
Journal of Applied Analysis and Computation Website:http://www.jaac-online.com
Volume 13, Number 1, February 2023, 81–94 DOI:10.11948/20210310

EXISTENCE OF PERIODIC SOLUTIONS FOR
TWO CLASSES OF SECOND ORDER

P -LAPLACIAN DIFFERENTIAL EQUATIONS∗

Xiaoling Han1 and Hujun Yang1,†

Abstract In this paper, by using the Manásevich-Mawhin theorem on con-
tinuity of the topological degree, we prove the existence of periodic solutions
for two classes of second order p-Laplacian polynomial differential equations.
Finally, some examples are given to show applications of the conclusions.
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1. Introduction
In the past few years, the periodic solutions of second order polynomial differential
equations have attracted the attention of many researchers, because this class of
equations can well describe some mathematical models that appear in biology and
physics. Such as the equations

x′′(t) + cx′(t) = r(t)x(t)α − s(t)x(t)β , (1.1)

where c ⩾ 0, 0 < α < β < 1 and r, s are continuous T -periodic functions on
R. Equation (1.1) describes the Liebau phenomenon [18, 23], which refers to the
preferential flow direction obtained due to asymmetric periodic oscillations in a
mechanical system without valves. In [5–8,17,27], the authors use different classical
theories, such as Krasnosel’skiĭ-Guo fixed point theorem, upper and lower solution
method and fixed point theorem, to study the existence of positive periodic solutions
to equation (1.1).

In equation (1.1), if c = 0, α = 0 and β < 0, then equation (1.1) becomes
Lazer-Solimini equation

x′′(t) +
a(t)

x(t)α
= h(t), (1.2)

where α > 0 and a, h are continuous T -periodic functions on R. Equation (1.2)
can describe the motion of a charged charge and linear motions in a periodically
forced Kepler problem. Many scholars have studied the existence, uniqueness and
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stability of periodic solutions of singular second order differential equations (1.2),
see for instance the papers [4, 10, 16, 19, 24–26, 29]. In equation (1.1), if α < 0 and
β < 0, some scholars also studied the existence of periodic solutions of this type of
equation in [9, 14].

At the same time, some scholars study the existence of periodic solutions of the
following second order cubic differential equation

x′′ + a(t)x− b(t)x2 − c(t)x3 = 0, (1.3)

where a(t), b(t), c(t) are are continuous T -periodic functions on R. Equation (1.3)
can describe a biomathematics model related to circle of willis aneurysm [11], where
x is the velocity of blood flow in the aneurysm, a(t), b(t), c(t) are coefficient functions
related to aneurysm. For the study of periodic solutions of equation (1.3), see
[1–3,12,13,15].

Motivated by the above mentioned work, in this paper, our purpose is use the
Manásevich-Mawhin theorem on continuity of the topological degree to establish the
existence of positive periodic solutions of the second order p-Laplacian polynomial
differential equations

(φp(x
′(t)))′ + f(x(t))x′(t) + r(t)xγ − s(t)xβ = 0, (1.4)

and

(φp(x
′(t)))′ + f(x(t))x′(t) + a(t)xα − b(t)xα+1 − c(t)xα+2 = 0, (1.5)

where p > 1, φp(x) = |x|p−2x for x ̸= 0 and φp(0) = 0, f : (0,+∞) −→ R is a
continuous function, equation (1.4) satisfies β, γ ∈ R, s(t), r(t) are continuous T -
periodic functions on R, equation (1.5) satisfies α ∈ R, a(t), b(t), c(t) are continuous
T -periodic functions on R. Obviously, equation (1.1) and (1.2) are special forms
of equation (1.4), and equation (1.3) is special forms of equation (1.5). For the
study of the existence of periodic solutions of second order p-Laplacian differential
equations, we can refer to [20,21,28].

The paper is organized as follows: after this Introduction, in Section 2 for the
convenience of the readers we collected some general results in order to prove our
main theorems. In Section 3 we apply the Manásevich-Mawhin theorem on con-
tinuity of the topological degree to obtain the existence of T -periodic solutions of
the equation (1.4) and (1.5). In section 4, we apply the previous results to some
examples.

