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1. Introduction
The present paper concerns KAM theorem and iso-energetic KAM theorem on n-
dimensional Poisson Manifold (M,Π), where rank M = 2r everywhere, 2r ≤ n, Π
is a given bivector field.

On symplectic manifold, i.e., 2r = n, the celebrated KAM theory duo to Kol-
mogorov ( [19]), Arnold ( [1]) and Moser ( [29]) asserts the persistence of Lagrangian
invariant tori for nearly integrable system, which answers certain stability of the
planetary systems.

It is well known that a symplectic manifold is a smooth manifold with a non-
degenerate closed differential 2-form. When 2r < n, the 2-form on symplectic
manifold is degenerate. A general manifold, i.e., Poisson manifold, need to be
considered. For an n-dimensional Poisson manifold (M,Π), in local coordinate,
Hamilton’s equations take the form

dx

dt
= J(x)∇H(x),

where x ∈ M , J(x) = (Ji,j = {xi, xj})n×n is called Poisson structure matrix. The
rank of Poisson manifold (M,Π) at x equals the rank of the structure matrix J(x),
which is independent of the choice of coordinate. Since the Poisson bracket is skew-
symmetrical, i.e. for F , H ∈ M , {F,H} = −{H,F}, the rank of a Poisson manifold
at any point is always an even integer, which is the reason why consider a Poisson
manifold with rank 2r. Defined the Hamiltonian vector field by XH := {·,H}, where
H ∈ C∞(M). Let us retrospect some basic definitions [20,32].

Definition 1.1. A Hamiltonian sysytem H(x) on n-dimension Poisson manifold
(M,Π) with rank 2r everywhere is integrable, if there are functions f1, · · · , fl−1

satisfied

(1) f1, · · · , fl−1, H(x) are independent;
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(2) f1, · · · , fl−1, H(x) are in involution (pairwise);
(3) r + l = n.

Definition 1.2. Let Xf1 , · · · , Xfl be vector fields on Poisson manifold M . An
integral submanifold of {Xf1 , · · · , Xfl} is a manifold N ⊂ M whose tangent space
TN |x is spanned by the vectors {Xf1 |x, · · · , Xfl |x} for each x ∈ N.

Assume the integral manifold Fx of Xf1 , · · · , Xfl , passing through x, is compact.
Then, in the neighbourhood of Fx, the Poisson structure and integrable Hamiltonian
have simple form, which could be stated as follow [20]:

Lemma 1.1. Let (M,Π) an n-dimensional Poisson manifold with rank Π = 2r
everywhere. Denote F = (f1, · · · , fl) an integrable system on (M,Π). Assume that,
for x ∈ M ,

(1) dxf1 ∧ · · · ∧ dxfl 6= 0,
(2) The integral manifold Fx of Xf1 , · · · , Xfl , passing through x, is compact.

Then, in a neighborhood U of Fx, there is a coordinate transformation ϕ : (θ1, · · · , θr,
I1, · · · , Il) 7→ x such that in new coordinate

(1) U is diffeomorphism T r ×Bl;

(2) Poisson structure is Π =
r∑

i=1

∂
∂θi

∧ ∂
∂σi

;

(3) Hamiltonians f1, · · · , fl only depend on coordinates I1, · · · , Il.

Remark 1.1. Here, we call I = (I1, · · · , Il) and θ = (θ1, · · · , θr) action coordinate
and angle coordinate, respectively. According to definition 1.1, the number of action
is bigger than the angle.

Remark 1.2. In action-angle coordinate, the motion equation of integrable Hamil-
tonian system on (M,Π) could be written as follows:

 dθ
dt

dI
dt

 =


0r×r Ir×r 0r×(n−2r)

−Ir×r 0r×r 0r×(n−2r)

0(n−2r)×r 0(n−2r)×r 0(n−2r)×(n−2r)


 ∂H(I)

∂θ

∂H(I)
∂I



=

 ω

0l×1

 ,

where ω is the first r components of ∂H(I)
∂I . According to Weyl Theorem, if ω =

(ω1, · · · , ωr) is rationally independent, the phase trajectories are everywhere dense
on tori.

