s)

]
ds

+

∫ t

0

∫
∥z∥<c

[ln(V (x(s) +H(x(s−), z, s), s))− ln(V (x(s), s))] Ñ(ds,dz)

+

∫ t

0

Vx(x(s), s)g(x(s), s)

V (x(s), s)
dW (s). (3.13)

Now, using the L defined in (3.12), we obtain

ln(V (x(t), t)) =D +

∫ t

0

LV (x(s), s)

V (x(s), s)
ds+ M̃t −

1

2

∫ t

0

∥Vx(x(s), s)g(x(s), s)∥2

V 2(x(s), s)
ds

−
∫ t

0

∫
∥z∥<c

V (x(s) +H(x(s−), z, s), s)− V (x(s), s)

V (x(s), s)
ν(dz)ds

+

∫ t

0

∫
∥z∥<c

ln
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
ν(dz)ds, (3.14)

where D = ln(V (x(0), 0)) is a constant value and

M̃t =

∫ t

0

Vx(x(s), s)g(x(s), s)

V (x(s), s)
dW (s)

+

∫ t

0

∫
∥z∥<c

[ln(V (x(s) +H(x(s−), z, s), s))

− ln((V (x(s), s))]Ñ(ds,dz).

(3.15)

The main task of the following is to study M̃t. We choose the standard initial
value x(0) = x0 and guarantee that E ∥x0∥2 < ∞. We can use the Exponential
Martingale inequality, letting T = k, ϵ = ε, η = k−1

2ε and ε ∈ (0, 1), k ∈ N+ and
k > 1. Then we can get naturally that for any k > 1,

P

[
sup

{
M̃t − Y (t, ε)|0 ≤ t ≤ k

}
>

k − 1

2ε

]
≤ e−

1
2 (k−1),

where

Y (t, ε) =
ε

2

∫ t

0

∥Vx(x(s), s)g(x(s), s)∥2

V 2(x(s), s)
ds+1

ε

∫ t

0

∫
∥z∥<c

(
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
)ε

− 1− ε ln
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
ν(dz)ds.

Since
∞∑
k=2

e−
1
2 (k−1) < ∞,

by Borel-Cantelli Lemma, we see that for almost all ω ∈ Ω,∃k̃ > 0, where k̃ only
related to ω ∈ Ω. We have

P

[
lim

k→+∞
inf(sup

{
M̃t − Y (t, ε)|0 ≤ t ≤ k

}
) ≤ k − 1

2ε

]
= 1,
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i.e., for all k − 1 ≤ t ≤ k, k ≥ k̃,

M̃t ≤
ε

2

∫ t

0

∥Vx(x(s), s)g(x(s), s)∥2

V 2(x(s), s)
ds

+
1

ε

∫ t

0

∫
∥z∥<c

(
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
)ε

− 1− ε ln
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
ν(dz)ds+ k − 1

2ε
, a.s.

(3.16)

We know that the following inequality holds for all n ∈ (0, 1), m > 0,

mn < 1 + n(m− 1). (3.17)

Let

P (ε, x, z, t) =
1

ε
[(
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
)ε − 1

− ε ln
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
],

(3.18)

and let m = V (x(s)+H(x(s−),z,s),s)
V (x(s),s) , n = ε. Then by formula (3.17) and the previous

assumption, we get

(
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
)ε ≤ 1 + ε(

V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
− 1),

we easily deduce that

P (ε, x, z, t) ≤1

ε
[1 + ε(

V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
− 1)− 1

− ε ln
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
]

=
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
− 1

− ln
V (x(s) +H(x(s−), z, s), s)

V (x(s), s)
.

(3.19)

Substituting (3.15), (3.16), (3.18) and (3.19) into (3.14) gives

ln(V (x(t), t)) ≤D +

∫ t

0

LV (x(s), s)

V (x(s), s)
ds− 1

2

∫ t

0

∥Vx(x(s), s)g(x(s), s)∥2

V 2(x(s), s)
ds

+
ε

2

∫ t

0

∥Vx(x(s), s)g(x(s), s)∥2

V 2(x(s), s)
ds+ k − 1

2ε
,

(3.20)

by conditions (II) and (IV)

ln(V (x(t), t)) ≤ D +

∫ t

0

h1(s)ds−
1− ε

2

∫ t

0

h2(s)ds+
1 + 2ε

2ε
t;
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further, for all k − 1 ≤ t ≤ k, k ≥ k̃,

lim
t→+∞

sup
ln(V (x(t), t))

lnα(t)
≤ ϑ1 −

(1− ε)

