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Abstract In this paper, the projection synchronization problem of functional
fractional-order neural networks with variable coefficients and Caputo deriva-
tives is studied. Firstly, a simple global projection synchronization scheme is
designed according to the open-loop and adaptive feedback control. Secondly,
by constructing a suitable Lyapunov function and utilizing the properties of
delayed fractional-order differential inequalities, some criteria for the global
projective synchronization of the variable coefficient functional neural net-
works with Caputo derivatives are obtained. Finally, a numerical example
with many numerical simulations is employed to demonstrate the correctness
and validity of the proposed method in this paper.
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1. Introduction
In 1967, Mandelbrot [21] published an article mentioning the use of fractional di-
mensional ideas to consider real-world problems. In 1982, Mandelbrot [22] applied
fractional-order calculus in his study of Brownian motion and pointed out the exis-
tence of fractional-order derivative in many fields of science and engineering, leading
to a boom in the study of fractional-order calculus. Because the fractional-order
calculus accumulates the overall information of a function in a weighted way, while
the integer-order calculus is determined by the local characteristics of the func-
tion, the fractional-order derivative can describe the phenomena existing in nature
more objectively and has better memorability, and the system with fractional-order
derivative is more likely to reach stability. So fractional calculus is introduced into
the neural network model to form a fractional-order neural networks, which has
been widely studied because of its extensive applications in natural science and
engineering technology [14, 17, 25–27, 41]. In addition, because there are inevitably
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time delays in many network fields, a real neural network model should contain time
delays. Therefore, the dynamic behavior of neural networks with fractional-order
derivative and time delay, which should be regarded as the functional fractional-
order neural networks (FFNNs), has been widely researched [28,42,44,45].

Synchronization which is one of the important dynamic behaviors of neural
networks has attracted more and more scholars’ attention. It includes complete
synchronization [30, 31], Lag synchronization [8], anti-synchronization [23], cluster
synchronization [13], quasi-uniform synchronization [38], etc. Because projection
synchronization can achieve faster communication speed based on its proportional
characteristics [32], so research on the projection synchronization problem of neural
networks has extremely important theoretical and practical significance. Schol-
ars have achieved many different methods to research projective synchronization of
neural networks, such as adaptive control [37, 43], linear-nonlinear feedback con-
trol [6, 33], impulsive control [11], pinning control [12, 46], and so on. Nowadays,
more and more scholars and engineers pay attention to the projection synchro-
nization of FFNNs. For example, in 2018, Zhang et al. [47] studied the projective
synchronization of FFNNs based on the comparison principle, and obtained some
criteria ensuring the projective synchronization of the FFNNs via using fractional-
order differential inequalities. In 2019, Gu et al. [9] discussed the memristor-based
FFNNs and obtained several feedback control strategies ensuring the projective syn-
chronization of the fractional-order memristor-based neural networks. In 2020, Guo
et al. [10] studied the quasi-projective synchronization of complex-valued FFNNs,
and established a quasi-projective synchronization criterion by using some inequal-
ity techniques. In 2021, Wang et al. [34] researched the projective synchronization
of complex-valued FFNNs, achieved two projective synchronization criteria vie em-
ploying Lyapunov stability theory and designing feedback controller and adaptive
controller. In 2022, Liu et al. [20] discussed the projective synchronization of FFNNs
with mixed time delay, and obtained several criteria ensuring the projective syn-
chronization for the delayed system vie introducing an extended Halanay inequality.

