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FLOQUET MULTIPLIERS AND THE
STABILITY OF PERIODIC LINEAR
DIFFERENTIAL EQUATIONS: A UNIFIED
ALGORITHM AND ITS COMPUTER
REALIZATION

Mengda Wu!, Yonghui Xial'f and Ziyi Xu!

Abstract Floquet multipliers (characteristic multipliers) play significant role
in the stability of the periodic equations. Based on the iterative method, we
provide a unified algorithm to compute the Floquet multipliers (characteris-
tic multipliers) and determine the stability of the periodic linear differential
equations on time scales unifying discrete, continuous, and hybrid dynamics.
Our approach is based on calculating the value of A and B (see Theorem 3.1),
which are the sum and product of all Floquet multipliers (characteristic multi-
pliers) of the system, respectively. We obtain an explicit expression of A (see
Theorem 4.1) by the method of variation and approximation theory (iterative
method), and an explicit expression of B by Liouville’s formula. Furthermore,
a computer program is designed to realize our algorithm. Specifically, you can
determine the stability of a second order periodic linear system, whether they
are discrete, continuous or hybrid, as long as you enter the program codes
associated with the parameters of the equation. In fact, few literatures have
dealt with the algorithm to compute the Floquet multipliers, not mention to
design the program for its computer realization. Our algorithm gives the ex-
plicit expressions of all Floquet multipliers and our computer program is based
on the approximations of these explicit expressions. In particular, on an arbi-
trary discrete periodic time scale, we can do a finite number of calculations to
get the explicit value of Floquet multipliers (see Theorem 4.2). Therefore, for
any discrete periodic system, we can accurately determine the stability of the
system by our algorithm even without computer! Finally, in Section 6, several
examples are presented to illustrate the effectiveness of our algorithm.
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1. Introduction

1.1. Theory of time scales unifying the continuous and discrete
calculus

In 1988, Hilger [31] introduced the theory of time scales for the propose of unify-
ing discrete and continuous calculus ( [32,33]). The systematic works of dynamic
equations on time scales, one can refer to Bohner and Peterson [12], Agarwal and
Bohner [1], Agarwal et al [3], and Bohner et al. [11]. In particular, the theory
of the exponential dichotomy, reducibility, linearization, Hyers-Ulam stability and
Sturmain theory are well studied, one can refer to Potzche [6,44-46] and Sieg-
mund [50], Doan et al. [23,24,47], Zhang et al [62,63], Erbe and Peterson [26].
It was also generalized to the measure differential equations on time scales (Fed-
erson et al. [27,28]), fuzzy-valued differential equations on time scales (Wang et
al. [56-60]), quaternion-valued differential equations on time scales (Li et al. [39],
Cheng et al. [16]) and Califford-valued differential equations (Li et al. [40]). Re-
cently, DaCunha and Davis [21], DaCunha [20] extend the Floquet theory to a more
general case of an arbitrary periodic time scale which unifies discrete, continuous,
and hybrid periodic cases. Adivar and Koyuncuoglu [4] constructs a unified Floquet
theory for homogeneous and nonhomogeneous hybrid periodic systems on domains
having continuous, discrete or hybrid structure using the new periodicity concept
based on shifts.

1.2. Floquet theory and Floquet multipliers

Floquet theory indicates that a nonautonomous T-periodic linear system of dif-
ferential equations can be reducible to a corresponding autonomous linear system
of differential equations by a periodic Lyapunov transformation [17]. Floquet the-
ory is a powerful tool to study the stability and periodic solutions of dynamic
systems. Mathematicians have extended Floquet theory in different directions.
We can classify the results of Floquet theory into some types: ODEs (almost
Floquet systems [29], almost-periodic systems [34], periodic Euler-Bernoulli equa-
tions [43], delay differential equations [51], linear systems with meromorphic so-
lutions [61]), PDEs (parabolic differential equations [18], periodic evolution prob-
lems [37]), DAEs [22, 38], integro-differential equations [2], Volterra equations [8],
discrete dynamical systems (countable systems [53]) and systems on time scales [5].
More details for the Floquet theory and applications, one can also refer to the
monograph [35] and the works [7,30].

Floquet multipliers (characteristic multipliers) play great role in the Floquet
theory and the stability of the periodic equations. Thus, usually, to determine the
stability, it suffices to calculate the characteristic multipliers. More specifically, if all
of the characteristic multipliers have modulus less than or equal to one, and if, for
each characteristic multiplier with modulus equal to one, the algebraic multiplicity
equals the geometric multiplicity, the system is stable, otherwise the system is
unstable. Then a natural question is how to compute the characteristic multipliers
of the periodic systems. To this end, mathematicians have proposed some methods
to compute the characteristic multipliers of periodic differential equations. For
examples, Kotsis [36] studied the approximation of the characteristic multipliers
based on a theorem of Demidovié; Shi [49] estimated the periodic Hill equation;
some very nice results were obtained for the delay differential equations (functional
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differential equations), see Breda, Mast and Vermiglio [13], Chow and Walther
[19]), Val’ter and Skubachevskii [54], Skubachevskii and Walther [52]), Walther [55],
Luzyanina and Engelborghs [41], Dormayer et al. [25], Mallet-Paret and Sell [42].
Floquet multipliers also can be used to discuss the existence of periodic solution of
dynamic system. For more study of periodic solutions of dynamic systems, one can
see [9,10].

1.3. Motivation, novelty and contributions

There are a few works considering the Floquet theory and characteristic multipliers
as mentioned above. However, few existing literatures have dealt with the algo-
rithm to compute the Floquet multipliers (characteristic multipliers), not mention
to design the program for its computer realization. In this paper, we provide a uni-
fied algorithm to compute the Floquet multipliers (characteristic multipliers) and
determine the stability of the second order periodic linear equations on periodic
time scales. We claim that the periodic system is stable if

A Ao A_ A

5 (E) Bl <1 and 5 (2) Bl <1,
and system is unstable if

A A, A A,

To determine the stability of the periodic system, it is sufficient to know the mod-
ulus of characteristic multipliers, which can be derived from A and B. Our main
task is to calculate the value of A and B (see Theorem 3.1), which are the sum
and product of all characteristic multipliers of the system, respectively. We obtain
an explicit expression of A (see Theorem 4.1) by the method of variation and ap-
proximation theory (iterative method) and an explicit expression of B by Liouville’s
formula. Finally, in Section 6, several examples are presented to illustrate the ef-
fectiveness of our algorithm. The illustrative examples show good performance of
our computer program. We summarize the contributions of this paper as follows.
(1) Based on the iterative method, we provide a unified algorithm to compute
Floquet multipliers and determine the stability of the periodic linear differential
equations on time scales unifying discrete, continuous, and hybrid dynamics.

(2) A computer program is designed to realize our algorithm. Therefore, you can
determine the stability of a second order periodic linear system, whether they are
discrete, continuous or hybrid, as long as you enter the program codes associated
with the parameters of the equation.

(3) Few existing literatures have dealt with the algorithm to compute the Floquet
multipliers, not mention to design the program for its computer realization. Our
algorithm gives the explicit expressions of all Floquet multipliers and our computer
program is based on the approximations of these explicit expressions.