2
ϑ2 +

1 + 2ε

2ε
M. (3.21)

By (3.10), it is not difficult to get

m lnα(t) + ln(∥x1(t)∥ −
(

µ(t)

α(t)m

) 1
p

) + ln θ̃ ≤ lnG(t) + ln(V (x(t), t)),

further

ln(∥x1(t)∥ −
(

µ(t)
α(t)m

) 1
p

)

lnα(t)
≤ −m− ln θ̃

lnα(t)
+

ln(V (x(t), t))

lnα(t)
+

lnG(t)

lnα(t)
.

By (3.21) and the property of α(t), letting k → +∞ yields

lim
t→+∞

sup
ln(∥x1(t)∥ −

(
µ(t)
α(t)m

) 1
p

)

lnα(t)
≤ −(m−ϑ1+

(1− ε)

2
ϑ2−

1 + 2ε

2ε
M−a). (3.22)

Let γ(ε) = m − ϑ1 +
(1−ε)

2 ϑ2 − 1+2ε
2ε M − a, which shows that the decaying order

depends on the parameter ε. The next main task is to find the optimal valued
γ∗ = sup

ε∈(0,1)

γ(ε). Note

dγ(ε)

dε
=

1

2ε2
M − 1

2
ϑ2, (3.23)

which implies that

γ∗ = m− ϑ1 −
3

2
M − a,M > ϑ2, (3.24)

γ∗ = m− ϑ1 − a+
1

2
ϑ2 −M −

√
Mϑ2,M ≤ ϑ2. (3.25)

Finally, we use the condition (III) to obtain

lim
t→+∞

µ(t)

α(t)m
= σ ≤ σ0.

Taking limit, we get that when t ≥ T1,

µ(t)

α(t)m
≤ σ0,

hence

lim
t→+∞

sup
ln(∥x1(t)∥ − (σ0)

1
p )

lnα(t)
≤ lim

t→+∞
sup

ln(∥x1(t)∥ −
(

µ(t)
α(t)m

) 1
p

)

lnα(t)
≤ −γ∗.

Thus if γ∗ > 0, letting r = (σ0)
1
p , we get

lim
t→+∞

sup
ln(∥x1(t)∥ − r)

lnα(t)
≤ −γ∗, a.s., (3.26)
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where

γ∗ =

m− ϑ1 − 3
2M − a, M > ϑ2,

m− ϑ1 − a+ 1
2ϑ2 −M −

√
Mϑ2, M ≤ ϑ2.

From (3.26) and case 1, it is not difficult to obtain that there exists time T̃ ≥
max{T1, T2}, such that when t ≥ T̃ , then the ball Br = {x ∈ Rn : ∥x∥ ≤ (σ0)

1
p }

is said to be surely globally practically uniformly stable with respect to the decay
function α(t), i.e. the solution x(t) of system (2.1) converges to the ball Br := {x ∈
Rn : ∥x∥ ≤ (σ0)

1
p } with respect to x1(t) with attenuation function α(t) and order at

least γ∗. Finally, from condition (1), according to Definition 2.4, the solution x(t)
of system (2.1) almost sure partial practical stable with respect to x1 with decay
function α(t).
Remark 3.1. To sum up, by establishing a suitable Lyapunov function and using
Exponential martingale inequality and Borel-Cantelli theorem, we have sufficient
conditions that can guarantee the almost suer partial practical stability of stochastic
differential equations driven by Lévy noise. There have remained two important
problems: one is the selection of the attenuation function, the other is whether the
Lyapunov function used in the theorem exists. The first problem is generally easy
to solve. For example, we can choose α(t) = O(et) or α(t) = O(ln(t+1)), so we can
get partial practical exponential stability or partial practical logarithmic stability.
Remark 3.2. When we study the almost sure partial practical stability for system
(2.1), in general, it is difficult to find suitable Lyapunov functions. In order to find
a more appropriate Lyapunov function, further thinking, let Q : R1

+ → Rn×n be a
C1 positive-definite function with Q(t) = Q(t)T . We take the Lyapunov function
as V (x, t) = xTQ(t)x, where x ∈ Rn. Let C1(Rn ×R+;Rn) denote the family of all
nonnegative functions f(x, t) on Rn × R+ which are once differentiable in x.