As we all know, when we establish mathematical models to describe objective
practical problems, it is difficult to obtain accurate values of model parameters.
Therefore, in view of the fact that parameter uncertainty is likely to knock out
the synchronization, stability or many other performances of nonlinear systems, we
cannot ignore the effect of parameter uncertainty when we discuss the dynamic
characteristics of nonlinear systems. Very recently, many scholars have paid at-
tention to the synchronization problem of FFNNs with parameter uncertainty. For
example, in 2018, Yang et al. [40] studied the synchronization problem of memristor-
based complex-valued FFNNs with parameter nondeterminacy and achieved several
criteria to sure the global asymptotically synchronization for the delayed neural net-
works. In 2020, He et al. [15] studied the matrix projection synchronization problem
of FFNNs with different time scales based on fractional-order Barbalat theory and
Lyapunov-Krasovskii generalization as well as properties of fractional-order differ-
ential inequality. In 2021, Huang et al. [16] discussed the stability of complex-valued
FFNNs with uncertain parameters, and established several criteria to ensure the ro-
bustly stable of the equilibrium point for the addressed system. In 2022, Li et al. [19]
studied the robust stability and projective synchronization of FFNNs with uncer-
tain parameters by using general Halanay inequality and free-weighting method. In
particular, in 2020, Wang et al. [35] discussed the global synchronization for FFNNs
with variable coefficients vie using the properties of delayed differential inequalities,
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developing some new analysis method and building appropriate Lyapunov function.
However, FFNNs with variable coefficients is rarely studied in the existing work.

Because the self inhibition rate of neurons in the neural networks and the connection
weight between neurons should be a function of time, not a constant, FFNNs with
variable coefficients can better simulate the interaction between neurons in the
neural network system. Therefore, inspired by the previous work, the purpose
of this article is to deal with the projective synchronization problem of FFNNs
with variable coefficients. By constructing the Lyapunov function, the asymptotic
stability of the error system is verified, and some sufficient conditions to ensure
the global projective synchronization of the new neural networks are achieved. The
remainder of this article is organized as follows. In Section 2, some definitions and
lemmas are presented, and the model description is given. In Section 3, the global
projective synchronization controllers are designed, and some criteria ensuring the
global projective synchronization for the new FFNNs are afforded. In Section 4,
a numerical example with many numerical simulations is employed to verify the
feasibility of the theoretical results. Finally, the conclusions are summarized.

Remark 1.1. As we all know, there is no general rule in the design of synchro-
nization controller of neural network, which brings difficulties and challenges to the
design of controller. In addition, it is also very difficult to construct a Lyapunov
function satisfying the stability theorem of the delay fractional-order differential sys-
tem, which requires many tests. The innovations and contributions of this article
are summarized as follows: (1) In order to more preferably represent the interaction
between neurons, the variable-parameters are introduced into the known FFNNs to
form a new neural networks model. (2) Utilizing the properties of delayed fractional-
order differential inequalities and constructing a suitable Lyapunov function as well
as developing some new analysis methods, some criteria for the global projective
synchronization of the new neural networks model is established. (3) Based on the
fact that Caputo fractional derivative is a generalization of integral derivative, the
results obtained in this article are not only applicable for fractional-order systems
but also can be regarded as extensions of integer-order ones. (4) Compared with
the results in [9, 10, 19,35,47], the results obtained in this article are more general,
which will greatly expand the application scope of FFNNs.

2. Model Statement and Preliminaries
In this section, we will give some preparatory knowledge. A description of FFNNs
with variable coefficients is also given in this section.

Definition 2.1 ( [24]). The Gamma function is defined as

Γ(α) =

∫ ∞

0

e−ttα−1dt.

It is obvious that the Gamma function satisfies Γ(α+ 1) = αΓ(α).

Definition 2.2 ( [24]). The Caputo fractional-order derivative of function x(t) is
defined as

Dα
0,tx(t) = D

−(n−α)
0,t

dn

dtn
x(t) =

1

Γ(n− α)

∫ t

0

(t− s)n−α−1x(n)(s)ds,
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where α represents the order of the derivative, and n− 1 < α ≤ n. The fractional-
order derivative Dα discussed in this paper refers to the Caputo derivative Dα

0, t.