The integral submanifolds of Hamiltonian vector fields Xf1 , · · · , Xfl , are leaves
of a foliation. Denote Fx the leaf through x ∈ M , which is an invariant manifold.
When Fx is compact, it is diffeomorphic to an r-dimensional torus, which is called
standard Liouville torus.

The study about the influence of small Hamiltonian perturbations on an inte-
grable Hamiltonian system was called by Poincaré the basic problem of the dynam-
ics ( [2, 45]). At present Poincaré’s basic problem of the dynamics continues to
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occupy one of the most important places in the theory of dynamical systems ( [45]).
Then, for Hamiltonian system on Poisson manifold, what is the influence of small
perturbation on the foliation of integrable Hamiltonian?

Consider a nearly integrable Hamiltonian system on (M,Π), a n-dimensional
Poisson manifold with rank Π = 2r everywhere,

H(x) = H1(x) + εP (x), (1.1)

where H1(x) is integrable, P (x) is non-integrable, x ∈ M , ε is a small parameter.
According the Lemma 1.1, in the neighborhood of integrable manifold Fx, passing
through x, there is a transformation ϕ : (I, θ) → x such that (1.1) is changed to

H ◦ ϕ = H(I, θ) = H1(I) + εP (I, θ), (1.2)

where θ = (θ1, · · · , θr) ∈ T r, p = (p1, · · · , pn−r) ∈ G ⊂ Bn−r, G is a bounded
closed region.

To state our main results, we make the following assumptions.

(R) There exists an N > 1 such that

rank{∂α
I ω : 0 ≤ |α| ≤ N, ∀I ∈ G} = r,

where ω is the first r components of ∂H1(I)
∂I .

(K) Assume

det
∂2H1

∂I2
(I) 6= 0,∀I ∈ G.

(Iso) Assume

det

 ∂2H1

∂I2
∂H1

∂I

(∂H1

∂I )T 0

 6= 0,∀I ∈ G.

Our main results can be stated as follows.

Theorem 1.1. Consider nearly integrable Hamiltonian (1.1) on (M,Π), n-dimensi-
onal Poisson manifold with rank Π = 2r everywhere.

1). Assume (R) hold. Then there exist a ∆0 > 0 and a family of Cantor sets
Gε ⊂ G, 0 < ε ≤ ∆0, such that for any I ∈ Gε the unperturbed torus TI

persists and gives rise to an analytic, Diophantine, invariant r−torus of the
perturbed system with small perturbed frequency ωε(I). Moreover, the Lebesgue
measure |G \Gε| → 0 as ε → 0.

2). Assume (R) and (K) hold on G. Then there exist a ∆0 > 0 and a family
of Cantor sets Gε ⊂ G, 0 < ε ≤ ∆0, such that for any I ∈ Gε the unper-
turbed Diophantine tori will persist and give rise to perturbed tori preserving
corresponding unperturbed toral frequencies.

3). Let Σ = {I : H1(I) = c} be a given energy surface. Assume (Iso) and (R) on
Σ. Then there exist a ∆0 > 0 and a family of Cantor sets Σε ⊂ Σ, 0 < ε ≤ ∆0,
such that for any I ∈ Σε the unperturbed Diophantine tori will persist and give
rise to perturbed tori keeping the same energy and maintaining the frequency
ratio. Moreover, |Σ \ Σε| → 0 as ε → 0.
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Remark 1.3. A torus is called Diophantine torus, if, for some constants c > 0 and
τ > 0, the frequency ω̂ on torus satisfy that |〈k, ω̂〉| > 1

c|k|τ for all integer vectors
k 6= 0.

Remark 1.4. According to the proof, present paper only showes the preservation
of frequency ratio on a given high energy surface.

Remark 1.5. The first part of main results implies that there exists foliation for
nearly integrable Hamiltonian on n-dimensional Poisson manifold with rank 2r.

Remark 1.6. For nearly integrable Hamiltonian on n-dimensional Poisson mani-
fold with rank 2r, the second part of main results tell us not only the existence of
foliation, but also the preservation of frequency between two leaves.