Corollary 3.1. Suppose besides (2.7) and f ∈ C1(Rn × R+;Rn) that there are
continuous functions G(t) ≥ 0, φ1,2(t) ∈ R, µ(t) > 0 and h2(t) ≥ 0, constants
p = 2, m ≥ 0, M ≥ 0, ϑ1 ∈ R, ϑ2 ≥ 0, such that for all t ≥ 0 and x = (x1, x2) ∈ Rn,
the following conditions hold:

(1) Q̇(t) + ∂fT (x,t)
∂x Q(t) +Q(t)∂f(x,t)∂x ≤ φ1(t)Q(t);

(2) trace
[
gT (x, t)Q(t)g(x, t)

]
+
∫
∥z∥<c

HT (x, z, t)Q(t)H(x, z, t)ν(dz)
+ 2fT (0, t)Q(t)x(t) ≤ φ2(t)x

TQ(t)x+ µ(t);

(3)
∥∥xTQ(t)g(x, t)

∥∥2 ≥ h2(t)
∥∥xTQ(t)x

∥∥2 and lim
t→+∞

inf
∫ t
0
h2(s)ds
lnα(t) ≥ ϑ2;

(4) lim
t→+∞

sup
∫ t
0
(φ1(s)+φ2(s))ds

lnα(t) ≤ ϑ1 and lim
t→+∞

inf
∫ t
0
Q(s)ds

lnα(t) ≥ b, b ∈ R,

where ∥Q(t)∥ is the determinant of the matrix Q(t) at time t, and assumptions
(III), (1) of Theorem 3.1 are satisfied. Then the conclusion in Theorem 3.1 holds.

Proof. Let V (x, t) = xTQ(t)x. It is obvious that V (x, t) ∈ C2,1(Rn × R+;R+),
and by Definition 2.1, we obtain

Vt(x, t) = xT Q̇(t)x,
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Vx(x, t)f(x, t) = xTQ(t)f(x, t) + fT (x, t)Q(t)x,

Vxx(x, t) = 2Q(t),

and

LV (x, t) =Vt(x, t) + Vx(x, t)f(x, t) +
1

2
trace

[
gT (x, t)Vxx(x, t)g(x, t)

]
+

∫
∥z∥<c

(V (x+H(x, z, t), t)− V (x, t)−H(x, z, t)Vx(x, t))ν(dz)

=xT Q̇(t)x+ xTQ(t)f(x, t) + fT (x, t)Q(t)x

+ trace
[
gT (x, t)Q(t)g(x, t)

]
+

∫
∥z∥<c

HT (x, z, t)Q(t)H(x, z, t)ν(dz). (3.27)

Now let’s analyze equation (3.27):

LV (x(t), t) =xT (t)Q̇(t)x(t) + xT (t)Q(t) [f(x(t), t)− f(0, t)]

+ [f(x(t), t)− f(0, t)]
T
Q(t)x(t) + trace

[
gT (x(t), t)Q(t)g(x(t), t)

]
+

∫
∥z∥<c

HT (x, z, t)Q(t)H(x, z, t)ν(dz) + 2fT (0, t)Q(t)x(t).

Since f ∈ C1(Rn × R+;Rn), by Lagrange’s mean value theorem, ∃εt ∈ (0, x(t)),
such that

f(x(t), t)− f(0, t) = fx(εtx(t), t)x(t),

where fx(x, t, i) =
∂f(x,t,i)

∂x , we obtain

LV (x(t), t) =xT (t)Q̇(t)x(t) + xT (t)Q(t)fx(εtx(t), t)x(t)

+ xT (t)Qi(t)f
T
x (εtx(t), t)x(t) + trace

[
gT (x(t), t)Q(t)g(x(t), t)

]
+

∫
∥z∥<c

HT (x, z, t)Q(t)H(x, z, t)ν(dz) + 2fT (0, t)Q(t)x(t).

It suffices to show conditions (1) and (2). We have

LV (x(t), t) ≤ (φ1(t) + φ2(t))V (x(t), t) + µ(t).

We can make G(t) = α(t)m

Q(t) . To sum up, Corollary 3.1 satisfies all conditions of
Theorem 3.1, which allows us to conclude that

lim
t→+∞

sup
ln(∥x1(t)∥ − r)

lnα(t)
≤ −γ∗, a.s.,

where

γ∗ =

 b− ϑ1 − 3
2M, M > ϑ2,

b− ϑ1 +
1
2ϑ2 −M −

√
Mϑ2, M ≤ ϑ2.

