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A NEW NUMERICAL TECHNIQUE FOR
SOLVING ψ-FRACTIONAL RICCATI

DIFFERENTIAL EQUATIONS

Amjid Ali1,† and Teruya Minamoto1

Abstract This paper proposes a new numerical technique for solving a spe-
cific class of fractional differential equations, which includes the ψ-Caputo
fractional derivative. The class under consideration is nonlinear ψ-fractional
Riccati differential equations (ψ-FRDEs). Our approach relies on the ψ-Haar
wavelet (ψ-HW) operational matrix, which is a novel type of operational ma-
trix of fractional integration. We derive an explicit formula for the ψ-fractional
integral of the HW. This operational matrix has been used successfully to solve
nonlinear ψ-FRDEs.The Quasi-linearization technique is employed to linearize
the non-linear ψ-FRDEs. This technique reduces the problem to an algebraic
equation that can be easily solved. The technique is a useful and straightfor-
ward mathematical tool for solving nonlinear ψ-FRDEs. The computational
complexity of the operational matrix technique is minimal. The error analysis
of the proposed method is thoroughly investigated. To justify the method’s
accuracy and efficiency, numerical results are given.

Keywords ψ-HW Operational matrices, ψ-Caputo fractional integral and
derivative, Riccati Fractional differential equations, quasi linearization, collo-
cation points, convergence.
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1. Introduction
Fractional calculus is a branch of mathematics that deals with arbitrary order
derivatives. Fractional calculus is a field of pure mathematics that is gradually
being studied in a variety of areas. Nowadays, fractional calculus and fractional
differential equations have been implemented in mathematics, chemistry, physics
engineering and biology [11,24,25,32]. Many engineering and mathematical physics
models have been modeled via distributed order fractional differential equations
[10,21,27,28,30,31]. Caputo introduced a fractional derivative of distributed-order
and later developed by him in 1995 [15]. The fractional order differential equa-
tions and their implementations in engineering and other fields have received a lot
of attention. For instance, the general result of linear fractional order differential
equation was discuss scientifically in Bagley et al. [13,14], in the constitutive equa-
tion of dielectric media, fractional order equations were established [15] and Sokolov
et al. explored distributed order fractional kinetics [33].
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Some of the most recently established methods for solving fractional differential
equations are given in [1–3,20].

The Riccati differential equation is regarded as an essential type of non-linear
differential equation because of its capacity to describe a wide range of engineering
and physical phenomena, including stochastic control, river flow, transmission line
phenomena, dynamic games, financial mathematics, and others [4, 17, 18, 26]. The
general form of Riccati equation is given by

u′(κ) + a(κ)u(κ) + b(κ)u2(κ) = g(κ), (1.1)

where a(κ), b(κ) and g(κ) are continuous functions of κ. The fractional Riccati
differential equation is a broad view of the traditional Riccati differential equation
achieved when substituting a fractional derivative of order γ for the first order
derivative in Eq. (1.1). Fractional Riccati equation has the following form

Dγu(κ) + a(κ)u2(κ) + b(κ)u(κ) = g(κ), 0 < κ ≤ 1, 0 < γ ≤ 1. (1.2)

The fractional derivative in Eq. (1.2) is defined in the Caputo perspective. Due to
its various implementations in engineering and science, many numerical and analyt-
ical methods were investigated for solving fractional Riccati differential equations.
Ozturk et al. [29] applied the collocation technique with the help of Taylor expan-
sion for converting the fractional Riccati differential equations into a scheme of
non-linear algebraic equation. Khan et al. [22] used the homotopy perturbation
technique for solving fractional Riccati differential equation. In addition, other
numerical approaches for solving fractional Riccati differential equations were in-
vestigated, see [19,23,34].
In this article, we are concerned with numerical approximation of the Riccati frac-
tional differential equation in which the fractional derivative is given in the ψ-
Caputo sense, called the ψ-FRDE.
The ψ-FRDE is given by

CDγ,ψu(κ) + a(κ)u2(κ) + b(κ)u(κ) = g(κ), 0 < κ ≤ 1, 0 < γ ≤ 1. (1.3)

We propose the ψ-HW Operational-matrix approach for solving nonlinear ψ-FRDEs.
Operational matrices approach has been applied for the first time to ψ-FRDEs. To
the best of our knowledge there is no related work in literature in this direction.
However the method reduces exactly to the classical Haar wavelet operational ma-
trix method when ψ(κ) is chosen to be κ. To assure the convergence of the sug-
gested approach, we constructed an inequality in the perspective of error-analysis.
We put some problems to the test to see how effective the proposed method is. The
outcomes of these examples are presented graphically and in tables.
Organization of the paper: The layout of this paper is as follows
Section 2 reviews some fundamental concepts of ψ-fractional calculus theory. HW
and function approximation using HW were also explored, which is an important
aspect of this paper. We construct the generalized fractional integration of HW
in section 3. In section 4, we got a precise upper-bound on the error-estimate for
the suggested technique. In the section 5, some numerical examples are presented
to demonstrate the correctness and efficacy of the proposed method. In the last
section of the proposed study, the conclusions are given.
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2. Preliminaries
In this section, we shall define some ψ-fractional integral and differential operators.
Let γ be a positive real number, n be a natural number and g : [a1, a2] → R and
ψ ∈ C1([a1, a2]) be functions such that g is integrable and ψ is increasing with
ψ′(κ) ̸= 0 ∀ κ ∈ [a1, a2].