(4) We provide an estimate of the error between A(n) and A. And a computer
program is given for calculating the value of A(n), B and p(n), where A(n) is the
n-th approximation of A and p(n) is the n-th approximations of modulus of char-
acteristic multipliers.

(5) In particular, on an arbitrary discrete periodic time scale, there is a constant
k € N, such that A = A(k). Consequently, we can do a finite number of calcula-
tions to get the explicit value of Floquet multipliers (see Theorem 4.2). Therefore,
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for any discrete periodic system, we can accurately determine the stability of the
system by our algorithm even without computer!

(6) We obtain an explicit expression of A (see Theorem 4.1) by the method of
variation and approximation theory and an explicit expression of B by Liouville’s
formula.

1.4. Outline of the paper

The rest of this paper is organized as follows. In Section 2, we introduce some
notations and lemmas. Section 3 gives the stability criteria for the systems we
studied. Section 4 introduces the processes of getting the expression of A. Our
main results on the expression of A are collected in three theorems (Theorem 4.1-
Theorem 4.3). In Section 5, a computer program is given. Finally, in Section 6,
we give some examples to show the effectiveness of our algorithm and verify our
computer program.

2. Preliminaries

For completeness, we recall the following notations and concepts for the theory of
time scales from [12]. A time scale T is a nonempty closed subset of R. We denote
[a,b] NT by [a,b]r. The forward jump operator is defined by o(t) :=inf{s € T : s >
t}. The backward jump operator is defined by p(t) := sup{s € T : s < t}. We put
inf() =supT and sup@ = inf T. A point ¢ € T is said to be right-dense if o(t) = ¢,
right-scattered if o(t) > t, left-dense if p(t) = t, left-scattered if p(t) < ¢, isolated if
p(t) <t < o(t), and dense if p(t) =t = o(t). A set T* is defined as T" =T — {m}
if T has a left-scattered maximum, T = T otherwise. A time scale T is said to be
discrete if t is scattered for all ¢t € T, and it is said to be continuous if ¢ is dense for
allt € T. A function f: T — R is called regulated provided its right-sided limits
exist (finite) at all right-dense points in T and its left-sided limits exist (finite) at
all left-dense points in T. A function f : T — R is called rd-continuous provided
it is continuous at right-dense points in T and its left-sided limits exist (finite) at
left-dense points in T. The set of rd-continuous functions f : T — R is denoted by
Crq(T,R). The graininess function p is defined by u(t) := o(t) — t.

We say that a function p : T — R is regressive provided 1+ p(¢)p(t) # 0 holds
for all t € T*. The set of all regressive and rd-continuous functions f : T — R is
denoted by R. The delta derivative of a function f : T — R at a point ¢t € T*,
denoted by f2(t), is defined by

)= o s '

For a function f : T — R we shall talk about the second derivative f*2 provided
fA is differentiable on (T%)* with fA2 = (f2)» : (T%)® — R. A continuous
function f : T — R is called pre-differentiable with D, provided D C T*, T*\D is
countable and contains no right-scattered elements of T, and f is differentiable at
each t € D. A pre-differentiable function F': T — R is called the pre-antiderivative
of f if FA(t) = f(t) holds for all t € D, where D is the region of differentiation.
Then we define the Cauchy integral by

/S f@)At = F(s) — F(r), forr,seT,
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where F' is the pre-antiderivative of f.
If p € R, we define the exponential function by

t
ep(t,s) = exp lim MAT for s,t € T.
b s\(7) 5

One can see that e,(t, s) is a solution of the equation 2 = p(t)x. The delta deriva-
tive of a vector-valued (matrix-valued) function is given by taking the derivative of
each components. The integral of a vector-valued (matrix-valued) function can be
given in a similar manner. Let A be an m x n-matrix-valued function on T. We
say that A is rd-continuous on T if each entry of A is rd-continuous on T, and the
class of all such rd-continuous m x n-matrix-valued functions on T is denoted by
Crqg = Crg(T,R™*™). An n x n-matrix-valued function A on a time scale T is called
regressive provided I + u(t)A(¢) is invertible for all t € T*, and the class of all such
regressive and rd-continuous functions is denoted by R.

Definition 2.1 ( [12], p.92). If p € Cpq and up? € R, then we define the trigono-

metric functions cos, and sin, by

€ip T €—ip
2

€Cip — €E—ip

cos, = -
P 21

and sin, =

For trigonometric functions on time scales, we have some formulas, which can
be found in ( [12], Exercise 3.27).

Definition 2.2 ( [21]). Let T' € (0,00). Then the time scale T is T-periodic if for
allt e T,

1. t € T impliest+T € T;

2. u(t) =plt+T).
Definition 2.3 ( [21]). A: T — R™*" is T-periodic if A(t) = A(t+T) forallt € T.

Consider the regressive time varying linear dynamic initial value problem
B (t) = A(t)x(t), z(to) = xo, (2.1)

where A(t) is T-periodic for ¢ € T and the time scale T is also T-periodic.

Definition 2.4 ( [21]). Let xo € R™ be a nonzero vector and ¥(¢) be any funda-
mental matrix for the system (2.1). The vector solution of the system with initial
condition z(tg) = zg is given by ®4(¢,to)xo. The operator M : R™ — R™ given by
M (z0) := ®alto + T,to) = ¥(to + T)¥L(tg)wo, is called a monodromy operator.
The eigenvalues of the monodromy operator are called the Floquet (or characteris-
tic) multipliers of the system (2.1).

Lemma 2.1 ( [21], Corollary 7.10). Consider the p-periodic system (2.1).

1. If all the Floquet multipliers have modulus less than one, then the system (2.1)
is exponentially stable.

2. If all of the Floquet multipliers have modulus less than or equal to one, and if,
for each Flogquet multiplier with modulus equal to one, the algebraic multiplicity
equals the geometry multiplicity, then the system (2.1) is stable; otherwise the
system (2.1) is unstable, growing at rates of generalized polynomials of t.
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3. If at least one Flogquet multiplier has modulus greater than one, then the system
(2.1) is unstable.

Lemma 2.2 ([12], p.23). Every regulated function on a compact interval is bounded.

Lemma 2.3. Assume that D is a compact subset of R and f,, € Crq(D,R) for each
n € N. If {f.} uniformly converges to f on D, then f is rd-continuous and

b b
/f(t)At: lim fn(t)At.

n—oo
where a,b € D.

Lemma 2.4. Let T be an arbitrary time scale. Suppose f : [a,b] — R is an
increasing function, where a,b € T (b may be o). If f is rd-continuous when it is
restricted on [a,b]T, then we have

/a " fls)as > / f()as.

Proof. Note that f is an increasing function on [a,b], hence f is integrable on
[a,b]. Let € > 0. We now show by induction that

sw: [ () + 2ds - / f(5)As> 0

holds for all ¢ € [a, b].

1. The statement S(a) is trivially satisfied.
2. Let t be right-scattered and assume that S(¢) holds. Then we have

o(t) o(t)
/ f(s) 4 eds — / f(s)As

a

a(t) a(t) o(t)
> / £(s) + eds - / f(s)As > / F(t) + eds — u(t) F(£) = p(t)e > 0.

Therefore S(o(t)) holds.