Thus if γ∗ > 0, the solution x(t) of system (2.1) almost sure partial practical stable
with respect to x1 with decay function α(t).
Remark 3.3. In Theorem 3.1, when µ(t) = 0, we can get the almost sure asymp-
totic stability of stochastic differential equations driven by Lévy noise with a general
decay rate. The specific content is as follows.
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Theorem 3.2. Suppose besides (H1) that there are continuous functions V (x, t) ∈
C2,1(Rn;R+), G(t) ≥ 0, h1(t) ∈ R and h2(t) ≥ 0, constants p ∈ N+, m ≥ 0, M ≥ 0,
ϑ1 ∈ R, ϑ2 ≥ 0, such that for all t ≥ t0 ≥ 0 and x ∈ Rn, the following conditions
hold:

(I) α(t)m ∥x∥2 ≤ G(t)V (x, t) and lim
t→+∞

sup lnG(t)
lnα(t) = a, a ∈ R;

(II) LV (x, t) ≤ h1(t)V (x, t) and lim
t→+∞

sup
∫ t
0
h1(s)ds
lnα(t) ≤ ϑ1;

(III) lim
t→+∞

sup t
lnα(t) = M ;

(IV) ∥Vx(x, t)g(x, t)∥2 ≥ h2(t)V
2(x, t) and lim

t→+∞
inf

∫ t
0
h2(s)ds
lnα(t) ≥ ϑ2.

Let x0 ∈ Rn, x0 ̸= 0. Then

lim
t→+∞

sup
ln(∥x(t)∥)
lnα(t)

< −β∗, a.s., (3.28)

where

β∗ =


1

p
(m− ϑ1 − 3

2M − a), M > ϑ2,

1

p
(m− ϑ1 − a+ 1

2ϑ2 −M −
√
Mϑ2), M ≤ ϑ2.

Further, if β∗ > 0, the solution x(t) of (2.1) is deemed to converge to zero with
attenuation function α(t) and order at least β∗.

Proof. For any x0 ̸= 0, if the system meets (2.7), we have a unique solution
interval x(t, t0, x0) and we can guarantee that P(x(t, t0, x0) ̸= 0,∀t ≥ t0) = 1 by
Lemma 2.1 By (I) of Theorem 3.2

α(t)m ∥x(t)∥p ≤ G(t)V (x(t), t).

Apply Itô formula ln(V (x(t))), then, for each t ≥ t0,

ln(V (x(t), t))

= ln(V (x(t0), t0)) +

∫ t

t0

(
Vt(x(s), s)

V (x(s), s)
+

Vx(x(s), s)f(x(s), s)

V (x(s), s)
)ds

+

∫ t

t0

∫
∥z∥<c

ln(V (x(s) +H(x(s−), z, s), s))− ln(V (x(s), s))

− H(x(s−), z, s)Vx(x(s), s)

V (x(s), s)
ν(dz)ds− 1

2

∫ t

t0

∥Vx(x(s), s)g(x(s), s)∥2

V 2(x(s), s)
ds

+
1

2V (x(s), s)
trace

[
gT (x(s), s)Vxx(x(s), s)g(x(s), s)

]
ds

+

∫ t

t0

∫
∥z∥<c

[ln(V (x(s) +H(x(s−), z, s), s))− ln(V (x(s), s))] Ñ(ds,dz)

+

∫ t

t0

Vx(x(s), s)g(x(s), s)

V (x(s), s)
dW (s).
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Similar to (3.13)-(3.20), we have that

V (x(t), t) ≤ D +

∫ t

0

h1(s)ds−
1− ε

2

∫ t

0

h2(s)ds+
1 + 2ε

2ε
t.

From Condition (II), (III), (IV) and (3.21)-(3.25), we obtain

lim
t→+∞

sup
ln(∥x(t)∥)
lnα(t)

≤ −β∗,

where

β∗ =


1

p
(m− ϑ1 − 3

2M − a), M > ϑ2,

1

p
(m− ϑ1 − a+ 1

2ϑ2 −M −
√
Mϑ2), M ≤ ϑ2.

In the case where (2.7) fails to hold, we may assume without loss of generality
that H ̸= 0 and that x(t, t0, x0) can reach zero. So to avoid some unnecessary
trouble, we need to make some technical corrections to the solution x(t) without
affecting the final result. We may assume that the process x(t) has N(N can be
infinite) times to reach the far point (with probability one). We define the following
stopping times:

τ1 = inf {t ≥ t0 : x(t) = 0} ,
τ2 = inf {t > τ1 : x(t) = 0} ,
· · · · · ·
τn = inf {t > τn−1 : x(t) = 0} .