Definition 2.1 ( [6,9,24]). The ψ-Riemann-Liouvile (ψ-RL) fractional integration
of order γ is given by:

J γ,ψ
a1 g(κ) =

1

Γ(γ)

∫ κ

a1

ψ′(℘)
(
ψ(κ)− ψ(℘)

)γ−1
g(℘)d℘. (2.1)

The ψ-RL fractional derivative of order γ is given as:

Dγ,ψa1 g(κ) =

(
1

ψ′(κ)
d

dκ

)n
J n−γ,ψ
a1 g(κ)

=
1

Γ(n− γ)

(
1

ψ′(κ)
d

dκ

)n ∫ κ

a1

ψ
′
(℘)
(
ψ(κ)− ψ(℘)

)n−γ−1
g(℘)d℘,

where n = ⌊γ⌋+ 1.

Definition 2.2 ( [5,7,8]). Let γ be a positive real number, n a natural number and
g, ψ ∈ Cn([a1, a2]) where ψ is an increasing function in such a way that ψ′(κ) ̸= 0
∀ κ ∈ [a1, a2]. The ψ-Caputo fractional derivative of order γ is given by:

CDγ,ψa1 g(κ) =
1

Γ(n− γ)

∫ κ

a1

ψ
′
(℘)
(
ψ(κ)− ψ(℘)

)n−γ−1Dn,ψg(℘)d℘,

where Dn,ψg(κ) =

(
1

ψ′(κ)
d

dκ

)n
g(κ), n = ⌊γ⌋ + 1 for γ /∈ N and n = γ when

γ ∈ N.

For specific choices of the function ψ(κ) the ψ-fractional operators result in the
following classical fractional operators .

(1) ψ(κ) = κ gives RL and Caputo fractional operators.
(2) ψ(κ) = ln(κ) gives the Hadamard and Caputo-Hadamard fractional opera-

tors.

2.1. Function Approximation by Haar Wavelet
Let’s start with a quick review of the Haar functions. The Haar functions are an
orthogonal family of switched rectangular waveform with amplitudes that vary from
one to the next.

The ith Haar function hi(κ), κ ∈ [a1, a2] is given by:

hi(κ) =


1, when κ ∈ [a1 + (a2 − a1)

k

m
, a1 + (a2 − a1)

2k + 1

2m
);

−1, when κ ∈ [a1 + (a2 − a1)
2k + 1

2m
, a1 + (a2 − a1)

k + 1

m
);

0, otherwise,

(2.2)
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where m = 2j , k = 0, 1, 2, 3, · · · ,m − 1, and j = 0, 1, 2, · · · , J . The parameters i,
j, k are related by the equation i = 2j + k + 1, i is called the wavelet number.
Equation (2.2) is valid ∀ i ≥ 3.

Scaling functions for the HW family for i = 1 and i = 2 are defined as follows:

h1(κ) =

{
1, when κ ∈ [a1, a2);

0, otherwise,

and

h2(κ) =


1, when κ ∈ [a1,

a1 + a2
2

);

−1, when κ ∈ [
a1 + a2

2
, a2);

0, elsewhere.

(2.3)

HW can approximate a square integrable function u(κ) on (a1, a2) as follows:

u(κ) =
∞∑
i=0

cihi(κ), (2.4)

where ci = ⟨u(κ),hi(κ)⟩, ⟨.⟩ denotes the inner-product. Approximation of functions
is done with the first m terms, that is

u(κ) ∼= um(κ) =
m−1∑
i=0

cihi(κ),

in matrix form, this can be represented as:

u(κ) ∼= um(κ) = CTmHm(κ), (2.5)

where C = [c0, c1, c2, · · · , cm−1]
T , generated by ci = ⟨u(κ),hi(κ)⟩ is the coeffi-

cient matrix and H = [h0(κ), h1(κ), h2(κ), · · · , hm−1(κ)]T is the vector of Haar
functions.