3. Assume that S(t) holds and t # a is right-dense. Since f(t) € Crq4([a, b]T, R),
f(¢) is continuous (on T) at t. Then there exists § = d(e, t), such that |f(s) —
f(®)] <e/2holds for all s € (t—6,t+J)r. Hence we have for all 7 € (¢,t+0)r,

/T f(s)+eds— /T f(s)As
> / " f(s) + eds - / " f(s)As > (r— )+ (1) — F() >

Therefore S(7) holds for all 7 € (¢,t + 0)7.

4. Now let t be left-dense and suppose S(7) is true for all 7 € [a,t)r, then S(t)
holds since the function

Fe)i= [ )+ eds— [ s

e(r—1t)

0.
5 >

is continuous (on T) with respect to t.
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By induction principle ( [12], p.4), S(b) is true (i.e. F'(b,e) > 0). Moreover, it can
be seen that F'(b, €) is continuous with respect to e, then F'(b,0) = 1i]f£l+ F(b,e) > 0.
e—

The proof is completed. O

Corollary 2.1. Let T be an arbitrary time scale. Suppose f : [a,b] — R is a
decreasing function, where a,b € T (b may be co). If f is rd-continuous when it is
restricted on [a,b]T, then we have

/a " flods < / fo)as.

Corollary 2.2. Let T be an arbitrary time scale and c be an arbitrary nonnegative
constant. Then we have

bty tn—1 b—a)"
// / CAtn“'AtlS¥,

where a,b € T,a <t, 1 <---<t; <b.

Proof. Let b =1ty. We now show by induction that

tn—k tn—1 —a)F
S(k) : / / CAtn"'Atn—kJrlSM
a a k!
holds for all k € {1,2,...,n}
1. Clearly, S(1) holds.

2. Now suppose k <n — 1 and that S(k) holds. Then

tn—(k+1) tn—1
/ .../ CAtn...Atn_k
a a

B ety — a)t 0 ety g — )t
S/a TA%% S/a Tdtnfk

_C(tn,(kJrl) — a)’“‘l
N (k+1)!

Thus, S(k + 1) holds.

By induction principle, the proof is completed. O

Corollary 2.3. Let T be an arbitrary time scale and ¢ be an arbitrary nonpositive
constant. Then we have

b rt1 tn_1 _\n
// / CAtn"'At12M7
a a a n:

where a,b € T,a <t, 1 <---<t; <b.

3. Stability Criteria

Now we start our main work. Let T be a T-periodic time scale and unbounded
above. Consider the stability of the regressive time varying linear dynamic system

™2 £ p(t)a® + q(t)z =0, (3.1)
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where p(t +T) = p(t), q(t +T) = q(t), p(t),q(t) € Cra(T,R), 1 — p(t)p(t) +
w2 (t)g(t) # 0, q(t) # 0 for all t € T. We assume that g(t) > 0 if ¢ is right-dense,
and the equation

2%z = q(t) (3.2)

has a solution ¢(t) € C!,(T,R), where 2° denotes z(o(t)).

Remark 3.1. The assumption that Eq. (3.2) exists a solution ¢(t) € C},(T,R)
can be satisfied for some time scales, such as discrete time scales, continuous time
scales and the combination of them.

Note that Eq. (3.1) can be written in the form

rh 0 1 T
= . (3.3)
ye —q(t) —p(t) ) \y
0 1 z(t) Z(t)
We assume that S(t) = and Y (t) = = ®g(t, ), then
—q(t) —p(t) y(t) y(t)

the eigenvalues of Y (tg + T) are the characteristic multipliers of (3.3). It can be
seen that

det Y(to + T) = e_p_;,_uq(to + T, to) det Y(to) = €_p+uq(t0 + T, to).
Let p1, p2 denote the characteristic multipliers of (3.3) and

A=za(to+T)+g(to+T),

(3.4)
B = e_piuqg(to+T,to).
Hence pq, po satisfy
p*—Ap+B=0.
Obviously,
A A
P12 = 5 + (5)2 — B (35)

Note that the value of B can be easily calculated, then if we can get the value of A,
the stability of system (3.1) can be studied by Lemma 2.1.

Theorem 3.1. We claim that system (3.1) is stable if

A A, A A,

5t (5) -Bl <1 and ‘2— (5) - Bl <1,
and system (3.1) is unstable if

A A, A A,

Theorem 3.2. Assume that B = 1. Then we have

1. if |A] < 2, system (3.1) is stable;
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2. if |A| > 2, system (3.1) is unstable.

Proof. Tt follows from (3.5) that |p1| = |p2] = 1 and p; # p2 as |A] < 2, B =1,
which implies that system (3.1) is stable. The proof of (ii) is similar. O

Remark 3.2. If T = R, system (3.1) reduces to 2"’ + p(t)z’ + q(t)z = 0. If T = Z,
system (3.1) reduces to AAx + p(t)Az + g(t)x = 0. In fact, the explicit expression
of A is important to study the stability of the system. Thus, the next section is
devoted to presenting an algorithm for the expression of A.

4. Algorithm for the Expression of A

In this section, we are going to focus on the algorithm for A. Note that system
(3.3) can be written as

0 1 0
A x
N . + R (4.1)
y () |\ o 90
q(t) o) (=p(?) o) )y
Let
o 92
) = —(t) - 5. (12)
thus Eq. (4.1) can be rewritten as
0 1 0
A x
N N + . (4.3)
y I SO RV
at) 55 ()
Let cosy(t,to) = cosg(t),sing(t, o) = sing(t), hence it can be verified that
1
cos4(t) o) sing (t)
X(t) = (4.4)
~o(0)sing(t) S cosa(t)
is the fundamental matrix solution of the system
0 1
A x
N (4.5)
A
Y —q(t) P2 (1) Y
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0 1

> and we claim that A(¢) € R. On the one

Remark 4.1. Let A(t) = < ey
—q(t) &(t)

hand, q(t), 9> (t) are rd-continuous and ¢(t) # 0, so A(t) € Crq(T,R?*2). On the
other hand,

7(t) 67 (1)(1+ p2 ()92 (1))
o(t) (1) #0, forallteT,

hence A(t) is regressive. Besides we have to consider the rationality of the function
sing(t) and cose(t). We assert that sing(t) and cosy(t) are well defined, since

(1 +iu()o() (1 —ip(t)p(t)) = 1+ p?(t)$*(t) # 0
holds for all t € T.

det(I + p(t)A(t)) = + 2 (t)g(t) =

. o[ =(to) To
The solution of system (4.3) satisfying = can be represented as

y(to) Yo
(x(t> ( ) / XX () + u(s)A(s))" ( ! ) As. (46)
v h()y(s)
Note that
cosg(s)  sing(s)
() Fo)en e
X7) = LT u(s)A(s) = )
()Sln¢() #(0) cosg(s) V(s 07 (s
a2 (5)  B(s)enp(s) n(s)a(s) 0s)
7 (s 2(s)d%(s
det(T + p(s)A(s)) = QS(())Jr,uz(s)q(s) _ 97 )(1-:559)( )#*( ))’
and
1 —p(s)¢(s)