2. Preliminaries
In this section, we given some preliminary results which will paly important roles
in the prove of our main results.

Consider the following periodic boundary value problem (φp(u
′))′ = f̃(t, u, u′),

u(0) = u(T ), u′(0) = u′(T ),
(2.1)

where p > 1, f̃ : [0, T ]× R× R → R is assumed to be Carathéodory functions.
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Lemma 2.1 ( [22, Manásevich-Mawhin theorem]). Assume that Ω is an open
bounded set in C1

T such that the following conditions hold:

(a1) For each λ ∈ (0, 1) the problem (φp(u
′))′ = λf̃(t, u, u′),

u(0) = u(T ), u′(0) = u′(T ),

has no solution on ∂Ω.

(a2) The equation

F (e) =
1

T

∫ T

0

f̃(t, e, 0)dt = 0,

has no solution on ∂Ω ∩ RN .
(a3) The Brouwer degree deg{F,Ω ∩ RN , 0} ̸= 0.

Then the problem (2.1) has at least one solution in Ω.

By applications of Lemma 2.1, we obtain the following results.

Lemma 2.2. Assume that there exist positive constants M1, M2, N1 and M1 < M2

such that the following conditions hold:

(g1) For λ ∈ (0, 1], each possible positive periodic solution of equation

(φp(x
′(t)))′ + λf(x(t))x′(t) + λr(t)x(t)γ − λs(t)x(t)β = 0 (2.2)

satisfies M1 < x(t) < M2 and |x′|∞ < N1 for all t ∈ [0, T ], where |x′|∞ =
maxt∈[0,T ] |x′(t)|.

(g2) Each possible positive solution e1 to the equation

r(t)eγ1 − s(t)eβ1 = 0

satisfies M1 < e1 < M2.
(g3) For all t ∈ [0, T ], we have

(r(t)Mγ
1 − s(t)Mβ

1 )(r(t)M
γ
2 − s(t)Mβ

2 ) < 0.

Then the equation (1.4) has at least one positive T -periodic solution x(t) satisfied
M1 < x(t) < M2 for all t ∈ [0, T ].

Lemma 2.3. Assume that there exist positive constants M3, M4, N2 and M3 < M4

such that the following conditions hold:

(k1) For λ ∈ (0, 1], each possible positive periodic solution of equation

(φp(x
′(t)))′ + λf(x(t))x′(t) + λa(t)x(t)α − λb(t)x(t)α+1 − λc(t)x(t)α+2 = 0

(2.3)

satisfies M3 < x(t) < M4 and |x′|∞ < N2 for all t ∈ [0, T ], where |x′|∞ =
maxt∈[0,T ] |x′(t)|.
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(k2) Each possible positive solution e2 to the equation

a(t)eα2 − b(t)eα+1
2 − c(t)eα+2

2 = 0

satisfied M3 < e2 < M4.
(k3) For all t ∈ [0, T ], we get

(a(t)Mα
3 − b(t)Mα+1

3 − c(t)Mα+2
3 )(a(t)Mα

4 − b(t)Mα+1
4 − c(t)Mα+2

4 ) < 0.

Then the equations (1.5) has at least one positive T -periodic solution x(t) satisfied
M3 < x(t) < M4 for all t ∈ [0, T ].

Throughout this paper, let Banach spaces X = C1
T = {x ∈ C1(R,R) : x(t +

T ) = x(t) for all t ∈ R} with the norm ∥x∥CT
= max{|x|∞, |x′|∞}, where |x|∞ =

max
t∈[0,T ]

|x(t)|, |x′|∞ = max
t∈[0,T ]

|x′(t)|. For a given continuous function w : [0, T ] → R,
we denote

w+ = max{w(t) : t ∈ [0, T ]}, w− = min{w(t) : t ∈ [0, T ]}.

3. The main results
In this section, we are ready to state and prove our main results.

Theorem 3.1. Assume β > γ, and r(t), s(t) are positive continuous T -periodic
functions. Then equations (1.4) has at least one positive T -periodic solution.