3. ψ-Haar wavelts Operational-matrix
The ψ-RL integration of fractional order γ of the HW is given by:

J γ,ψh1(κ) =
1

Γ(γ + 1)

[
ψ(κ)− ψ(a1)

]γ
, (3.1)

P γ,ψl (κ) = J γ,ψhl(κ) =
1

Γ(γ)

∫ κ

a1

ψ
′
(℘)
(
ψ(κ)− ψ(℘)

)γ−1
hi(℘)d℘

=



0, if κ < ζ1(l);

1

Γ(γ + 1)

[
ψ(κ)− ψ(ζ1(l))

]γ
, if κ ∈ [ζ1(l), ζ2(l));

1

Γ(γ + 1)

[(
ψ(κ)− ψ(ζ1(l))

)γ − 2
(
ψ(κ)− ψ(ζ2(l))

)γ]
, if κ ∈ (ζ2(l), ζ3(l)];

1

Γ(γ + 1)

[(
ψ(κ)− ψ(ζ1(l))

)γ − 2
(
ψ(κ)− ψ(ζ2(l))

)γ
+
(
ψ(κ)− ψ(ζ3(l))

)γ]
, if κ > ζ3(l),

(3.2)



Numerical scheme for solution of ψ-fractional Riccati differential equations 1031

where ζ1(l) = a1+(a2−a1) km , ζ2(l) = a1+(a2−a1) 2k+1
2m , ζ3(l) = a1+(a2−a1)k+1

m .
The ψ-HW operational matrix P γ,ψ is computed for ψ(κ) = sin(κ) and γ = 0.8.

P γ,ψ =



0.5606 −0.2219 −0.1403 −0.0847 −0.08164 −0.0611 −0.0484 −0.0362

0.2769 0.0617 −0.1403 0.1369 −0.08164 −0.0611 0.0896 0.0521

0.0656 0.0826 0.05017 −0.0093 −0.08164 0.0935 −0.0092 −0.0020

0.0689 −0.0689 0 0.03492 0 0 −0.0690 0.0696

0.0150 0.0188 0.04881 −0.0011 0.03404 −0.0054 −0.0008 −0.0003

0.0175 0.0231 −0.04066 −0.0044 0 0.0318 −0.0048 −0.0007

0.0178 −0.0178 0 0.0401 0 0 0.0279 −0.0041

0.0166 −0.0166 0 −0.0332 0 0 0 0.0224



.

4. Error analysis
In [16], FDEs of the Caputo type were studied in the context of error-analysis. Fur-
thermore, [12] provides a convergence analysis of HW’s solution of non-linear Fred-
holm integral equations. In this section, we calculated the maximum absolute-error
using the ψ-Caputo fractional differential operator, confirming the effectiveness of
the ψ-HW technique for ψ-FDEs.

Theorem 4.1. Assume Dℓy is a continuous function on the interval [a1, a2], and
M > 0 such that |Dℓ,ψu(κ)| ≤ M ∀ κ ∈ [a1, a2], where, a1, a2 ∈ R+, Dℓ,ψu(κ) =(

1
ψ′ (κ)

d
dκ

)ℓ
u(κ). Let CDγ,ψa1 uℓ(κ) is the approximation of CDγ,ψa1 u(κ), then we

have

∥∥CDγ,ψa1 u(κ)− CDγ,ψa1 uℓ(κ)
∥∥
E
≤

(a2 − a1)M
(
ψ

′
(a2)

)ℓ−γ
Γ(ℓ− γ + 1)

1

k(ℓ−γ)
1

[1− 22(γ−ℓ)]
1
2

.

Proof. CDγ,ψa1 y can be approximated by HW as:

CDγ,ψa1 u(κ) =
∞∑
i=a

cihi(κ),

here ci is given by

ci = ⟨CDγ,ψa1 u(κ),hi(κ)⟩ =
∫ a2

a1

(
CDγ,ψa1 u(κ)

)
hi(κ)dκ. (4.1)

Let the approximation of CDγ,ψa1 uis CDγ,ψa1 uℓ which is defined by

CDγ,ψa1 uℓ(κ) =
ℓ−1∑
i=0

cihi(κ), (4.2)
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in which ℓ = 2β+1, β = 1, 2, 3, · · · . Therefore,

CDγ,ψa1 u(κ)−
CDγ,ψa1 uℓ(κ) =

∞∑
i=m

cihi(κ) =
∞∑

i=2β+1

cihi(κ), (4.3)

this gives∥∥CDγ,ψa1 u(κ)− CDγ,ψa1 uℓ(κ)
∥∥2
E
=

∫ κ

a1

(
CDγ,ψa1 u(κ)−

CDγ,ψa1 uℓ(κ)
)2

dκ

=

∞∑
i=2β+1

∞∑
i′=2β+1

cici′

∫ κ

a1

hi(κ)hi′ (κ)dκ,
(4.4)

the sequence {hm(κ)} being orthogonal, we get
∫ a2
a1
hm(κ)hm(κ)dκ = Im, the

symbol Im denotes the mth order identity matrix.
Thus, equation (4.4) yields,∥∥CDγ,ψa1 u(κ)− CDγ,ψa1 uℓ(κ)

∥∥2
E
=

∞∑
i′=2β+1

c2i . (4.5)

Equation (4.1) gives:

ci =

∫ a2

a1

(
CDγ,ψa1 u(κ)

)
hi(κ)dκ

= 2
j
2

{∫ a1+(a2−a1)(k+ 1
2 )2

−j

a1+(a2−a1)k2−j

CDγ,ψa1 u(κ)dκ−
∫ a1+(a2−a1)(k+1)2−j

a1+(a2−a1)(k+ 1
2 )2

−j

CDγ,ψa1 u(κ)dκ

}
.