Remark 1.7. The third part of main results tell us the existence of foliation on
a given high energy surface and the preservation of frequency ratio between two
leaves.

The paper is organized as follows. In section 2, for an abstract Hamiltonian
system on an n-dimensional Poisson manifold (M,Π) with rank Π = 2r everywhere,
we give a KAM theorem and a iso-energetical KAM theorem. In section 3, we prove
our main results using the theorem in section 2.

2. Abstract Hamiltonian
Consider a family of real analytic Hamiltonian systems with the following action-
angle form:

H(y, x) = H1(y) + εP (y, x), (2.1)

where (x, y) ∈ U , U is a complex neighbourhood {(x, y) : |Imx| < r, dist(y,G) < β}
of T r ×G, G ⊂ Rl is a bounded closed region and ε is a small parameter.

When r = l, the celebrated KAM theory asserts the persistence of Diophantine
tori under Kolmogorov nondegenerate condition, i.e. det ∂2

IH1 6= 0. For further
study about the persistence of lower dimensional invariant tori, see [8,16–18,26,27,
30,34–36,39,41,50], especially, for resonant invariant tori, see [7,10,23,24,37,44]. For
KAM theorem on multiscale Hamiltonian system, refer to [11,21,38,40,46–48,51].

For a long time, one has been trying to establish the KAM type results for
nonsymmetric Hamiltonian systems, i.e. l 6= r. When l < r and l + r is even, the
system is co-isotropic one, for which we refer the reader to [6,12,13,31,33,49]. When
l+n is odd, which is a challenge problem ( [25,28,42]), [22] studied the persistence of
invariant tori under the background of Poisson manifold, which could be applied to
the perturbation of three-dimensional incompressible fluid flows ( [3, 28, 32]). Also
see [4, 9]. For KAM theory on atropic tori, refer to [14,15,42,43].

Consider a parameterized Hamiltonian system of the following form:

H = N (y, ξ) + εP(x, y, ξ), (2.2)

N = e(ξ) + 〈Ω(ξ), y〉+ 〈y,A(ξ)y〉+
m∑
j=3

hj(ξ)y
j ,

defined on D(r, s) = {(x, y) : |Im x| < r, |y| < s}, a (r, s)−complex neighborhood
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of T r × {0} ⊂ T r × Rl, l > r, where P = εP (x, y, ξ), ξ ∈ Λ = {ξ : |ξ| ≤ δ1} ⊂ Rd

and ε defined as above. Denote Λ̄ = {ξ ∈ Cd : |ξ − Λ| ≤ η̄}.
To state the results for (2.2), we need the following assumptions.

(A1) There is an N > 1 such that

rank{∂α
ξ ω : 0 ≤ |α| ≤ N} = r,

where ω is the first r components of Ω.
(A2) Assume

det(A+ ∂2
y

m∑
j=3

hj(ξ)y
j) 6= 0,∀ξ ∈ Λ.

(A3) Assume

det

A+ ∂2
y

m∑
j=3

hj(ξ)y
j Ω(ξ)

ΩT (ξ) 0

 6= 0,∀ξ ∈ Λ.

Our results for (2.2) state as follows.

Theorem 2.1. Consider Hamiltonian (2.2) on a (l+ r)-dimensional Poisson man-
ifold (M,Π) with Poisson structure matrix

J =


0r×r Ir×r 0r×(l−r)

−Ir×r 0r×r 0r×(l−r)

0(l−r)×r 0(l−r)×r 0(l−r)×(l−r)

 .

1). Assume (A1). Then there exist a ∆0 > 0 and a family of Cantor sets Λε ⊂ Λ,
0 < ε ≤ ∆0, such that for any ξ ∈ Λε the unperturbed torus Tξ persists
and gives rise to an analytic, Diophantine, invariant r−torus of the perturbed
system with small perturbed frequency ωε(ξ). Moreover, the Lebesgue measure
|Λ \ Λε| → 0 as ε → 0.

2). Assume (A1) and (A2) on Λ. Then there exist a ∆0 > 0 and a family of
Cantor sets Λε ⊂ Λ, 0 < ε ≤ ∆0, such that for any ξ ∈ Λε the unperturbed
Diophantine tori will persist and give rise to perturbed tori which preserve
corresponding unperturbed toral frequency. Moreover, the Lebesgue measure
|Λ \ Λε| → 0 as ε → 0.