L+ p2(s)9%(s) ¢7(s)(1 + p(s)$(s))
(I +p(s)A(s) ™" =
p(s)¢*(s) ¢(s)
L+ p2(5)¢%(s) ¢7(s)(1 + p?(s)9*(s))
Substituting them in Eq. (4.6), then we have

cosy(t) L sing (t)

(x(t)) ) o(to) (mo)
y(t) } H(t) Yo
—¢sing(t) 3(to) cosy ()
s —u(s)p(s) cosy(t, s) + sing(, s) .
B I 3 T s T
+/ As.
fo 11(5)p(s)p(t) sing (¢, s) + ¢(t) cosg(t, s)y (&)
¢7(s)(1 + p(s)$%(s))
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x(t) z(t)
Let , denote the solutions of system (4.3)(i.e. (3.3)) that satisfy the
y()) \u(t)
o . [=(to) L) [z(t) 0 :
initial condition = , = , respectively. By Eq. (3.4) we
y(to) 0 y(to) 1
get
A=zto+T)+glto +T). (4.8)

Now let’s use the approximation method to calculate A. We assume that

(xo(t)) X (1) . ( cos(t) ) |
Yo(t) 0 —p(t) sing (1)
And if (wn_l(t)) was given, then we define (mn(t)) inductively by

Yn—1 (t) Yn (t)

() MDD congt o) sing(tr9)

h 22
(xn(t)>X (1) t ¢7(s)(1 + p2(s)p*(s))
=xo| |+ f As
t) 0 to

. 1(s)p(s)(t) sing (¢, s) + ¢(t) cose(t, s) .
A O[(ESTI 0 R >(4 ,

Similarly, we assume that

1 .
m sing(t)

) ()
= X(4) -
Ho(t) 1 0

olto) %)

. [ En-1(D) . In(t) ) .
And if was given, then we define inductively by
Yn—1(t) Un(t)

(o) ZEB) cosy(to5) T simglt5)

. ; 97 (s)(1 + p2(5)9%(s))
Un(t) 1 to hs) p(s)P(s)p(t) sing(t, s) + ¢(t) cose(t,s) _ ()

57 (5) (1 + 122(5)62(s)) ot
(4.10)
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It is easy to see that

. cos t $o(s) sin —p(s)P(s) cosg(t,s) + sing(t, s) .
(1= cosy (1) - / (s)o(s)sing (s) TR b LT A

_ ) sin ) sin w(s)p(s)sing(t, s) 4 cosy(t, s) .
r(f)= = @(t) sing ¢ / s T e M 2R
o o(t) o o(t) . cos (s w(s)@(s)sing (¢, s) + cosy(t, s) s
BO= 5y 5B+ ¢<to>/tn h)ols)eose (&) == 50T+ 12 (2)92(s)) (ﬁl)‘

Remark 4.2. Note that Z;(¢) doesn’t work for recursion, so we don’t have to figure
it out. For the same reason, Z,(t) also needn’t to be calculated.

Let

cosy(t, 5) + sing(t, s)

o7 (s)(1+ p2(s)92(s))
_pls )¢( )o(1) S1n¢( $) + B(t) cosy(t, 5) (4.12)
¢7(s)(1 + p?(s)$%(s)) :

P(t, ) =49 (Si

It can be seen that

. _eig(o(s),t) —e_ip(o(s),t)
sing(o(s),t) = ¢ %
_ (Lt ipu(s)(s))eip(s, t) = (1 = ip(s)P(s))e—ig (s, 1)
23
=sing(s,t) + u(s)d(s) cose(s,t),

and

sing(t,s) = —epue2(t, s) sing(s, ).
Similarly, we have
cosy(0(s),t) = cosg(s,t) — p(s)p(s)sing(s,t),
and
€08y (t,s) = e,g2(t, 5) cosg(s,t).
Then the function P,Q can be simplified as

o(t)
¢7 (s

Plts) = ——sing(t,0(s),  Q(t,s) =

¢7(s) cosg(t, o (s))- (4.13)

~—
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Using Eq. (4.9), (4.10), (4.11) we obtain

) =cose(t / h(s)sing(s Yo(s)As
—/ / tl h(tg) Sin(zg(tQ)P(t,tl)Q(tl,tg)d)(tg)AtgAtl,
lt) = = 6(B)sing(t) — [ hs)sing(5)Q(t )0l As

— (4.14)
_ / / h(t1)h(ta) sing (t2)Q(E 1) Ot £2)6(t2) Ata Aty

_ o o()
a(t) ~ (to) 0

(s) cosg(s)Q(, s)p(s)As

t1

h(tl)h(tg) COS¢(t2)Q(t, tl)Q(tl, t2)¢(t2)At2At1.

to Jto

/ / / tk sm¢ tk tk 1,tk)
to Jto to

- Q(t1,t2)P(t, fl)Hh( ) Ay - - Aty

/ / / tk sm¢ tk tk 1,tk)
to Jto to

- Q(t,12)Q(t, 1)

Let

(4.15)

=

h(t:) Aty -+ - Atq,

I
—

7

- 1 t t1 te—1
) =37 / / / O(tx) coso () Qth—1, 1)

Q(t1,t2)Q(t, t1) Hh YAty - - Aty

(to <tp <tp—1 <-- Stlgt,k:1,27'-~).

For Eq. (4.11), we have

x1(t) =cosg(t) + ui(t),

y1(t) = — o(t) sing (t) + v1(2), (4.16)

_ L o()
() - (o)

cosg(t) + U1(t).

For Eq. (4.14), we have

ys(t) = — B(t) sing (¢ )+ vt > +ua(t), (4.17)
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Now we take an inductive assumption that

T (t) = cosg(t) + ur(t) + - - - + uk(t),
Yr(t) = — ¢(t) sing (t) + v1(t) + -+ + vi(t),

o(t) (4.18)
Uk (1) = (o) cosg(t) + 01(t) - - - + Tp(t).
According to Eq. (4.9) and (4.10),
xpy1(t) =cose(t) +/ h(s)P(t,s)yi(s)As,
Yr+1(t) =—¢(t) sing (¢ / h(s)Q(t, s)yx(s)As, (4.19)
i} _ o)
() =20 coss)+ [ M)A
Substituting Eq. (4.18) into Eq. (4.19), we get
Tp41(t) =cosg(t) +ur(t) + - + ups1(t),
0 == () 1)+ a0 wa0)
gk+1(t) (Z)((to)) COS¢(t) + 01 (t) + -+ l_lk+1(t).