Proof. We will verify that all the conditions of Lemma 2.2 are true.
Since r(t), s(t) are positive continuous T -periodic functions, hence we have 0 <

r− ⩽ r(t) ⩽ r+, 0 < s− ⩽ s(t) ⩽ s+. Let 0 < M1 < ( r
−

s+ )
1

β−γ and M2 > ( r
+

s− )
1

β−γ

are constants. By β > γ, we obtain

0 < M1 < (
r−

s+
)

1
β−γ ⩽ (

r(t)

s(t)
)

1
β−γ ⩽ (

r+

s−
)

1
β−γ < M2

uniformly in t. Furthermore, we get

r(t)− s(t)Mβ−γ
1 ⩾ r− − s+Mβ−γ

1 > 0

and

r(t)− s(t)Mβ−γ
2 ⩽ r+ − s−Mβ−γ

2 < 0

uniformly in t ∈ [0, T ]. For ∀t ∈ [0, T ], when x(t) ∈ (0,M1], we have

r(t)− s(t)x(t)β−γ > 0 (3.1)

uniformly in t ∈ [0, T ]. For ∀t ∈ [0, T ], when x(t) ∈ [M2,+∞), we obtain

r(t)− s(t)x(t)β−γ < 0 (3.2)

uniformly in t ∈ [0, T ].
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Let t and t̄ respectively stand for the global minimum and maximum points x(t)
on t ∈ [0, T ], that is

x(t̄) = max
t∈[0,T ]

x(t), x(t) = min
t∈[0,T ]

x(t).

Obviously, we have

x′(t̄) = 0, x′(t) = 0.

We claim that

(φp(x
′(t̄)))′ ⩽ 0. (3.3)

In fact, if (3.3) does not hold, then (φp(x
′(t̄)))′ > 0, and there exists ε > 0 such

that (φp(x
′(t)))′ > 0 for t ∈ (t̄ − ε, t̄ + ε), hence φp(x

′(t)) is strictly increasing for
t ∈ (t̄ − ε, t̄ + ε). then we get that x′(t) is strictly increasing for t ∈ (t̄ − ε, t̄ + ε).
This contradicts the definition of t̄. Therefore, (3.3) is true. Similarly, we get

(φp(x
′(t)))′ ⩾ 0. (3.4)

Suppose x(t) is an arbitrary T -periodic positive solution of equation (2.2), we claim
that

M1 < x(t) ⩽ x(t) ⩽ x(t̄) < M2. (3.5)

In fact, if (3.5) fails, then x(t̄) ⩾ M2 or 0 < x(t) ⩽ M1 at least one hold. When
x(t̄) ⩾ M2, by (3.2) and (3.3), we have

0 =(φp(x
′(t̄)))′ + λf(x(t̄))x′(t̄) + λr(t̄)x(t̄)γ − λs(t̄)xβ

=(φp(x
′(t̄)))′ + λx(t̄)γ(r(t̄)− s(t̄)x(t)β−γ)

<0.

When 0 < x(t) ⩽ M1, by (3.1) and (3.4), we get

0 =(φp(x
′(t)))′ + λf(x(t))x′(t) + λx(t)γr(t)− λs(t)x(t)β

=(φp(x
′(t)))′ + λx(t)γ(r(t)− s(t)xβ−γ)

>0.

But these are contradiction with equation (2.2). Hence, we have

M1 < x(t) ⩽ x(t) ⩽ x(t̄) < M2.

Multiplying both sides of equation (2.2) by x(t) and integrating over the interval
[0, T ], we get∫ T

0

(φp(x
′(t)))′x(t)dt+ λ

∫ T

0

f(x(t))x′(t)x(t)dt+ λ

∫ T

0

[r(t)xγ − s(t)xβ ]x(t)dt = 0.

Since
∫ T

0
(φp(x

′(t)))′x(t)dt = −
∫ T

0
|x′(t)|pdt and

∫ T

0
f(x(t))x′(t)x(t)dt = 0. Then

we obtain∫ T

0

|x′(t)|pdt =λ

∫ T

0

f(x(t))x′(t)x(t)dt+ λ

∫ T

0

[r(t)xγ − s(t)xβ ]x(t)dt
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<

∫ T

0

|r(t)xγ+1 − s(t)xβ+1|dt.