Lemma 2.1 ( [36]). Suppose that x(t) = (x1(t), · · · , xn(t))
T ∈ Rn is a differentiable

vector-valued function and P ∈ Rn×n is a symmetric positive matrix. Then, for any
time instant t ≥ 0, we have

1

2
Dα[xT (t)Px(t)] ≤ (xT (t)P )Dαx(t),

where 0 < α < 1. In particular, if P = E is an identity matrix, then we have

1

2
Dα[xT (t)x(t)] ≤ xT (t)Dαx(t).

Lemma 2.2 ( [3]). For Caputo fractional-order differential system

Dαx(t) = f(t, x(t), x(t− τ)), (2.1)

where x ∈ Rn, 0 < α < 1. Suppose that w1(s), w2(s) are continuous nondecreasing
functions, w1(s) and w2(s) are positive for s > 0, and w1(0) = w2(0), w2(s) strictly
increasing. If there is a continuously differentiable function V : R×Rn → R , such
that

w1(∥x∥) ≤ V (t, x) ≤ w2(∥x∥),

for t ∈ R, x ∈ Rn, and there exist two constants p, q > 0, with p < q such that

DαV (t, x(t)) ≤ −qV (t, x(t)) + p sup
−τ≤θ≤0

V (t+ θ, x(t+ θ)), t > t0,

then the Caputo fractional-order differential system (2.1) is globally uniformly
asymptotically stable.

In this paper, we discuss the projection synchronization problem of variable
coefficient FFNNs as a master system, which is described by

Dαxi(t) = −ai(t)xi(t) +

n∑
j=1

bij(t)fj(xj(t)) +

n∑
j=1

cij(t)gj(xj(t− τ)) + Ii, (2.2)

or written as a vector form

Dαx(t) = −A(t)x(t) +B(t)f(x(t)) + C(t)g(x(t− τ)) + I, (2.3)

where each element in A(t), B(t) and C(t) is required to be a positive bounded
function, 0 < α < 1, t ≥ 0,i = 1, · · · , n, n represents the number of neurons,
x(t) = (x1(t), · · · , xn(t))

T ∈ Rn represents the state variable of the neuron at time
t, τ > 0 denotes the communication delay of the neuron, A(t) is the rate at which the
i-th neuron returns to a resting state without being connected to the neural network,
B(t) denotes the influential strength of the j-th neuron to the i-th neural at time t,
and C(t) indicates the influential strength of the j-th neuron to the i-th neural at
time t−τ, f(x(t))=(f1(x1(t)), · · · , fn(xn(t)))

T and g(x(t−τ))=(g1(x1(t−τ)), · · · ,
gn(xn(t− τ)))T represent the excitation functions of the neuron at time t and t− τ,
respectively, and I = (I1, · · · , In)T is the external input vector.
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The slave system is given by

Dαyi(t) = −ai(t)yi(t)+

n∑
j=1

bij(t)fj(yj(t))+

n∑
j=1

cij(t)gj(yj(t−τ))+Ii+ui(t), (2.4)

or written as a vector form

Dαy(t) = −A(t)y(t) +B(t)f(y(t)) + C(t)g(y(t− τ)) + I + u(t), (2.5)

here y(t) = (y1(t), · · · , yn(t))T ∈ Rn denotes the state variable of the slave system,
and u(t) = (u1(t), · · · , un(t))

T represents the synchronous controller to be designed,
the other parameters represent the same meaning as those given in system (2.3).

Remark 2.1. When A(t) = eptdiag(a1, a2, · · · , an), B(t) = ept(bij)n×n, and C(t) =
ept(cij)n×n, the model (2.3) is reduced to the model in literature [35]. When
A(t) = diag(a1, a2, · · · , an), B(t) = (bij)n×n, and C(t) = (cij)n×n, the model (2.3)
is reduced to the model in literature [9, 23,47]. Moreover, if τ = 0, the model (2.3)
is further reduced to the model in literature [1, 4, 39].

Definition 2.3 ( [2]). If there is a non-zero constant β such that, for any two
solutions x(t) and y(t) of the master-slave systems (2.3) and (2.5) with different
initial values, it holds that lim

t→∞
∥y(t)− βx(t)∥ = 0, then the slave system (2.5) is

called to be globally asymptotically projective synchronized to the master system
(2.3).