This implies that Eq.(4.18) holds for all k£ € N.
Let [to,to + T)1 := [to,to + T]NT. For the bounded closed interval [to,to + T,
consider the series

)+ Z —y—1(t)], t € [to,to + Tlr, (4.21)
k=1

and the partial sum

() + ) [ur(t) — ye—1(t)] = yn(1).

k=1

So if we want to prove the sequence {y,(¢)} is uniformly convergent on [tg,tg +
T)r, just show that series (4.21) converges uniformly on [tg,to + T]r. Note that
sing (¢, s), cose(t, 8), p(t), u(t), h(t) are rd-continuous. By lemma 2.2, we have the

functions
lp(t)], | sing ()|, | cosg ()], [I(t)]

are all bounded on compact set [to,to + T]r. By Eq. (4.13) , since ¢(t) # 0, it can
be seen that |P(t, s)|, |Q(t, s)| are all bounded on [tg,to + T X [to, to + T]r. Let M
denote their common upper bound, so we have

Yk (t) — yi— 1( )\ = [ox ()]

k
/ B(tr) sing (t)Q(tr—1,tx) -+ Qt1, t2)Q(t, t1) [ [ h(ti) Aty - - Aty
toJto to =1
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t pty th—1
<[ [T et
toJ to to
/ / / MPFAY, - Al
to Jto to
(4.22)

M2k+2 t— t M2k+2Tk
< to <t <ty+T.

k
t) sing (t)Q(tk—1,tx) -+~ Q(t1, t2)Q(t, ta) [ [ hlti)| Aty -+ Aty
i=1

)

<

- k! k!
The third inequality in (4.22) is derived from Corollary (2.2). According to Weier-
strass Discriminance, series (4.21) is uniformly convergent on [to, to + T]T, thus the
sequence {yx(t)} is uniformly convergent on [tg,tg + T]r. Now assume

lim yg(t) = y*(¢).

k—o0

By lemma 2.3 we get y*(¢) is rd-continuous on [tg,to + T]r. Hence

h(s)Q(t, s)yx—1(s)As

khﬁnolo yr(t) = —¢(t) sing(t) + kl;rrgo
R (4.23)
= —¢(t) sing(t) —|—/t hn;lO h(s)Q(t, s)yx—1(s)As,
y*(t) = —(t) sing (¢ / h(s y*(s)As.

In the same way, the sequence {x(¢)} uniformly converges to x*(¢) which satisfies

x*(t) = cosg(t) —|—/ h(s)P(t,s)y*(s)As.

to

x*(t
That is to say ( is the solution of system (4.3) with the initial condition

For the theorem of existence and uniqueness of solution, z*(t) = z(t), y*(t) = y(¢).

T (T
() uniformly converges

Let’s do the same things for g, (t). Finally we have
Yn(t)
z(t)
and @, (t) uniformly converges to g(t). Let

.A() = Io(to + T) (to + T),
Ai =ui(to +T) + v1(to + 1),

A =un(to+T) + 0,(to + 7).
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By A=x(to+T)+ g(to +T) and Eq. (4.18), we get
A=) A, (4.24)

Now we evaluate A,(n=0,1,2,3,---):

_ Pto +T) cos
AO<1+¢(7§0) ) ¢(t0+T)

to+T 1
A1 :/ (d)() COS¢(t1)Q(t0 + T tl) — SlH¢(t1)P(t0 —+ T, t1)> ¢(t1)h(t1)At1

to+T pt1 tn—1
/ / / Sln¢7 t )Q(tnflatn)
to to to

n

- Q(t1,t2) Pty + T, t1) Hh VAL, - Al

to+T pt1 tn 1
/ / / n) €08 (tn)Q(tn—1,tn)
&(to) to to to

~Q(t1,t2)Q(to + T, 1) Hh (t)AL, - - Aty

i=1

to+T  pt1 tn—1
/ / / ( 08¢ (tn)Q(to + T, t1) — sing(tn)P(to + T, tl)) :
to to to to

n

G(tn)Qtn—1,tn) -~ Qtr, t2) [[ h(t:) Aty - - Aty, n > 2.
- (4.25)

Thus we have
¢(2)(;;)T)) cosg(to + 1)

to+T
- / <¢(10) cosy (11)Q(to + T, t1) — sing(t1)P(to + T, m) d(t1)h(t) Aty

to+T pt1 n—1 1
/ / / ( cos¢(tn)Q(t0+T,t1)—sin¢(tn)P(t0—|—T,t1)>~

a=(1+

é(to)

n

G(tn)Q(tn—1,tn) -+ Q(t1,t2) [ [ h(t:) Aty -+ Aty
1=1

(4.26)

The formula above can be used for approximations and error estimates. Let

h(t,s) = cosy(t)Q(to + T, s) — sing () P(to + T, s)) - P(t).

( 1
Then we ha\/e

to+T pt1 tn—1 n—1 grngm
|A,| < KlKS_lKQAtn~--At1§M,
to to n!
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where K7, Ko, K3 are upper bounds of |h(t, s)|, |Q(t, s)| and |h(t)| respectively. Let
A(n) = Ao+ A + -+ + Ay, (4.27)

and we have the following error estimate

K (K2K31 )k Ky Ky K3T S (KZKBI )k
A— A < P S S A 2883l kil SR, I .
‘ (”)| k:;-‘rl 2 k! 2 ‘ kZ:() k! (4 28)

Theorem 4.1. The expression of A mentioned in Theorem 3.1 is
P(to + T))
———~ ) cosg(to + T

o(to) 4 )

to+T 1 .
+/ (¢(to) cosg(t1)Q(to + T, t1) — sing (t1) P(to + T,t1)> B(t1)h(ty) Aty

/ M/ /<¢<}fo> cos(t)Qto + T, t1) = sing () Plto *T’“)>

XO(tn)Qtn—1,tn) -~ Q(t1, t2) [ [ 1) Aty - Aty
i=1

A=(1+

(4.29)
and the expression of B is
B= €_p+ﬂq(t0 + T, to).

Theorem 4.2. Let T be an arbitrary discrete time scale and there are k points in
[to, to + T)1, then equation (4.29) can be simplified as

A =A(k) = (1 + W) cos(to +T)

o(to
to+T 1 )
n / (WO) coss(1)Q(to + T 1) — sing (1) Plto + T, m) o(t)h(t1) Al

/ W/ /<¢éo> €08 (tn)Q(to + T t1) = sing (ta) Plto + T’“)>

0

XG(tn)Q(tn—1,tn) -+ Q(tr, t2) [ [ Alti) Aty - - Aty
- (4.30)

1
where Y () :=0.
n=2

Proof. Now we show that A, = 0 if n > k + 1, where A,, is defined in equation
to+T pt1 n—1
(4.25). Let’s abbreviate A, as / / / R()At,, - - - Aty, where ty <

thol <tp_o<- <ty <tg+T. Note that the number of the points in [tg,to+ 1)t
is k, which is less than n. Hence there must exists an element of the set {¢;|i =
1,2,...n—1} equal to tg, which implies that A,, = 0. The proof is completed. [
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Theorem 4.3. Consider the Hill’s equation ( [14,15] )
22() + q(t)z(t) = 0, (4.31)

where q(t) and T are both T-periodic, then the expression of A of (4.31) can be
simplified as
P(to + T))
————> ) cosy(to+ T
(o) lto +T)

to+T 1 )
—+ /;0 (¢(t0) COS¢(t1)Q(t0 + T, tl) — s1n¢(t1)P(t0 —+ T, t1)> ¢(t1)h(t1)At1

o0 to+T pt tn—1
+;2/t /t /t (</>(10) cos¢(tn)Q(to+T,t1)sin¢(tn)P(t0+T,t1)>

n

a=(1+

sin¢(ti,17 U(ti))¢A (tl)

X (—1)"p™ (¢ Aty - Aty.
(1o [[ =255 1

(4.32)
Proof. The proof is an algebraic process, so we omit it. O

Theorem 4.4 ( [48]). If the time scale T =R and B = 1, then equation (4.29) can
be simplified as