(4.6)

Employing mean value theorem of integration: ∃ κ1,κ2 ∈ (a1, a2) where

a1 + (a2 − a1)k2
−j < κ1 < a1 + (a2 − a1)

(
k +

1

2

)
2−j ,

a1 + (a2 − a1)
(
k +

1

2

)
2−j < κ2 < a1 + (a2 − a1)(k + 1)2−j ,

eq.(4.6) implies

ci =2
j
2 (a2 − a1)

{(
a1 + (k +

1

2
)2−j − (a1 + k2−j)

)
CDγ,ψa1 u(κ1)

−
(
a1 + (k + 1)2−j − (a1 + (k +

1

2
)2−j

)
CDγ,ψa1 u(κ2)

}

=2
j
2 (a2 − a1)

{
2−j−1

(
CDγ,ψa1 u(κ1)− CDγ,ψa1 u(κ2)

)}
.

(4.7)

Therefore,
c2i = 2−j−2(a2 − a1)

2(CDγ,ψa1 u(κ1)− CDγ,ψa1 u(κ2))
2. (4.8)

Applying ψ-Caputo fractional derivative where, ψ is an increasing function and
|Dℓ,ψu(κ)| ≤M , we get:∣∣∣∣CDγ,ψa1 u(κ1)− CDγ,ψa1 u(κ2)

∣∣∣∣
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=
1

Γ(ℓ− γ)

∣∣∣∣ ∫ κ1

a1

ψ
′
(κ)
(
ψ(κ1)− ψ(κ)

)ℓ−γ−1

Dℓ,ψu(κ)dκ

−
∫ κ2

a1

ψ
′
(κ)
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)

Dℓ,ψu(κ)dκ
∣∣∣∣

=
1

Γ(ℓ− γ)

∣∣∣∣ ∫ κ1

a1

ψ
′
(κ)
(
ψ(κ1)− ψ(κ)

)ℓ−γ−1

Dℓ,ψu(κ)dκ

−
∫ κ1

a1

ψ
′
(κ)
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)

Dℓ,ψu(κ)dκ

−
∫ x2

x1

ψ
′
(x)

(
ψ(x2)− ψ(κ)

)ℓ−(γ+1)

Dℓ,ψu(κ)dκ
∣∣∣∣

≤ 1

Γ(ℓ− γ)

∣∣∣∣ ∫ κ1

a1

ψ
′
(κ)
(
ψ(κ1)− ψ(κ)

)ℓ−(γ+1)

Dℓ,ψu(κ)dκ

−
∫ κ1

a1

ψ
′
(κ)
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)

Dℓ,ψu(κ)dκ
∣∣∣∣

+

∣∣∣∣ ∫ κ2

κ1

ψ
′
(κ)
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)

Dℓ,ψu(κ)dκ
∣∣∣∣

=
1

Γ(ℓ− γ)

(∣∣∣∣ ∫ κ1

a1

ψ
′
(κ)
[(
ψ(κ1)− ψ(κ)

)ℓ−(γ+1)

−
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)]
Dℓ,ψu(κ)dκ

∣∣∣∣
+

∣∣∣∣ ∫ κ2

κ1

ψ
′
(κ)
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)

Dℓ,ψu(κ)dκ
∣∣∣∣
)

≤ 1

Γ(ℓ− γ)

(∫ κ1

a1

∣∣∣∣ ψ′
(κ)
[(
ψ(κ1)− ψ(κ)

)ℓ−(γ+1)

−
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)]
Dℓ,ψu(κ)

∣∣∣∣dκ
+

∫ κ2

κ1

∣∣∣∣ ψ′
(κ)
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)

Dℓ,ψu(κ)
∣∣∣∣dκ
)

≤ 1

Γ(ℓ− γ)

(∫ κ1

a1

ψ
′
(κ)
[(
ψ(κ1)− ψ(κ)

)ℓ−(γ+1)

−
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)]∣∣∣∣Dℓ,ψu(κ)∣∣∣∣dκ
+

∫ κ2

κ1

ψ
′
(κ)
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)∣∣∣∣Dℓ,ψu(κ)∣∣∣∣dκ
)
,where ℓ > 1 + γ

≤ M

Γ(ℓ− γ)

(∫ κ1

a1

ψ
′
(κ)
[(
ψ(κ1)− ψ(κ)