3). Let Σ = {ξ : N = c} be a given energy surface. Assume (A1) and (A3) on Σ.
Then there exist a ∆0 > 0 and a family of Cantor sets Σε ⊂ Σ, 0 < ε ≤ ∆0,
such that for any ξ ∈ Σε the unperturbed Diophantine tori on Σε will persist
and give rise to perturbed tori keeping the same energy and maintaining the
frequency ratio. Moreover, |Σ \ Σε| → 0 as ε → 0.

Remark 2.1. Here we consider the case l > r, since we will use this theorem to
prove the persistence of invariant tori for nearly Hamiltonian system on Poisson
manifold, where l > r. Combining the proof of [22], we believe those results for the
case l < r also hold.
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Remark 2.2. Different from [22], we not only study the existence of invariant
tori for nearly integrable Hamiltonian system, but also study the persistence of
invariant tori with the same frequency and the persistence of invariant tori with
proportionable frequency on a given energy surface.

Remark 2.3. Denote Á the r×r- principal minor of A+∂2
y

m∑
j=3

hj(ξ)y
j . According

to the proof of Lemma 2.1, (A2) could be reduced to:

(A2’) det Á 6= 0,∀ξ ∈ Λ.

Remark 2.4. According to the proof of Lemma 2.1, (A3) could be reduced to:

(A3’) det

 Á ω

ωT 0

 6= 0,∀ξ ∈ Λ.

2.1. KAM steps
Throughout the paper, unless specified explanation, we shall use the same symbol
| · | to denote an equivalent (finite dimensional) vector norm and its induced matrix
norm, absolute value of functions, and measure of sets, etc., and denote by | · |D the
supremum norm of functions on a domain D. Also, for any two complex column
vectors ξ, ζ of the same dimension, 〈ξ, ζ〉 always means ξT ζ, i.e. the transpose of ξ
times ζ. For the sake of brevity, we shall not specify smoothness orders for functions
having obvious orders of smoothness indicated by their derivatives taking.

Let us begin with system (2.2) by regarding it as a Hamiltonian of 0−step, and
rewriting it as follows:

H0 = N0(y, ξ) + εP0(x, y, ξ), (2.3)
N0 = e0(ξ) + 〈Ω0(ξ), y〉+ h0(y, ξ),

h0 = 〈y,A0(ξ)y〉+ ĥ0,

ĥ0 =

m∑
j=3

hj(ξ)y
j ,

defined on D(r0, s0) = {(x, y) : |Im x| < r0, |y| < s0}, a (r0, s0)−complex neigh-
borhood of Tn×{0} ⊂ Tn×Rl, where P0 = εP (x, y, ξ), ξ ∈ Λ0 ⊂ Rd. Moreover, let
γ0 = ε

1
12(7+N) , s0 = ε

2
3m , µ0 = ε

1
4 , η̄0 = ε

3(1−b)−4(b+σ)
14N , where b and σ are constants

to be determined next. Then by Cauchy estimate we have

|∂q
ξP0|D(r0,s0)×Λ̄0

<
γN+7
0 sm0 µ0

η̄N0
, |q| ≤ N.

Next, we will show the KAM iteration from ν−step to (ν + 1)−step. For sim-
plicity, we shall omit the index for all quantities of the ν−th KAM step and use
′+′ to index all quantities in the (ν + 1)−th KAM step. Suppose, at ν−th step, we
have obtained the following smooth family of real analytic Hamiltonians

H(x, y, ξ) = N (y, ξ) + εP(x, y, ξ), (2.4)
N (y, ξ) = e(ξ) + 〈Ω(ξ), y〉+ h(y, ξ), (2.5)
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h(y, ξ) = 〈y,A(ξ)y〉+ ĥ(y, ξ),