Let

x̃(t) = χ[t0,τ1)(t)x(t) +

N∑
n=1

χ(τn−1,τn)(t)x(t),

which yields that

P(x̃(t) ̸= 0,∀t ≥ t0) = 1,

and then finally we obtain

lim
t→+∞

sup
ln(∥x̃(t)∥)
lnα(t)

≤ −β∗.

4. Examples
In order to illustrate the validity of our main results, two examples are provided.
Example 4.1. Consider the following stochastic differential equation driven by
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Lévy noise noise:

dx1 =f1(x1(t), x2(t), t)dt+ g1(x1(t), x2(t), t)dW (t)

+

∫
∥z∥<1

H1(x1(t−), x2(t−), z, t)Ñ(dt,dz),

dx2 =f2(x1(t), x2(t), t)dt+ g2(x1(t), x2(t), t)dW (t)

+

∫
∥z∥<1

H2(x1(t−), x2(t−), z, t)Ñ(dt,dz),

(4.1)

with the initial condition x(t0) = x0 = (x10, x20), f = (f1, f2), g = (g1, g2), H =
(H1,H2) and W (t) is a one dimensional Brownian motion, N is a Poisson random
measure defined on R+×(R−{0}) with compensator Ñ and intensity measure ν(·).
It is always assumed that N is independent of W . Let ν(dz) = 1

1+z2 dz and

f1(x1, x2, t) = k1tx1 + e−x2 , g1(x1, x2, t) = k2t
1
2x1, H1(x1, x2, z, t) = ∥x1∥ z2,

f2(x1, x2, t) = k3x2 − cos2(x1)x2, g2(x1, x2, t) =
√
2 cos(x1)x2,

H2(x1, x2, z, t) = ∥x2∥ z2,

where k1,2,3 ∈ R. From the above definition, it can be easily deduced that system
(4.1) satisfies the equation (2.7). Let V := α(t)mx2

1, i.e., Q(t) = α(t)m. And Taking
α(t) = et

2 , p = 2 and m = 0, we have
Step1: by (I) of Theorem 3.1, G(t) = 1 and a = 0.
Step2:

LV (x, t) =Vt(x, t) + Vx(x, t)f1(x, t) +
1

2
trace

[
gT1 (x, t)Vxx(x, t)g1(x, t)

]
+

∫
∥z∥<c

(V (x+H1(x, z, t), t)− V (x, t)−H1(x, z, t)Vx(x, t))ν(dz)

=2x1(k1tx1 + e−x2) + k22tx
2
1 +

∫
∥z∥<1

x2
1z

4

1 + z2
dz

≤(2k1t+ k22t+
3π − 8

6
)x2

1 + 2 ∥x1∥

≤(2k1t+ k22t+
3π − 2

6
)x2

1 + 1,

which implies that h1(t) = 2k1t+ k22t+
3π−2

6 and µ(t) = 1 , so σ = 1.
Step3: Vx(x, t)g1(x, t) = 2k2t

1
2x2, by (III) of Theorem 3.1, we have h2(t) = 4k22t.

We can easily obtain that ϑ1 = k1+
1
2k

2
2, ϑ2 = 2k22 and M = 0 by the conditions

of Theorem 3.1 and the proof procedure, hence we have γ∗ = 1
2k

2
2 − k1.

Step4: The following task is to investigate whether the following system is globally
uniformly bounded with probability:

dx2 = [k3x2 − cos2(x1)x2]dt+
√
2 cos(x1)x2dW (t) +

∫
∥z∥<1

∥x2∥ z2Ñ(dt,dz).

Let V (x2, t) = x2
2, and we can get

LV (x2, t) =Vt(x, t) + Vx(x, t)f1(x, t) +
1

2
trace

[
gT1 (x, t)Vxx(x, t)g1(x, t)

]
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+

∫
∥z∥<c

(V (x+H1(x, z, t), t)− V (x, t)−H1(x, z, t)Vx(x, t))ν(dz)

=2k3x
2
2 − 2 cos2(x1)x

2
2 + 2 cos2(x1)x

2
2 +

3π − 8

6
x2
2 = (2k3 +

3π − 8

6
)x2

2,

and ∫
∥z∥<1

∥H2(x, z, t)∥2 ν(dz) =
∫
∥z∥<1

x2
2z

4

1 + z2
dz = (

3π − 8

6
)x2

2.