)ℓ−(γ+1)

−
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)]
dκ
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+

∫ κ2

κ1

ψ
′
(κ)
(
ψ(κ2)− ψ(κ)

)ℓ−(γ+1)

dκ

)

=
M

Γ(ℓ−γ)
1

(ℓ−γ)

((
ψ(κ1)−ψ(a1)

)ℓ−γ
+

(
ψ(κ2)−ψ(κ1)

)ℓ−γ
−
(
ψ(κ2)−ψ(a1)

)ℓ−γ
+

(
ψ(κ2)− ψ(κ1)

)ℓ−γ)

=
M

Γ(ℓ−γ+1)

((
ψ(κ1)−ψ(a1)

)ℓ−γ
−
(
ψ(κ2)−ψ(a1)

)ℓ−γ
+2

(
ψ(κ2)−ψ(κ1)

)ℓ−γ)
.

Since κ1 > a1, κ2 > a1 and κ2 > κ1 and ψ(κ) is an increasing function, so(
ψ(κ1)− ψ(a1)

)ℓ−γ
−
(
ψ(κ2)− ψ(a1)

)ℓ−γ
< 0.

Therefore,

|CDγ,ψa1 y(κ1)− CDγ,ψa1 y(κ2)|≤
2M

Γ(ℓ− γ + 1)

(
ψ(κ2)− ψ(κ1)

)ℓ−γ
.

By mean value theorem, there exists ζ ∈ [κ1,κ2] ⊆ [a1, a2] such that ψ(κ2) −
ψ(κ1) ≤ (κ2 − κ1)ψ

′
(ζ), we get:

|CDγ,ψa1 y(κ1)− CDγ,ψa1 y(κ2)| ≤
2M

Γ(ℓ− γ + 1)

(
(κ2 − κ1)ψ

′
(ζ)

)ℓ−γ
≤ 2M

Γ(ℓ− γ + 1)2j(ℓ−γ)

(
ψ

′
(a2)

)ℓ−γ
,

which implies that,(
CDγ,ψa1 y(κ1)− CDγ,ψa1 y(κ2)

)2

≤ 4M2

Γ2(ℓ− γ + 1)22j(ℓ−γ)

(
ψ

′
(a2)

)2(ℓ−γ)
. (4.9)

Putting (4.9) in (4.8), we get:

c2i ≤ 2−j−2(a2 − a1)
2 4M2

Γ2(ℓ− γ + 1)22j(ℓ−γ)

(
ψ

′
(a2)

)2(ℓ−γ)
. (4.10)

Putting together equations (4.5) and (4.10), we have∥∥CDγ,ψa1 u(κ)− CDγ,ψa1 uℓ(κ)
∥∥2
E

=

∞∑
i=2β+1

c2i =

∞∑
j=β+1

(
2j+1−1∑
i=2j

c2i

)

≤
∞∑

j=β+1

(a2 − a1)
2 M2

Γ2(ℓ− γ + 1)22j(ℓ−γ)+j

(
ψ

′
(a2)

)2(ℓ−γ)
(2j+1 − 1− 2j + 1)

=
(a2 − a1)

2M2
(
ψ

′
(a2)

)2(ℓ−γ)
Γ2(ℓ− γ + 1)

∞∑
j=β+1

1

22j(ℓ−γ)
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=
(a2 − a1)

2M2
(
ψ

′
(a2)

)2(ℓ−γ)
Γ2(ℓ− γ + 1)

1

22(β+1)(ℓ−γ)
1

1− 22(γ−ℓ)
, (4.11)

which implies that

∥∥CDγ,ψa1 u(κ)−CDγ,ψa1 uℓ(κ)
∥∥
E
≤

(a2 − a1)M
(
ψ

′
(a2)

)ℓ−γ
Γ(ℓ−γ+1)

1

2(β+1)(ℓ−γ)
1

[1−22(γ−ℓ)]
1
2

.

(4.12)
Using k = 2β+1, (4.12) becomes:

∥∥CDγ,ψa1 u(κ)− CDγ,ψa1 uℓ(κ)
∥∥
E
≤

(a2 − a1)M
(
ψ

′
(a2)

)ℓ−γ
Γ(ℓ− γ + 1)

1

k(ℓ−γ)
1

[1− 22(γ−ℓ)]
1
2

.

(4.13)
We need the value of M to compute the error bound, therefore we will determine
M firstly. As Dℓu(κ) is bounded and continuous on the interval [a1, a2], therefore,
so is Dℓ,ψu(κ) and is approximated by:

Dℓ,ψu(κ) ∼=
r−1∑
i=0

cihi(κ) = CTr Hr(κ). (4.14)

Integrating(4.14), yields:

Dℓ−1,ψu(κ) =
∫ κ

a1

Dℓ,ψu(κ)dκ + Dℓ−1,ψu(a1) =

∫ κ

a1

Dℓ,ψu(κ)dκ ∼= CTr P
1,ψHℓ(κ).