A=2cos®(tg+1T)

0 1 to+T  pt1 ton—1 2n
+222777_1-/ / / COS\IJ(tl,...,tgn)'Hh(ti)dtgn"‘dtl,
n=1 to to to i=1

where

¢ ¢
d(t) = o(r)dr, P(t,s) :/ o(1)dr,

to s
U(ty, - ton) = P(to +T) — 28(t1,t2) — 2®(t3,t4) — - - — 2P (t2n—1,t2n)-

Remark 4.3. Theoretically, we show that this approach is also valid for critical
case: the system has the same characteristic multipliers with modulus equal to
one. In a similar manner, we can get an expression of Z(tp + 7') in the form of a
series. That is, combined with the previous discussion, the matrix ®4(to,to + T')
also has an expression in the form of a convergent series. Note that the system we
studied in critical case is stable if and only if ® 4(tg,to+T) — pI = 0, where p is the
characteristic multipliers. Then we can get the error estimate like (4.27) and (4.28)
to analyse the stability. Moreover, we see that the stability of the nonhomogeneous
system 22 + p(t)z® + q(t)z = f(t) is equivalent to the system z22 + p(t)z™ +
q(t)x =0.

5. Program for the algorithm
The following Matlab program is designed for calculating the value of A(n) and B

mentioned above. One can run the following program by Matlab R2018a.
Program 1.
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% This program was designed for calculating the value of
% A(n) and B mentioned in this paper.

b
% Users should set the functions p(t), q(t) and q_diff in
% advance in section 2 of this script, where q_diff is

% the derivative function of q(t) in continuous part(If

% there is no continuous part, take q_diff=0).

b
% discrete part: Input the discrete points in the form
% of a row vector from small to large.

b
% continuous part: Input the ends of continuous intervals
% in the form of a matrix, and its first and second row

% record the left and right ends from small to large,

% respectively.

clc

global discrete_part continuous_part time_scale;
discrete_part=input ('Enter the discrete point: ');
continuous_part=input ('Enter the continuous interval: ');

if isequal(continuous_part, [])

time_scale=discrete_part;

else

time_scale=sort([discrete_part,continuous_part(1l,:),...
continuous_part(2,:)]);

end

B=exp_fun(@(t) -p(t)+mu(t)*q(t),time_scale(end),time_scale(1));

if isequal(continuous_part, [])

A=value(OfDelta;

fprintf ('The value of A is %f \n',A);

fprintf ('The value of B is %f \n',B);

fprintf ('The modulus of multipliers are %f %f\n',...

abs((A-sqrt (A"2-4%B))/2) ,abs ((A+sqrt (A"2-4%B))/2));

elseif isequal(discrete_part,[])

n=input('n:');

A=Consum(n) ;

fprintf (['The value of A(',num2str(n),') is %f \n'],A);

fprintf ('The value of B is %f \n',B);

fprintf (['The ',num2str(n),'th approximate modulus are %f %f\n'],...
abs ((A-sqrt (A™2-4%B))/2) ,abs ((A+sqrt (A"2-4%B))/2));

else

n=input('n:');

A=Delta_H(n);

fprintf (['The value of A(',num2str(n),') is %f \n'l,A);

fprintf ('The value of B is %f \n',B);

fprintf (['The ',num2str(n),'th approximate modulus are %f %f\n'],...
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abs ((A-sqrt(A~2-4%B))/2) ,abs ((A+sqrt (A"2-4%B))/2));
end
clear global;

Toth

%Users should define the following functions:p,q,q_diff
function f=p(t)

if t==pi

£=0.25;

else

£=0;

end

end

function f=q(t)
f=1;
end

%the derivative function of q(t) in continuous part
function f=q_diff(t)

£=0;

end

It

function f=mu(t)

global discrete_part continuous_part time_scale;
if ismember(t,discrete_part) || ismember(t,continuous_part(2,:))
if t==time_scale(end)

f=mu(time_scale(1));

else

for i=1:length(time_scale)

if t==time_scale(i)
f=time_scale(i+1)-time_scale(i);

end

end

end

else

function f=sigma(t)
f=t+mu(t);
end

function f=phi(t)

global discrete_part continuous_part time_scale;
if isequal(continuous_part, [])
exphi=NaN(1,length(discrete_part));
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exphi(1)=1;

for i=2:length(discrete_part)
exphi(i)=q(discrete_part(i-1))/exphi(i-1);
end

for i=1:length(discrete_part)
if t==discrete_part(i)

f=exphi(i);

end
end
else
leftends=continuous_part(1,:);rightends=continuous_part(2,:);
if ~(ismember(t,discrete_part) || ismember(t,rightends))

f=sqrt(q(t));

elseif t<leftends(end)

n=1;tt=t;

while ~ismember(tt,leftends)
n=n+1;tt=sigma(tt);

end

temp=NaN(1,n) ;temp(n)=sqrt(q(tt)) ;k=1;
while ~isequal(tt,time_scale(k))
k=k+1;

end

for i=n-1:-1:1
temp(i)=q(time_scale(k-n+i))./temp(i+l);
end

f=temp(1);

elseif t==time_scale(end)
f=phi(time_scale(1));

else

k=1;

while ~isequal(t,time_scale(k))
k=k+1;

end

n=length(time_scale)-k+1;
temp=NaN(1,n);

temp (n)=phi(time_scale(1));

for i=n-1:-1:1
temp(i)=q(time_scale(length(time_scale)-n+i))./temp(i+1);
end

f=temp(1);

end

end

end

function f=delta_int(g,t,s)
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% where g is a function handle, t and s are up and low,respectively.

global continuous_part;ss=s;sum=0;
if isequal(continuous_part, [])
while ss<t

sum=sum+mu (ss) . *g(ss) ;
ss=sigma(ss);

end

else
rightends=continuous_part(2,:);
while ss<t

if ss==sigma(ss)

k=1;

while ss>rightends (k)

k=k+1;

end

if rightends(k)>t
sum=sum+integral (6(x) arrayfun(@(x)g(x),x),ss,t);
else

sum=sum+integral (€(x) arrayfun(@(x)g(x),x),ss,rightends(k));

end

ss=rightends (k) ;

else
sum=sum+mu(ss) . *g(ss) ;
ss=sigma(ss);

end

end

end

f=sum;

end

function f=cylinder_fun(g,t)
% where g is a function handle.

if mu(t)==0
f=g(t);
else
f=log(1+mu(t) .*g(t)) ./mu(t);
end
end

function f=exp_fun(g,t,s)

% where g is a function handle, t and s are up and low,respectively.