Remark 2.2. When β = 0, the projective synchronization problem is equivalent
to that the system (2.5) is stabilized to the origin. When β = 1 and −1, the
projective synchronization problem is equivalent to complete synchronization and
anti-synchronization, respectively.

Assumption 2.1. The neuron excitation function gj(·), fj(·) satisfies the Lipschitz
continuity in the field of real numbers, that is, there are constants hj > 0, lj > 0
(j = 1, 2, · · · , n) such that

|gj(y)− gj(x)| ≤ hj |y − x| , |fj(y)− fj(x)| ≤ lj |y − x| ,

for any y ̸= x ∈ R.

3. Projective synchronization

In this section, we study the projective synchronization of master-slave systems
(2.3) and (2.5) for FFNNs with variable coefficients, which is equivalent to discuss
the stability of error systems. So now we only need to establish an appropriate
controller to prove the stability of the error system under the control scheme.

Set the error vector

ei(t) = yi(t)− βxi(t), i = 1, · · · , n,
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then the error system is as follows

Dαei(t) = −ai(t)yi(t) +

n∑
j=1

bij(t)fj(yj(t)) +

n∑
j=1

cij(t)gj(yj(t− τ)) + Ii + ui (t)

−β

−ai(t)xi(t) +

n∑
j=1

bij(t)fj(xj(t)) +

n∑
j=1

cij(t)gj(xj(t− τ)) + Ii


= −ai(t)yi(t) + βai(t)xi(t) +

n∑
j=1

bij(t)[fj(yj(t))− βfj(xj(t))]

+

n∑
j=1

cij(t)[gj(yj(t− τ))− βgj(xj(t− τ))] + (1− β) Ii + ui (t) ,

(3.1)
or written as a vector form

Dαe(t) = −A(t)e(t) +B(t)[f(y(t))− βf(x(t))]

+C(t)[g(y(t− τ))− βg(x(t− τ))] + u(t) + (1− β)I,
(3.2)

where e(t) = (e1(t), · · · , en(t))T ∈ Rn, and β is a projective coefficient.
Through analysis, it is easy to know that if we prove the asymptotic stability

of the zero solution of the error system (3.2), it is equivalent to us proving the
asymptotic projective synchronization of the master system (2.3) and the slave
system (2.5).

The controller ui(t), i = 1, · · · , n, selected as follows

ui(t) = si(t) + wi(t),

si(t) =

n∑
j=1

bij (t) [βfj(xj(t))− fj(βxj(t))]

+

n∑
j=1

cij (t)[βgj(xj(t− τ))− gj(βxj(t− τ)) + (β − 1)Ii,

wi(t) = −ki[yi(t)− βxi(t)],

(3.3)

where ki are the positive constant depends on A(t), B(t), C(t), and hj , lj , j=1, 2, · · · , n.

Remark 3.1. The controller ui(t) is a hybrid controller, where si(t) is an open
loop controller and wi(t) is an adaptive feedback controller.

Let

p =
n

max
i=1

{
n∑

j=1

hj sup
t0≤t<+∞

{cij(t)}},

q =
n

min
i=1

{2 inf
t0≤t<+∞

{ai(t)}+2ki−
n∑

j=1

sup
t0≤t<+∞

{cij(t)}hj−2

n∑
j=1

lj sup
t0≤t<+∞

{bij(t)}}.

Theorem 3.1. Under Assumptions 2.1, if there exist appropriate positive constants
ki, i = 1, · · · , n, such that q > p > 0, then the variable coefficient FFNNs (2.5)
with controller (3.3) can be globally projective synchronized onto (2.3) in the finite
time.
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Proof. Setting up a suitable Lyapunov function

V (t) =
1

2
e(t)T e(t).