(4.15)
Similarly,

Dℓ−2,ψu(κ)=
∫ κ

a1

Dℓ−1,ψu(κ)dκ+Dℓ−2,ψy(a1)=

∫ κ

a1

Dℓ−1,ψu(κ)dκ ∼= CTℓ P
2,ψHℓ(κ).

(4.16)
Proceeding in the same way we get:

Dψu(κ) ∼= CTℓ P
ℓ,ψHℓ(κ). (4.17)

Taking the points κj = j−1/2
ℓ , where j = 0, 1, 2, · · · ,m, and utilizing them in (4.17),

gives:
Dψu(κj) ∼= CTℓ P

ℓ,ψHℓ(κj). (4.18)

The matrix form of (4.18) is as:

DψUT ∼= CTℓ P
ℓ,ψHℓ(κj)

where DψUT = [Dψu(κ1),Dψu(κ2),Dψu(κ3), · · · ,Dψu(κℓ)]T .
(4.19)

Eq. (4.19), yields the value of CTℓ , which can then be used to calculate Dℓ,ψ(κ)
∀ κ ∈ [a1, a2] using (4.14).

Let τi ∈ [a1, a2] then for the equally spaced points i = 1, 2, 3, . . . , ℓ, Dℓ,ψu(ti)
can be calculated. Then M is approximated by ε+max |Dℓu(ti)|.
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Theorem 4.2. Assume that CDγ,ψa1 uℓ, computed from ψ-HW is estimated by CDγ,ψa1 u,
then we have

∥u(κ)− uℓ(κ)∥E ≤ MN

Γ(γ + 1)Γ(ℓ− γ + 1)

1

k(ℓ−γ)
1

[1− 22(γ−ℓ)]
1
2

. (4.20)

where N = max |(a2 − a1)(ψ(a2))
ℓ−γ(ψ(κ)− ψ(0))γ |.

Theorem 4.2. can be proved easily by following the procedure of Theorem 4.1.
From Eq. (4.20) we noted that ∥u(κ)− uℓ(κ)∥E tends to 0 as ℓ tends to ∞. As a
result, the ψ-HW technique is inferred to be convergent.

5. Numerical Examples
Here we provide numerical solution of some non-linear ψ-RFDEs using the ψ-HW
operational matrix approach.

Example 5.1. Consider the non-linear ψ-RFDE:
CDγ,ψu(κ) + u(κ) + u2(κ) = g(κ), 0 < γ ≤ 1, 0 < κ ≤ 1, (5.1)

with the initial condition u(0) = 0.
At g(x) = 2

Γ(3−γ) (ψ(κ))
2−γ + (ψ(κ))2 + (ψ(κ))4, the actual solution of the

problem (5.1) is u(κ) = (ψ(κ))2. First we apply Quasilinearization technique to
Eq.(5.1) to linearize the non-linear terms in it.

CDγ,ψu(κ) = g(κ)− u(κ)− u2(κ),
CDγ,ψur+1(κ) = g(κ)− ur(κ)− u2r(κ) + (ur+1(κ)− ur(κ))(−1− 2ur(κ))

= g(κ)− u2r(κ)− (1 + 2ur(κ))ur+1(κ) + 2ur(κ),

which implies that
CDγ,ψur+1(κ) + (1 + 2ur(κ))ur+1(κ) = g(κ) + u2r(κ), with ur+1(0) = 0. (5.2)

Let
CDγ,ψur+1(κ) = CTmHm(κ). (5.3)

Operating CJ γ,ψ
a1 on Eq. (5.3) and using the initial conditions, we have

ur+1(κ) = CJ γ,ψCTmHm(x) = CTmP
γ,ψ
m×mHm(κ). (5.4)

Substituting (5.3) and (5.4) in (5.2) we have,

CTm
(
Hm(κ) + P γ,ψm×mHm(κ)

)
= g(κ)− ur(κ)− u2r(κ). (5.5)

Eq. (5.5) can be expressed in matrix notation as:

CTm
(
Hm(κ) + 2ur(κ)P γ,ψm×mHm(κ)

)
= G, (5.6)

where G = g(κ)− ur(κ)− u2r(κ). We can determine the value of C form the linear
system (5.6), and then putting the value of C in Eq. (5.4) gives the approximate
results. Table 1 shows the max absolute error for ψ(κ) = κ3. In Fig.1, Approximate
results for different choices of ψ are also given in graphs.
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Table 1. Results of the max absolute error for problem (5.1) using different γ and J.