We need to classify discuss the relationship of β, γ and −1, respectively. If γ ⩾ −1,
we have ∫ T

0

|x′(t)|pdt <
∫ T

0

|r(t)xγ+1 − s(t)xβ+1|dt

⩽T (r+Mγ+1
2 + s+Mβ+1

2 ),

if β ⩽ −1, we get ∫ T

0

|x′(t)|pdt <
∫ T

0

|r(t)xγ+1 − s(t)xβ+1|dt

⩽T (r+Mγ+1
1 + s+Mβ+1

1 ),

if γ < −1 < β, we obtian∫ T

0

|x′(t)|pdt <
∫ T

0

|r(t)xγ+1 − s(t)xβ+1|dt

⩽T (r+Mγ+1
1 + s+Mβ+1

2 ).

Regardless of the above situation, it may easily be shown that there exists a positive
constant K = max{T (r+Mγ+1

2 + s+Mβ+1
2 ), T (r+Mγ+1

1 + s+Mβ+1
1 ), T (r+Mγ+1

1 +

s+Mβ+1
2 )} such that ∫ T

0

|x′(t)|pdt ⩽ K.

Since x(0) = x(T ), hence there exists a point t0 ∈ [0, T ] such that x′(t0) = 0,
then φp(x

′(t0)) = 0. Put G := max{|f(x)|, x ∈ [M1,M2]}. By (2.2) and Hölder’s
inequality, we have∣∣φp(x

′(t))
∣∣ =∣∣ ∫ t

t0

(φp(x
′(t)))′dt

∣∣
⩽λ

( ∫ T

0

|f(x(t))x′(t)|dt+
∫ T

0

|r(t)xγ+1 − s(t)xβ+1|dt
)

⩽
∫ T

0

|f(x(t))x′(t)|dt+
∫ T

0

|r(t)xγ+1 − s(t)xβ+1|dt

⩽G

∫ T

0

|x′(t)|dt+K

⩽GT
1
q
( ∫ T

0

|x′(t)|pdt
) 1

p +K

⩽GT
1
q K

1
p +K

:=H,

(3.6)

where 1
p + 1

q = 1. Now, we claim that there exists a positive constant N1, for all
t ∈ R satisfies

|x′|∞ ⩽ N1. (3.7)
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In fact, if (3.7) fails, then there exists N ′ > 0 such that

|x′|∞ > N ′.

Then we have

|φp(x
′)|∞ = |x′|p−1

∞ > (N ′)p−1,

which is a contradiction. Hence (3.7) holds.
Let

Ω1 := {x ∈ X | M1 < x(t) < M2, |x′|∞ < N1},

which is an open set in X. Obviously, condition (g1) of Lemma 2.2 is satisfied.
For a possible solution e1 of the equation

r(t)eγ1 − s(t)eβ1 = 0,

satisfied M1 < e1 < M2, otherwise, it contradicts (3.1) and (3.2). Therefore,
condition (g2) of Lemma 2.2 hold.

Finally, we verify that condition (g3) of Lemma 2.2 is true. By (3.1) and (3.2)
we get

r(t)Mγ
1 − s(t)Mβ

1 < 0

and

r(t)Mγ
2 − s(t)Mβ

2 > 0

uniformly in t ∈ [0, T ]. So condition (g3) of Lemma 2.2 is also satisfied.
In view of all the discussion above, from Lemma 2.2, we can conclude equation

(1.4) has at least one positive T -periodic solution x(t) satisfying M1 < x(t) < M2

for all t ∈ [0, T ]. The proof is complete.
Below we introduce the result of the existence of the positive T -periodic solution

of equation (1.5) and its proof.

Theorem 3.2. Let a(t), b(t) and c(t) are positive continuous T -periodic functions
with b+

2 − b−
2
< 2a−c−. Then equation (1.5) has at least one positive T -periodic

solution.