cylinder_g=0(t)cylinder_fun(g,t);
f=exp(delta_int(cylinder_g,t,s));
end

function f=cos_phi(t,s)

f=(exp_fun(@(x) phi(x).*1i,t,s)+exp_fun(@(x) -phi(x).*1i,t,s))./2;

end
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function f=sin_phi(t,s)
f=(exp_fun(@(x) phi(x).*1i,t,s)-exp_fun(@(x) -phi(x).*1i,t,s))./2i;
end

function f=P_H(t,s)

f=(-mu(s) .*phi(s).*cos_phi(t,s)+sin_phi(t,s))./(phi(sigma(s)).*...
(1+mu(s) .~2.*phi(s)."2));

end

function f=Q_H(t,s)

f=(mu(s) .*phi(s) .*phi(t).*sin_phi(t,s)+phi(t).*cos_phi(t,s))./(...
phi(sigma(s)).*(1+mu(s) . 2.*phi(s)."2));

end

function f=phi_diff (t)

if mu(t)==0
f=q_diff(t)/(2*sqrt(q(t)));
else
f=(phi(sigma(t))-phi(t))/mu(t);
end

end

%need function q_diff(t)
function f=h_H(t)
f=-p(t)-phi_diff(t)/phi(t);
end

function funcn=funvec(n,m)

global time_scale;

t_O=time_scale(1);

T=time_scale(end)-time_scale(1);

if n==

funcn= (1/phi(t_0)*cos_phi(m(n),t_0)*Q_H(t_O+T,m(1))...
-sin_phi(m(n),t_0)*P_H(t_0+T,m(1)))*phi(m(n))*h_H(m(1));
else

last=1;

for k=2:n

last=last*Q_H(m(k-1) ,m(k))*h_H(m(k));

end
funcn=last*(1/phi(t_0)*cos_phi(m(n),t_0)*Q_H(t_0+T,m(1))...
-sin_phi(m(n),t_0)*P_H(t_0+T,m(1)))*phi(m(n))*h_H(m(1));
end

end

function f=Delta(n)
global time_scale;
m=time_scale;
m(end)=[];

m=sort(m, 'descend') ;
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M=nchoosek(m,n) ;
[r,~]=size(M);

sum=0;

for i=1:r

prod=1;

for j=1:n
prod=prod*mu(M(i,j));
end
sum=sum+prod*funvec(n,M(i,1:n));
end

f=sum;

end

function f=valueOfDelta()

global time_scale;

t_O=time_scale(1);
T=time_scale(end)-time_scale(1);

sum=(1+phi (t_0+T)/phi(t_0))*cos_phi(t_0+T,t_0);
for i=1:(length(time_scale)-1)
sum=sum+Delta(i);

end

f=sum;

end

function f = nIntergrate(fun,n)
global time_scale;
tO=time_scale(1) ;N=n;

up=cell(1,N);
up{1}='time_scale(end)';

for i=2:N

up{i}=['t"' ,num2str(i-1)];

end

expr = GenerateExpr_quadl(N);
function expr = GenerateExpr_quadl(n)
if n ==

expr
else
expr ['delta_int(@(t',num2str(N-n+1),')',...
GenerateExpr_quadl(n-1),',',up{N-n+1},',t0)'];
end

end

f = eval(expr);

end

['delta_int(@(t',num2str(N),')"',fun,’',"',up{N},"',t0)'];

function f=func_ser(n)
last=['(cos_phi(t',num2str(n),',t0)*Q_H(time_scale(end),...
t1)/phi(t0) ', '-sin_phi(t',num2str(n),',t0)*P_H(time_scale(end),...
t1))*phi(t',num2str(n), ' )*h_H(t1)'];

if n==
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f=last;

else

for i=2:n
last=[last,'*Q_H(t',num2str(i-1),',t',num2str(i),')*h_H(t',...
num2str(i),')'];

end

f=last;

end

end

function f=Delta_H(n)

global time_scale;

tO=time_scale(1);
sum=(1+phi(time_scale(end))/phi(t0))*cos_phi(time_scale(end),t0);
for i=1:n

sum=sum+nIntergrate(func_ser(i),i);

end

f=sum;

end

function f=ConPhi(t,s)

f=integral (@(x) arrayfun(@(x)sqrt(q(x))+0*x,x),s,t);
end

function f=Conh(t)

f=-p(£)-0.5%q_diff (t)/q(t);

end

function f=Confun_sec(n)

temp="'ConPhi (time_scale(end) ,time_scale(1))';
temp2="'1";

for i=1:2:n-1

temp=[temp, '-2%ConPhi (x',num2str(i),"',x',num2str(i+1),')'];
end

for j=1:n

temp2=[temp2, '*Conh(x',num2str(j),')'];

end

f=['cos(',temp,"') "', '*',temp2];

end

function f=Conint_fun_sec(n)

global B;

if B==

if mod(n,2)==0
f=ConnIntergrate(Confun_sec(n),n) /(27 (n-1));
else

£=0;

end

else
f=ConnIntergrate(Confun_sec(n),n) /(27 (n-1));
end

end
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function f=Consum(n)

global time_scale;

sum=2*cos (ConPhi (time_scale(end) ,time_scale(1)));
for i=1:n

sum=sum+Conint_fun_sec(i);

end

f=sum;

end

function f = ConnIntergrate(fun,N)

global time_scale;

tO=time_scale(1);

up=cell(N) ;low=cell(N) ;xO=time_scale(end);
for i=1:N

low{i}=['t0+0*x' ,num2str(i-1)];
up{i}=['x"',num2str(i-1)];

end

if mod(N,2) == 0
expr = GenerateExpr_quad2d(N);

else

expr = ['quadl(@(x1l) arrayfun(@(xl)',GenerateExpr_quad2d(N-1),...
',x1), ', low{1}, ", ' ,up{1},")'];

end

function expr = GenerateExpr_quad2d(n)

if n ==

expr = ['quad2d(@(x',num2str(N-1),',x',num2str(N),"')"',...
'arrayfun(@(x',num2str(N-1),',x',num2str(N),"')',fun,...
'L,x!',num2str(N-1), ' ,x' ,num2str(N), '), "' ,low{N-1},',"',...
up{N-13},',0(x"' ,num2str(N-1),') ' ,low{N}, ", (x"',. ..
num2str(N-1), ') ' ,up{N},"')'];

else

expr = ['quad2d(@(x',num2str(N-n+1),',x',num2str(N-n+2),')"',...
'arrayfun(@(x',num2str(N-n+1),',x',num2str(N-n+2),')',...
GenerateExpr_quad2d(n-2),',x',num2str(N-n+1),',x',...
num2str (N-n+2), '), "' ,low{N-n+1},"', "' ,up{N-n+1},"',0(x"',...
num2str (N-n+1), ') ',low{N-n+2},',0(x"' ,num2str(N-n+1),"')',...
up{N-n+2},')'];

end

end

f = eval(expr);

end

6. Examples

Example 6.1 (Discrete Time Scale). Consider the time scale T = Z and the re-
gressive equation

—17 + 15(—1)!