According to Lemma 2.1, we take the fractional-order derivative of V (t) , such that

DαV (t)=Dα

[
1

2
e(t)

T
e(t)

]
≤e(t)Dαe(t)

=

n∑
i=1

ei(t){−ai(t)yi(t)+βai(t)xi(t)+

n∑
j=1

bij (t) [fj(yj(t))−fj(βxj(t)]

+

n∑
j=1

cij (t)[gj(yj(t− τ))− gj(βxj(t− τ))− ki[yi(t)− βxi(t)]}

=

n∑
i=1

ei(t){(−ai(t)− ki) ei(t) +

n∑
j=1

bij (t) [fj(yj(t))− fj(βxj(t)]

+

n∑
j=1

cij (t)[gj(yj(t− τ))− gj(βxj(t− τ))}.

(3.4)
According to Assumption 2.1, (3.4) and the boundedness of matrices A(t), B(t)

and C(t), we have

DαV (t) ≤
n∑

i=1

ei(t){(−ai(t)− ki)}ei(t) +
n∑

i=1

|ei(t)|{
n∑

j=1

sup
t0≤t<+∞

{bij(t)}lj |ei(t)|

+

n∑
j=1

sup
t0≤t<+∞

{cij(t)}hj |ei(t− τ)|}

≤
n∑

i=1

(
− inf

t0≤t<+∞
{ai(t)} − ki

)
e2i (t) +

n∑
i=1

sup
t0≤t<+∞

{bij(t)}lje2i (t)

+

n∑
i=1

n∑
j=1

sup
t0≤t<+∞

{cij(t)}hj |ei(t)| |ei(t− τ)|.

(3.5)
According to the trigonometric inequality, we can get

|ei(t)| |ei(t− τ)| ≤ 1

2
|ei(t)|2 +

1

2
|ei(t− τ)|2, (3.6)

thus, from (3.5) and (3.6), it holds that

DαV (t) ≤− 1

2

n∑
i=1

(2 inf
t0≤t<+∞

{ai(t)}+ 2ki −
n∑

j=1

sup
t0≤t<+∞

{cij(t)}hj

− 2

n∑
j=1

lj sup
t0≤t<+∞

{bij(t)})e2i (t)+
1

2

n∑
i=1

n∑
j=1

hj sup
t0≤t<+∞

{cij(t)}e2i (t− τ)

≤− qV (t) + pV (t− τ).
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So, we can get

DαV (t, x(t)) ≤ −qV (t, x(t)) + p sup
−τ≤θ≤0

V (t+ θ, x(t+ θ)).

By Lemma 2.2 and q > p > 0, we have that the variable coefficient FFNNs (2.5)
with controller (3.3) can be globally projective synchronized onto (2.3) in the finite
time.

4. Numerical simulation
In this section, some numerical simulations are presented to illustrate the validity
of the theoretical results established above.

Example 4.1. Consider the following two-dimensional FFNNs with variable coef-
ficients as the master system

Dαx(t) = −A(t)x(t) +B(t)f(x(t)) + C(t)g(x(t− τ)) + I, (4.1)

and the slave system is described by

Dαy(t) = −A(t)y(t) +B(t)f(y(t)) + C(t)g(y(t− τ)) + I + u(t), (4.2)

where

A(t) =

 cos t+ 3 0

0 cos t+ 3

 , B(t) =

 2 cos t cos t

− sin t cos t

 , C(t) =

−2 sin t −2 cos t

− sin t − sin t

 ,

u(t) = (u1(t), u2(t))
T , α = 0.9, I = (I1, I2)

T = (0, 0)T , τ = 0.01.

The activation functions are given by f(x(t))=g(x(t))=(tanh(x1(t)), tanh(x2(t)))
T ,

it is easy to know that the function f(u), g(u) satisfies Assumption 2.1 when

diag(l1, l2) = diag(h1, h2) = diag(1, 1).

According to the Controller (3.3), we select the adaptive constants k1=6, k2=7
to make q > p > 0. Therefore, according to Theorem 3.1, the master-slave systems
(4.1) and (4.2) can achieve global asymptotic projective synchronization, which is
demonstrated in Figures 1-2.