Proof. We will verify that all the conditions of Lemma 2.3 are true.
Let

0 < M3 <

√
b−2 + 2a−c− − b+

2c+
and M4 >

√
b+2 + 4a+c+ − b−

2c−
> 0 (3.8)

are constants. From b+
2 − b−

2
< 2a−c− we know that

√
b−2 + 2a−c− − b+ > 0,

that is, M3 and M4 are well defined.
By simple calculation we can get

0 <M3 <

√
b−2 + 2a−c− − b+

2c+
⩽

√
b(t)2 + 2a(t)c(t)− b(t)

2c(t)
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<

√
b(t)2 + 4a(t)c(t)− b(t)

2c(t)
⩽

√
b+2 + 4a+c+ − b−

2c−
< M4

uniformly in t. By (3.8), we have

a(t)− b(t)M4 − c(t)M2
4 =− c(t)

(
M4 +

√
b(t)2 + 4a(t)c(t) + b(t)

2c(t)

)
×

(
M4 −

√
b(t)2 + 4a(t)c(t)− b(t)

2c(t)

)
<0.

a(t)− b(t)M3 − c(t)M2
3 >

a(t)

2
− b(t)M3 − c(t)M2

3

=− c(t)
(
M3 +

√
b(t)2 + 2a(t)c(t) + b(t)

2c(t)

)
×

(
M3 −

√
b(t)2 + 2a(t)c(t)− b(t)

2c(t)

)
⩾0.

That is

a(t)− b(t)M4 − c(t)M2
4 < 0

and

a(t)− b(t)M3 − c(t)M2
3 > 0

uniformly in t ∈ [0, T ]. Furthermore, for ∀t ∈ [0, T ], when x(t) ∈ (0,M3], we obtain

a(t)− b(t)x(t)− c(t)x(t)2 > 0 (3.9)

uniformly in t ∈ [0, T ]. For ∀t ∈ [0, T ], when x(t) ∈ [M4,+∞), we have

a(t)− b(t)x(t)− c(t)x(t)2 < 0 (3.10)

uniformly in t ∈ [0, T ].
Let t and t̄ respectively represents the global minimum and maximum points

x(t) on t ∈ [0, T ], then

x(t̄) = max
t∈[0,T ]

x(t), x(t) = min
t∈[0,T ]

x(t).

Similar to the derivation of (3.3) and (3.4), we get

(φp(x
′(t)))′ ⩾ 0 and (φp(x

′(t̄)))′ ⩽ 0.

Suppose x(t) is an arbitrary T -periodic positive solution of equation (2.3). Similar
to the proof of Theorem 3.1, we get

M3 < x(t) ⩽ x(t) ⩽ x(t̄) < M4.
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Multiplying both sides of equation (2.3) by x(t) and integrating over the interval
[0, T ], we get ∫ T

0

(φp(x
′(t)))′x(t)dt+ λ

∫ T

0

f(x(t))x′(t)x(t)dt

+ λ

∫ T

0

[a(t)xα − b(t)xα+1 − c(t)xα+2]x(t)dt = 0.

Note that
∫ T

0
(φp(x

′(t)))′x(t)dt = −
∫ T

0
|x′(t)|pdt and

∫ T

0
f(x(t))x′(t)x(t)dt = 0.

Put G1 := max{|f(x)|, x ∈ [M3,M4]}. Then we get∫ T

0

|x′(t)|pdt =λ

∫ T

0

[a(t)xα − b(t)xα+1 − c(t)xα+2]x(t)dt

+ λ

∫ T

0

f(x(t))x′(t)x(t)dt

⩽
∫ T

0

|a(t)xα+1 − b(t)xα+2 − c(t)xα+3|dt,

if α > −1, we get∫ T

0

|x′(t)|pdt ⩽
∫ T

0

|a(t)xα+1 − b(t)xα+2 − c(t)xα+3|dt

<T (a+Mα+1
4 + b+Mα+2

4 + c+Mα+3
4 ),

if α = −1, we have∫ T

0

|x′(t)|pdt ⩽
∫ T

0

|a(t)xα+1 − b(t)xα+2 − c(t)xα+3|dt

<T (a+ + b+M4 + c+M2
4 ),

if −2 < α < −1, we obtain∫ T

0

|x′(t)|pdt ⩽
∫ T

0

|a(t)xα+1 − b(t)xα+2 − c(t)xα+3|dt

<T (a+Mα+1
3 + b+Mα+2

4 + c+Mα+3
4 ),

if α = −2, we get∫ T

0

|x′(t)|pdt ⩽
∫ T

0

|a(t)xα+1 − b(t)xα+2 − c(t)xα+3|dt

<T (a+
1

M3
+ b+ + c+M4),

if −3 < α < −2, we have∫ T

0

|x′(t)|pdt ⩽
∫ T

0

|a(t)xα+1 − b(t)xα+2 − c(t)xα+3|dt

<T (a+Mα+1
3 + b+Mα+2

3 + c+Mα+3
4 ),
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if α = −3, we get∫ T