γ J = 5 J = 6 J = 7 J = 8 J = 9

0.6 4.3854× 10−4 1.4252× 10−4 4.6203× 10−5 1.4996× 10−5 4.8789× 10−6

0.7 3.3031× 10−4 1.0001× 10−4 3.0183× 10−5 9.1122× 10−6 2.7562× 10−6

0.8 2.4252× 10−4 6.8593× 10−5 1.9314× 10−5 5.4339× 10−6 1.5301× 10−6

0.9 1.7673× 10−4 4.6930× 10−5 1.2396× 10−5 3.2674× 10−6 8.6081× 10−7

1.0 1.3575× 10−4 3.4133× 10−5 8.5580× 10−6 2.1426× 10−6 5.3605× 10−7
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Figure 1. Actual and approximate results of the problem (5.1) for J = 6 and various values of γ.

Example 5.2. Here we take the following non-linear ψ-RFDE
CDγ,ψu(κ) + u2(κ) = g(κ), 0 < κ ≤ 1, 0 < γ ≤ 1. (5.7)
y(0) = 0. (5.8)

For g(κ) = 2
Γ(3−γ) (ψ(κ))

2−γ+ γ
Γ(2−γ) (ψ(κ))

1−γ+(ψ(κ))4+γ2(ψ(κ))2+2γ(ψ(κ))3.
One may verify that u(κ) = (ψ(κ))2 + γψ(κ) is the actual result for the prob-
lem (5.7). The nonlinear terms of (5.7) are linearized by Quasilinearization tech-
niques.The linearized form of (5.7) is

CDγ,ψur+1(κ) + 2ur+1(κ)ur(κ) = g(κ) + u2r(κ), with ur+1(0) = 0. (5.9)

For numerical results we employ the ψ-HW procedure.
Let

CDγ,ψur+1(κ) = CTmHm(κ). (5.10)
Applying the ψ-Caputo integral operator, CJ γ,ψ

a1 , on both sides of (5.10) and uti-
lizing the initial condition, we have:

ur+1(κ) = CJ γ,ψCTmHm(x) = CTmP
γ,ψ
m×mHm(κ). (5.11)

Substituting Equations (5.10) and (5.11) in equation (5.7), we get

CTm
(
Hm(κ) + 2ur(κ)P γ,ψm×mHm(κ)

)
= g(κ) + u2r(κ). (5.12)
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Equation (5.12) in matrix form is given as:

CTm
(
Hm(κ) + 2ur(κ)P γ,ψm×mHm(κ)

)
= g(κ) + u2r(κ). (5.13)

C can be determined from the linear system (5.13), using C in Eq. (5.11) gives the
approximate results. Table 2 contains the max absolute error for distinct values
of γ and J . In Fig.2, approximate results for different choices ψ are also given in
graphs.

Table 2. Values of the max absolute error for problem (5.8) using different γ and J.

γ J = 5 J = 6 J = 7 J = 8 J = 9

0.6 1.2733× 10−3 6.2471× 10−4 3.0934× 10−4 1.5391× 10−4 7.6766× 10−5

0.7 1.2910× 10−3 6.3216× 10−4 3.1273× 10−4 1.5552× 10−4 7.7551× 10−5

0.8 1.1161× 10−3 5.4369× 10−4 2.6824× 10−4 1.3321× 10−4 6.6382× 10−5

0.9 7.1349× 10−4 3.4173× 10−4 1.6710× 10−4 8.2612× 10−5 4.1071× 10−5

1.0 6.1030× 10−5 1.5258× 10−5 3.8146× 10−6 9.5367× 10−7 2.3841× 10−7
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Figure 2. Actual and Approximate results of problem (5.7) for different fractional orders, γ, and their
max absolute error.

Example 5.3. Consider the generalized non-linear ψ-RFDE:

CDγ,ψu(κ) + a(x)u2(x) + b(x)u(κ) = g(κ), 0 < γ ≤ 1, x ∈ [0, 1] and y(0) = u0.
(5.14)
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For g(κ) = Γ(2γ+1)
Γ(γ+1) (ψ(κ))

γ + a(κ)(ψ(κ))4γ + b(x)(ψ(κ))2γ ,the actual solution of
Eq. (5.14). is u(x) = (ψ(κ))2γ To make it simple we consider a(κ) = b(κ) = 1
First we apply Quasilinearization technique to (5.14). The linearized form of (5.14)
is
CDγ,ψur+1(κ) + (1 + 2ur(κ))ur+1(κ) = u2r(κ) + g(κ), with ur+1(0) = (ψ(0))2γ .

(5.15)
Let

CDγ,ψur+1(κ) = CTmHm(κ). (5.16)

Operating CJ γ,ψ
a1 onto Eq. (5.16) and using the initial conditions, we have

ur+1(κ) = CJ γ,ψCTmHm(x) + c0

= CTmP
γ,ψ
m×mHm(κ) +

1

2
.