In Figure 1, it is easy to see that the projective synchronization errors with the
projective coefficient β = −2 and initial values

x1(t) = 1.2, x2(t) = 3.5, y1(t) = 2.1, y2(t) = 1.2, t ∈ [−0.01, 0], (4.3)

converge to zero, which indicate that master-slave systems (4.1) and (4.2) can obtain
global asymptotic projective synchronization. And evolutions of the master-slave
systems (4.1) and (4.2) are shown in Figure 2.

The simulation results for the projective coefficient β = 3 are shown in Figures
3-4. To further verify that the master-slave systems (4.1) and (4.2) can achieve
global asymptotic projective synchronization, we choose different initial conditions,
different fractional orders and different time delays for numerical simulation, which
are shown in Figures 5-16.
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Figure 1. Synchronization errors of the master-slave systems (4.1) and (4.2) with β = −2 and (4.3).

Figure 2. Evolutions of the master-slave systems (4.1) and (4.2) with β = −2 and (4.3).

Figure 3. Synchronization errors of the master-slave systems (4.1) and (4.2) with β = 3 and (4.3).
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Figure 4. Evolutions of the master-slave systems (4.1) and (4.2) with β = 3 and (4.3).

Figure 5. Synchronization errors of the systems (4.1) and (4.2) with different initial values and β = −2.

Figure 6. Evolutions of the master-slave systems (4.1) and (4.2) with different initial values and β = −2.
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Figure 7. Synchronization errors of the systems (4.1) and (4.2) with different fractional orders and
β = −2.

Figure 8. Evolutions of the master-slave systems (4.1) and (4.2) with different fractional orders and
β = −2.

Figure 9. Synchronization errors of the systems (4.1) and (4.2) with different delays and β = −2.
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Figure 10. Evolutions of the master-slave systems (4.1) and (4.2) with different delays and β = −2.

Figure 11. Synchronization errors of the systems (4.1) and (4.2) with different initial values and β = 3.

Figure 12. Evolutions of the master-slave systems (4.1) and (4.2) with different initial values and β = 3.
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Figure 13. Synchronization errors of the systems (4.1) and (4.2) with different fractional orders and
β = 3.

Figure 14. Evolutions of the master-slave systems (4.1) and (4.2) with different fractional orders and
β = 3.

Figure 15. Synchronization errors of the systems (4.1) and (4.2) with different delays and β = 3.
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Figure 16. Evolutions of the master-slave systems (4.1) and (4.2) with different delays and β = 3.

As can be seen from the Figures 5-16, when different initial values, fractional
orders, delays and projective coefficients are selected, the final error curves of the
master-slave systems (4.1) and (4.2) tend to zero according to the Controller (3.3).
That is to say, based on the Controller (3.3), the initial value, fractional order,
delay and projection coefficient have no effect on the result of synchronization of
master-slave systems (4.1) and (4.2), but have an effect on the synchronization
process and synchronization time.

5. Conclusion
This article deals with the projective synchronization problem of FFNNs with vari-
able coefficients and Caputo derivatives. The introduction of variable coefficients
into existing neural network models brings two challenges to our research work.
First, the construction of a new appropriate controller; The second is the construc-
tion of a new Lyapunov function satisfying the Razumikhin-type stability theorems
for functional fractional-order differential systems. Based on the properties of de-
lay fractional-order differential inequalities and constructing the Lyapunov function
some effective criteria are derived to ensure the global projective synchronization
of the master-slave systems obtained the addressed FFNNs. In addition, the cor-
rectness of the theoretical results is verified by numerical simulation. It should
be pointed out that there is no research on projection synchronization of FFNNs
with variable coefficients in the existing literature. And the anti-synchronization,
complete synchronization of the addressed FFNNs are some special cases of results
obtained in this article. Therefore, the results in this article are more meaningful
than those in the literature [9,10,19,35,47]. Synchronization problem of more gen-
eral FFNNs will be our future research topic. In future work, the new synchronous
control method will also be extended to fuzzy systems [7], singular time-delay sys-
tems [5], uncertain stochastic memory systems [18,29], and others.
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