0

|x′(t)|pdt ⩽
∫ T

0

|a(t)xα+1 − b(t)xα+2 − c(t)xα+3|dt

<T (a+
1

M2
3

+ b+
1

M4
+ c+),

if α < −3, we obtain∫ T

0

|x′(t)|pdt ⩽
∫ T

0

|a(t)xα+1 − b(t)xα+2 − c(t)xα+3|dt

<T (a+Mα+1
3 + b+Mα+2

3 + c+Mα+3
3 ).

Regardless of the above situation, it may easily be shown that there exists a positive
constant K ′ such that ∫ T

0

|x′(t)|pdt ⩽ K ′.

Note that x(0) = x(T ), hence there exists a point t0 ∈ [0, T ] such that x′(t0) = 0,
then φp(x

′(t0)) = 0. Put G1 := max{|f(x)|, x ∈ [M3,M4]} By (2.3) and Hölder’s
inequality, we get

∣∣φp(x
′(t))

∣∣ =∣∣ ∫ t

t0

(φp(x
′(t)))′dt

∣∣
⩽λ

( ∫ T

0

|f(x(t))x′(t)|dt+
∫ T

0

|a(t)xα+1 − b(t)xα+2 − c(t)xα+3|dt
)

⩽
∫ T

0

|f(x(t))x′(t)|dt+
∫ T

0

|a(t)xα+1 − b(t)xα+2 − c(t)xα+3|dt

⩽G1

∫ T

0

|x′(t)|dt+K ′

⩽G1T
1
q
( ∫ T

0

|x′(t)|pdt
) 1

p +K ′

⩽G1T
1
q (K ′)

1
p +K ′

:=H ′. (3.11)

Now, we claim that there exists a positive constant N2, for all t ∈ R such that

|x′|∞ ⩽ N2. (3.12)

In fact, if (3.12) fails, then there exists N ′ > 0 such that

|x′|∞ > N ′.

Then we have

|φp(x
′)|∞ = |x′|p−1

∞ > (N ′)p−1,

which is a contradiction. Hence (3.12) holds.
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Let

Ω2 := {x ∈ X | M3 < x(t) < M4, |x′|∞ < N2},

which is an open set in X. Obviously, condition (k1) of Lemma 2.3 is satisfied.
For a possible solution e2 of the equation

−a(t)eα2 + b(t)eα+1
2 + c(t)eα+2

2 = 0,

satisfied M3 < e2 < M4, Otherwise, it contradicts (3.9) and (3.10). Therefore,
condition (k2) of Lemma 2.3 is satisfied.

Finally, we verify that condition (k3) of Lemma 2.3 is also satisfied. By (3.9)
and (3.10) we obtain that

−a(t)Mα
3 + b(t)Mα+1

3 + c(t)Mα+2
3 < 0

and

−a(t)Mα
4 + b(t)Mα+1

4 + c(t)Mα+2
4 > 0

uniformly in t ∈ [0, T ]. So condition (k3) of Lemma 2.3 is also satisfied.
In view of all the discussion above, applying Lemma 2.3, equation (1.5) has at

least one T -periodic solution x satisfied M3 < x(t) < M4 for all t ∈ [0, T ]. Theorem
3.2 is proved.

4. Examples
In this section, we will give some specific examples and apply the theorems obtained
in the previous section to prove the existence of positive periodic solutions for these
examples, to illustrating the applicability of the conclusions obtained in this paper.