ĥ(y, ξ) =

m∑
j=3

hj(ξ)y
j ,

where (x, y) ∈ D(r, s) = {(x, y) : |Im x| < r, |y| < s}, a (r, s)−complex neighbor-
hood of T r × {0} ⊂ T r ×Rl, ξ ∈ Λ ⊂ Rd. Moreover,

|∂q
ξP|D(r,s)×Λ̄ ≤ γN+7smµ

η̄N
, |q| ≤ N. (2.6)

We need to construct a canonical transformation Φ+, which, on a small phase
domain D(r+, s+) and a smaller parameter domain Λ+, transforms (2.4) into a
family of Hamiltonians with the following form

H+ = H ◦ Φ+ = N+ + εP+

enjoying the similar properties to (2.4) but with a much smaller unintegrable per-
turbation P+.

All constants below, for simplicity, denoted by c, are positive and independent
of the iteration process. Define

r+ = δr − d(1− δ2

2
)r0, s+ = s1+b+σ, γ+ =

γ0
4

+
γ

2
,

K+ = ([log
1

s
] + 1)3, D+ = D(s+, r+), D̃ = D(s0, r+ +

5

8
(r − r+)),

Di = D(is+, r+ +
i− 1

8
(r − r+)), i = 1, · · · , 8, η̄+ = η̄ − η̄0

2ν+1
,

where b, σ, d are chosen so that 1 < b � σ � 1, 0 < d � 1, 2−m(b+ σ)− σ > 3
2 ,

δ(1 + b+ σ) > 1 and δ = 1− d. Hereafter, we let τ > max{0, r(r+1)− 1, l(l+1)−
1, (N + 1)N − 1} be fixed.

2.1.1. Truncation

According to the Taylor-Fourier series, we get

P(x, y) =
∑

|k|∈Zn, i∈Zn
+

Pkiy
ie

√
−1⟨k,x⟩.

Let

R =
∑

|k|≤K+, |i|≤m

Pkiy
ie

√
−1⟨k,x⟩. (2.7)

Using Lemma 2.1 in [22], we have

|∂q
ξ (P −R)|D8×Λ̄ ≤

cγN+7µ(s(m+1)(1+b+σ) +
sm+1
+

s )

η̄N
,

under assumptions

s+ ≤ s

16
, (2.8)∫ ∞

K+

λn+Ne−
λ(r−r+)

16 dλ ≤ s(m+1)(1+b+σ). (2.9)
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2.1.2. Elimination of Harmonic terms

The next aim is averaging out all harmonic terms of R, i.e., all terms Pkiy
ie

√
−1⟨k,x⟩,

0 < |k| ≤ K+, |i| ≤ m.
Let F be a Hamiltonian on Poisson manifold. Then on local action-angle coor-

dinate, (x, y), we have

{·, F} =

r∑
i=1

(
∂·
∂xi

∂F

∂yi
− ∂·

∂yi

∂F

∂xi
). (2.10)

Denote ϕ1
F be the time−1 map of Hamiltonian F . According to [32], ϕ1

F preserves
the Poisson structure. Write

[R] =
1

(2π)n

∫
Tn

R(x, y)dx. (2.11)

Assume that there is a F such that

{N , F}+ ε(R− [R]) = 0, (2.12)

then

H̄+ = H ◦ ϕ1
F = (N + εR) ◦ ϕ1

F + ε(P −R) ◦ ϕ1
F = N̄+ + P̄+,

where

P̄+ =

∫ 1

0

{Rt, F} ◦ ϕt
F dt+ ε(P −R) ◦ ϕ1

F ,

N̄+ = N + ε[R],

Rt = (1− t){N , F}+ εR. (2.13)

Therefore,

H̄+ = ẽ+ + 〈Ω̃+, y〉+
1

2
〈y, Ã+y〉+ ˜̂

h+(y) + P̄+,

where

ẽ+ = e+ P00, Ω̃+ = Ω+ P01,

Ã+ = A+ P02,
˜̂
h+(y) = ĥ+(y) + ˆ[R](y),

ˆ[R](y) = [R]− P00 − 〈P01, y〉 −
1

2
〈y, P02y〉.