AAz(t) + 16

Ax(t) + 2(t) =0, (6.1)
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which can be rewritten as

0 1
AX(t) = X(¢) (6.2)
1-15(=1)" —17+15(—1)*
16 16
Lot A 0 1 0 1
et A(t) = - 1-15(=1)t  —17+15(—1)*
—q(t) —p(t) - 16 - 16

Obviously, the time scale Z and matrix A(t) have periods of 2. Also, it can be
verified that B = e_p,4(2,0) = 1 and then we are going to use formula (4.29) to
calculate the value of A. Taking

50) = 1,6(1) = —1,6(2) = -2,

then we have
cosp(0) =1, sing(0) =0,  cosg(1) =1, sing(1) =1,
cosy(2) = %, sing(2) = é, c084(2,1) =1, sing(2,1) = _g,
PULO=0, QLO=1,  PRO=1 Q0)=1
PE,1)=0, Q21)=1,  h0)=2  h(l)= %

and

A:(l n W) coss(to + 1)

" / (coss (1)Q(2, 1) — sing (1) P(2,11)) - d(t2)h(t1) Aty

2 t1

[ eosalt2)@(2.10) = sing(t2) P2, 1) - 6020 QU0 t)h(0)h(t2) Aty
0 0

15 128 7 83 166 _ 17

56490 8 19 19 4

Now we calculate the value of A using (3.4). It can be seen that the transition
matrix of system (6.2) is given by

D 4(¢,0)

t t
54 3(—1)° 54 3(—1)*
t t A t A
2 2 A 22$+3 s 2 /O 22s+3 S

t s t t s t
5+3(—1) 5+3(—1) 5+3(—1) 5+ 3(—1)
t t A t A
2 -2 /0 22543 5 21+3 2 /o 225+3 5 ot+3

(6.3)
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Then we can obtain that A = trace(®4(2,0)) = LI, which is consistent with the
previous calculations, and we get system (6.1) is unstable. We also can use Program
1 given in Section 5 to calculate:

Enter the discrete point: [0,1,2]

Enter the continuous interval: []

The value of A is 4.250000

The value of B is 1.000000

The modulus of multipliers are 0.250000 4.000000.

Example 6.2 (Discrete Time Scale). Consider the time scale T = 27Z and the

regressive equation

an (g singt+2 5
10

sin gt +2
—2

1)+ —55

Obviously, the time scale 2Z and the functions p(t), ¢(t) have periods of 6. Also, it
can be verified that B = e_;,1,4(6,0) = 1. Then we use Program 1 to calculate:

x (t) =0. (6.4)

Enter the discrete point: [0,2,4,6]

Enter the continuous interval: []

The value of A is -0.752000

The value of B is 1.000000

The modulus of multipliers are 1.000000 1.000000.

Now we calculate the value of A using (3.4). Let x1(t), 22(¢) be solutions of (6.4)
satisfying
z1(0)=1, z8(0)=0, 22(0)=0, z5(0)=1.

Then we have

1 1
0= m@)=1 @)=L
3v3 — 12 3 3v/3 + 32
dagg - BV 8 Ay = 3V3+32
200 5 100
3v3+42 1
x1(6)——T, 24(0) =z 72(2) = 2,
3 23 +38 16
75 (2) = 5. PR =T m()=
A(4)——4\/§7+1 xAA(zL)—M 25 (6) = 15v3 — 178
2 Em s o Wm0 T T

Thus, A = 21(6) + 25'(6) = —0.752, which is consistent with the previous calcula-
tions and we get system (6.4) is stable.

Example 6.3 (Hybrid Time Scale). Consider the time scale T = [2kw, (2k +
1)w],k € Z and the regressive equation

222 (t) + p(t)z>(t) + z(t) =0, (6.5)

where
0, t € [2km, (2k + 1)),

p(t) =
1. t=(2k+ .
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Obviously, ¢(t) = 1 and the time scale T and the function p(¢) have periods of
2. Also, it can be verified that B = e_,4,4(27,0) = 7> — 5 + 1 and then we are
going to use formula (4.29) to calculate the value of A. It can be seen that ¢(t) =1
for all t € T and

¢A(t) B 07 te [2]€7T7 (2]{7 —+ 1)77)7
o) | -1 = (@k+ D

Note that h(t) = 0 for all ¢ € [0, ), then the expression of A given by (4.29) can
be reduced to

2m

A = 2cos1(27) + / (cos1(t1)Q(2m,t1) — sing (t1) P(2m,t1)) -h(t1) Aty

™

= 2c081(27) + pu(7) - (cos1 (m)Q (2, ) — siny (m) P(2m, 7)) -h(7) (6.6)
=247 (-1-0)-(-H)=F -2

Now we calculate the value of A using (3.4). Let x1(t), 22(¢) be solutions of (6.5)
satisfying
z1(0) =1, z£(0)=0, x2(0)=0, 25(0)=1.

For any t € [0, 7], we have

z1(t) = cost and x5(t) =sint.

Hence, we get 22 (7) = 0, x5 (1) = —1 and

.’L'A m™) — .’L'A s
228 (m) = ZED I () — ().

Thus, z;(27) = —1, 25 (27) = Z — 1. Finally, we have

A= z1(271) 4 25 (27) = % -2,

which is consistent with the previous calculations and system (6.5) is unstable. We
also can use Program 1 given in Section 5 to calculate A(n) given by (4.25):

Enter the discrete point: [2*pi]

Enter the continuous interval: [0;pi]

n:1

The value of A(1) is -1.214602

The value of B is 10.084206

The 1th approximate modulus are 3.175564 3.175564.

Example 6.4 (Continuous Time Scale). Consider the time scale T = R and the
equation

/ 1. / 1 _
x'(t) + 5 sin(2¢)x'(t) + Zx(t) = 0. (6.7)

We can use Program 1 to calculate A(n):
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Enter the discrete point: []

Enter the continuous interval:

n:3

The value of A(3) is -0.065450
The value of B is 1.000000
The 3th approximate modulus are 1.000000 1.000000.

Now we estimate the value of |A(3) —

leads to

A(3)—A|§eg—<1+ﬁ+

2

[0;pil]

A| by (4.28). A straightforward calculation

(3)?

()°

7

) ~ 0.360016406528039.

It is clear that 0 < A < 0.5. It follows from Theorem 3.2 that system (6.7) is stable.

Example 6.5 ( [49]). Consider Mathieu equation

"+ (A — hcos2t)z = 0. (6.8)

Table 1. The values of parameters h and A\

h A
N A NN
3.979 4.101 9.014 9.018

2 3917 4371 9.047 9.078

3 3.814 4.747 9.093 9.193

Table 2. 3-th approximate value of A

3-th approximate value of A

Equation

" 4+ (3.979 — cos2t)x =0
"+ (4.101 — cos2t)z =0
" 4+ (9.014 — cos 2t)x =0
" 4+ (9.018 — cos 2t)x =0
" 4+ (3.917 — 2 cos 2t)x =

" + (4.371 — 2cos 2t)x =
2"+ (9.047 — 2 cos 2t)x =
2"+ (9.078 — 2 cos 2t)x =

x” 4+ (3.814 — 3 cos 2t)x =
x" + (4.747 — 3cos 2t)x =

2" +(9.093 — 3cos 2t)x =

x” 4+ (9.193 — 3 cos 2t)x =

0
0
0
0

0
0
0
0

2.000049
2.000044
-2.000001
-2.000000

2.000798
2.000384
-2.000009
-2.000018

1.998646
1.998733
-2.000103
-2.000093

Let A[);] and A[X}] be the value of A of (6.8) as A = A\; and A = A, respectively
(the values of parameters h, A\; and X\, given by Table 1). It is well known that

A[N] = 2 and A[N]] ~

—2, (see [49]).

Now we are going to calculate the 3-th

approximate value of A[)\;] and A[\;] by Program 1 and the results are shown in

Table 2.
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