Example 4.1. Consider the following Liebau type differential equation

x′′(t) + 9x′ + (cos t+ 2)x
1
4 − (sin t+ 3)x

1
2 = 0. (4.1)

Obviously, equation (4.1) is the case of equations (1.4) when p = 2, f(x) = 9, r(t) =
cos t+2, s(t) = sin t+3, β = 1

2 , γ = 1
4 . Equation (4.1) also is the case of equations

(1.1). We have β > γ, r(t) > 0, s(t) > 0 and r− = 1, r+ = 3, s− = 2, s+ = 4.
From Theorem 3.1 we get that the equations (4.1) has at least one positive 2π-

periodic solution x(t) satisfied M1 < x(t) < M2 for all t ∈ [0, 2π], where 0 < M1 <
1

256 , M2 > 81
16 are constants.

Example 4.2. Consider the following second order p-Laplacian differential equa-
tion

(φp(x
′(t)))′ + 2x′ +

(
cos

(2πt
T

)
+ 7

)
x−1 −

(
sin

(2πt
T

)
+ 2

)
x = 0. (4.2)

It is clear that equation (4.2) is the case of equations (1.4) when f(x) = 2, r(t) =
cos( 2πtT ) + 7, s(t) = sin( 2πtT ) + 2, β = 1, γ = −1. We have β > γ, 1

β−γ = 1
2 and

r− = 6, r+ = 8, s− = 1, s+ = 3.
Then Theorem 3.1 guarantees that the equations (4.2) has at least one positive

T -periodic solution x(t) satisfied M ′
1 < x(t) < M ′

2 for all t ∈ [0, T ], where 0 < M ′
1 <√

2, M ′
2 > 2

√
2 are constants.



92 X. Han & H. Yang

As can be seen from the above two examples, equation (1.4) is a direct general-
ization of equation (1.1) and (1.2).

Example 4.3. Consider the following second order cubic differential equation

x′′(t) +
(
cos

(2πt
T

)
+ 5

)
x−

(
sin

(2πt
T

)
+ 6

)
x2 −

(
sin

(2πt
T

)
+ 5

)
x3 = 0. (4.3)

In equations (1.5), when p = 2, f(x) = 0, a(t) = cos( 2πtT ) + 5, b(t) = sin( 2πtT ) + 6
and c(t) = sin( 2πtT ) + 5, α = 1, equations (1.5) reduce to equations (4.3). Clearly,
equation (4.3) is also a special case of equation (1.3). We have a(t) > 0, b(t) >
0, c(t) > 0 and a− = 4, a+ = 6, b− = 5, b+ = 7, c− = 4, c+ = 6. Direct calculation
we can get b+

2 − b−
2
= 49− 25 = 24 < 32 = 2a−c−.

Then for each T > 0, we from Theorem 3.2 conclude that the equations (4.3)
has at least one positive T -periodic solution x(t) satisfied M3 < x(t) < M4 for all
t ∈ [0, T ], where 0 < M3 <

√
59
12 − 7

12 , M4 >
√
193
10 − 1

2 are constants.

Example 4.4. Consider the following second order p-Laplacian differential equa-
tion

(φp(x
′(t)))′ + 2x2x′ + (cos t+ 3)x− 3

2 − (sin t+ 2)x− 1
2 − (cos t+ 4)x

1
2 = 0. (4.4)

In equations (1.5), when f(x) = 2x2, a(t) = cos t + 3, b(t) = sin t + 2 and c(t) =
cos t + 4, α = − 3

2 , equations (1.5) reduce to equations (4.4). Clearly, we have
a(t) > 0, b(t) > 0, c(t) > 0 and a− = 2, a+ = 4, b− = 1, b+ = 3, c− = 3, c+ = 5.
Direct calculation we can get b+

2 − b−
2
= 9− 1 = 8 < 12 = 2a−c−.

Then Theorem 3.2 guarantees that the equations (4.4) has at least one positive
2π-periodic solution x(t) satisfied M ′

3 < x(t) < M ′
4 for all t ∈ [0, 2π], where 0 <

M ′
3 <

√
13−3
10 , M ′

4 >
√
89−1
6 are constants.

From examples 4.3 and 4.4, it can be seen that equations (1.5) is not only
a generalization of equations (1.3) but also equations (1.5) can deal with some
singular polynomial differential equations.
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