We can chose k3 ≤ 8−3π
12 such that LV (x2, t) ≤ 0. So x2(t) is globally uniformly

stable in probability by Theorem 2.3 in [3], which in turn implies x2(t) is globally
uniformly bounded with probability one.

To sum up, we choose k1 = 3
2 , k2 = 3, k3 = −2, which we can obtain γ∗ = 3 > 0

, hence we obtain that the solution x(t) of equation (4.1) is deemed to converge to
the ball Br with r = 1 almost surely with respect to x1(t) with attenuation function
et

2 and order at least 3, i.e., the solution x(t) of equation (4.1) is almost sure partial
practical stable with respect to x1(t) with attenuation function et

2 by Theorem 3.1.
Example 4.2. Consider the following nonlinear stochastic differential equation
driven by Lévy noise:

dx(t) = f(x(t), t)dt+ g(x(t), t)dW (t) +

∫
∥z∥<c

H(x(t−), z, t)Ñ(dt,dz), (4.2)

where
f(x(t), t) = d1(t) sinx(t), g(x(t), t) = d2(t)x(t),

H(x(t), z, t) = r(t)x(t)U(z, t),

with the initial condition x(t0) = x0 and W (t) is a one dimensional Brownian
motion, N is a Poisson random measure defined on R+×(R−{0}) with compensator
Ñ and intensity measure ν(·). We need to make the following assumptions:
(1)

∫
∥z∥<c

∥U(z, t)∥2 ν(dz) = L1(t) and
∫
∥z∥<c

∥U(z, t)∥ ν(dz) = L2(t);

(2) lim
t→+∞

sup
∫ t
0
2d1(s)+d2

2(s)+r2(s)L1(s)ds
lnα(t) ≤ ϑ̃1 and lim

t→+∞
inf

∫ t
0
d2
2(s)ds

lnα(t) ≥ ϑ̃2;

where d1(t), d2(t), r(t), L1(t), L2(t) are continuous functions and ϑ̃1 ∈ R, ϑ̃1 ≥ 0.
Based on the above assumptions, we can obtain the following corollary.

Corollary 4.1. Let x0 ∈ Rn, x0 ̸= 0 and E ∥x0∥2 < ∞. The solution with
initial value x(t0) = x0(x0 ̸= 0) of system (4.2) is deemed to converge to zero with
attenuation function et

2 and order at least β∗ = ϑ̃2 − 1
2 ϑ̃1.

Proof. Using the above assumptions, it is easy to prove that system (4.2) satisfies
conditions (H1). Let V (x, t) = xTQx, where x ∈ Rn and Q is an n dimensional
symmetric positive-definite matrix.

By Definition 2.1, we get
LV (x, t) =2d1x

TQ sinx+ d22x
TQx

+

∫
∥z∥<c

[x+ rxU(z, t)]
T
Q [x+ rxU(z, t)]

− xTQx− 2rU(z, t)xTQxν(dz)
≤(2d1(t) + d22(t) + r2(t)L1(t))x

TQx,

(4.3)
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on the other hand, ∥Vx(x, t)g(x, t)∥2 =
∥∥xTQig(x, t)

∥∥2 = 4d22(t)
∥∥xTQix

∥∥2. Let
α(t) = et

2 , so G(t) = α(t)m

λmin(Q) by (I) of Theorem 3.2. To sum up, we obtain a = m,
h1(t) = 2d1(t) + d22(t) + r2(t)L1(t), h2(t) = 4d22(t), M = 0, ϑ1 = ϑ̃1 and ϑ2 = 4ϑ̃2.
Therefore, we have by Theorem 3.2,

lim
t→+∞

sup
ln(∥x(t)∥)
lnα(t)

< −β∗, a.s.,

where β∗ = ϑ̃2 − 1
2 ϑ̃1. We can take the coefficient ϑ̃2 to be sufficiently large or ϑ̃1

to be sufficiently small so as to ensure that β∗ > 0. This shows that the solution
x(t) of (2.1) is deemed to converge to zero with attenuation function et

2 and order
at least ϑ̃2 − 1

2 ϑ̃1.
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[2] D. Applebaum, Lévy processes and stochastic calculus, Second edition, Cam-

bridge Studies in Advanced Mathematics, Cambridge University Press, Cam-
bridge, 2009.

[3] D. Applebaum and M. Siakalli, Asymptotic stability of stochastic differential
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