(5.17)

Substituting (5.16) and (5.17) in (5.15) we have,

CTm
(
Hm(κ) + (1 + 2ur(κ))P γ,ψm×mHm(κ)

)
= g(κ) + u2r(κ). (5.18)

Eq.(5.18) is expressed in the form of a matrix as:

CTm
(
Hm(κ) + (1− 2ur(κ))P γ,ψm×mHm(κ)

)
= G, (5.19)

where G = g(κ) + u2r(κ). C can be determined from the linear system (5.19),
substituting C in Eq. (5.17) gives the approximate results. The max absolute error
for several values of γ and J is shown in Table 3. It demonstrates that when the
value of J increases, the error decreases. In Fig. 3, the approximate results for
various functions ψ are also given in pictorial form.

Table 3. Results of max absolute error for the problem (5.14) using ψ(κ) = κ2 and various J and γ

γ J = 5 J = 6 J = 7 J = 8 J = 9

0.6 2.2790× 10−4 7.4702× 10−5 2.4498× 10−5 8.0425× 10−6 2.6428× 10−6

0.7 2.1513× 10−4 6.5313× 10−5 1.9862× 10−5 6.0507× 10−6 1.8462× 10−6

0.8 2.0818× 10−4 5.8754× 10−5 1.6603× 10−5 4.6985× 10−6 1.3317× 10−6

0.9 2.0718× 10−4 5.4730× 10−5 1.4458× 10−5 3.8213× 10−6 1.0106× 10−6

1.0 2.0363× 10−4 5.3432× 10−5 1.3359× 10−5 3.3400× 10−6 8.3502× 10−7

Example 5.4. Consider the non-linear ψ-RFDE:
CDγ,ψu(κ)− u2(κ)− 1 = 0, 0 < γ ≤ 1, x ∈ [0, 1] and y(0) = 0. (5.20)

The actual solution of Eq.(5.20) is u(κ) = tan(ψ(κ)) . First we apply the Quasi-
linearization procedure to (5.20). The linearized form of (5.20) is:

CDγ,ψur+1(κ)− 2ur(κ)ur+1(κ) = 1− u2r(κ), with ur+1(0) = 0. (5.21)

Let
CDγ,ψur+1(κ) = CTmHm(κ). (5.22)
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Figure 3. Approx results for various γ values and functions ψ(x).

Operating CJ γ,ψ
a1 , on Eq. (5.22) and using the initial conditions, we have

ur+1(κ) = CJ γ,ψCTmHm(x) = CTmP
γ,ψ
m×mHm(κ). (5.23)

Substituting (5.22) and (5.23) in (5.21) we have,

CTm
(
Hm(κ)− 2ur(κ)P γ,ψm×mHm(κ)

)
= 1− u2r(κ). (5.24)

Eq.(5.24) can be expressed in matrix form as following:

CTm
(
Hm(κ)− 2ur(κ)P γ,ψm×mHm(κ)

)
= G, (5.25)

where G = 1 − u2r(κ). C can be determined from the linear system (5.19), sub-
stituting C in Eq. (5.23) gives the approximate results. Table 4 shows the max
absolute error for various γ and J values. It shows that increasing the value of J
lowers the error. In Fig. 4, the approximate results for various functions ψ are also
represented graphically.

Table 4. max absolute error for problem (5.20) with ψ(κ) = κ3, at various values of γ and J.

γ J = 5 J = 6 J = 7 J = 8 J = 9

0.6 2.2790× 10−4 7.4702× 10−5 2.4498× 10−5 8.0425× 10−6 2.6428× 10−6

0.7 2.1513× 10−4 6.5313× 10−5 1.9862× 10−5 6.0507× 10−6 1.8462× 10−6

0.8 2.0818× 10−4 5.8754× 10−5 1.6603× 10−5 4.6985× 10−6 1.3317× 10−6

0.9 2.0718× 10−4 5.4730× 10−5 1.4458× 10−5 3.8213× 10−6 1.0106× 10−6

1.0 2.0363× 10−4 5.3432× 10−5 1.3359× 10−5 3.3400× 10−6 8.3502× 10−7

6. Conclusion
Fractional differential equations are the best way to model many real-world physical
phenomena. Apart from modelling, solution strategies and their repercussions are
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Figure 4. Approximate results for γ = 1, J = 6 and various choices of ψ(κ).

essential for determining critical points where a significant divergence or bifurca-
tion begins. As a result, high-precision solutions are always required.The ψ-Caputo
fractional derivatives give additional flexibility to mathematical models, and the
ψ-Caputo derivative has the ability to extract hidden features of real-world phe-
nomena. This paper introduces a computational method for solving a class of frac-
tional differential equations involving the ψ-Caputo fractional derivative based on a
new operational-matrix of fractional integration, the ψ-HW operational-matrix.The
method’s convergence is demonstrated, and the numerical experiments presented in
Section 6 confirm the effectiveness of this approach. The method can also be applied
to other wavelet bases, such as Legendre, Chebyshev, and Gegenbauer wavelets.This
approach can be applied to boundary value problems in FDEs as well as fractional
partial differential equations.
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