2.1.3. Homological Equations

We are going to solve homological equations (2.12). Consider the Taylor-Fourier
series of F (x, y)

F (x, y) =
∑

0<|k|≤K+, |i|≤m

fkiy
ie

√
−1⟨k,x⟩. (2.14)
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Denote ω(ξ) and ∂ŷh(y, ξ) are the first r components of Ω(ξ) and ∂yh(y, ξ), respec-
tively. Combing formulas (2.5), (2.10) and (2.14), we have

{N,F} = −
r∑

i=1

∂N

∂yi

∂F

∂xi

= −
∑

0<|k|≤K+,
|i|≤m

r∑
j=1

√
−1kj

∂(Ω(ξ) + h(y, ξ))

∂yj
fkiy

ie
√
−1⟨k,x⟩

= −
∑

0<|k|≤K+,
|i|≤m

√
−1〈k, ω̃(ξ) + ∂ŷh(y, ξ)〉fkiyie

√
−1⟨k,x⟩. (2.15)

Putting (2.7), (2.11) and (2.15) into (2.12) and comparing coefficients of (2.12)
on both sides, formally, we have

√
−1〈k, ω(ξ) + ∂ŷh(y, ξ)〉fki = εPki. (2.16)

Denote

Λ+ = {ξ ∈ Λ : |〈k, ω〉| > γ

|k|τ
, 0 < |k| ≤ K+},

Lk = 〈k, ω(ξ) + ∂ŷh(y, ξ)〉.

Then, on Λ+,

|Lk| = |〈k, ω(ξ) + ∂ŷh(y, ξ)〉|
≥

∣∣|〈k, ω(ξ)〉| − |〈k, ∂ŷh(y, ξ)〉|
∣∣

≥ c
γ

|k|τ
,

supposed

s ·Kτ+1
+ = o(γ), (2.17)

which means that (2.16) is solvable on Λ+. Moreover, all solutions fki, 0 < |k| ≤
K+, |i| ≤ m, are real analytic on Λ+ ×D8.

Inductively,

|∂q
ξ∂

j
yL

−1
k | ≤ c|k||j|+|q|−1 |k|τ(|j|+|q|)

γ|j|+|q|

≤ |k|τ(|j|+|q|)+|j|+|q|−1

γ|j|+|q| .

Then

|∂q
ξ∂

j
yfki| ≤

c|k|τ(|j|+|q|)+|j|+|q|−1

γ|j|+|q|
γN+7sm−|i|µ

η̄N
e−|k|r

≤ c|k|τ(|j|+|q|)+|j|+|q|−1 s
m−|i|µ

η̄N
e−|k|r. (2.18)
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Therefore,

|∂q
ξ∂

j
y∂

z
xF | ≤

∑
|j|≤2, 0<|k|≤K+

|k|z|∂j
y(∂

q
ξfkiy

i)|e|k|(r++ 7
8 (r−r+))

≤ sm−|i|µ

η̄N
Γ(r − r+), (2.19)

where Γ(r − r+) =
∑

|j|≤2, 0<|k|≤K+

|k|τ(|j|+|q|)+|j|+|q|−1+|z|e−
|k|(r−r+)

8 .

2.1.4. Preservation of Frequency or Frequency ratio.

Consider the transformation

ϕ : x → x, y → y + y∗.

Then

H+ = H̄+ ◦ ϕ

= e+ + 〈Ω+, y〉+
1

2
〈y,A+y〉+ ĥ+(y) + P+,

where

e+ = ẽ+ + 〈Ω̃+, y∗〉+
1

2
〈y∗, Ã+y∗〉+ ĥ(y∗) + ˆ[R](y∗),

Ω+ = Ω̃+ + Ã+y∗ + ∂yĥ(y∗),

A+ = Ã+ + ∂2
y ĥ(y∗) + ∂2

y
ˆ[R](y∗),

ĥ+ = ĥ(y + y∗)− ĥ(y∗)− 〈∂yĥ(y∗), y〉 −
1

2
〈y, ∂2

y ĥ(y∗)y〉+ ˆ[R](y + y∗)

− ˆ[R](y∗)− 〈∂y ˆ[R](y∗), y〉 −
1

2
〈y, ∂2

y
ˆ[R](y∗)y〉,

P+ = P̄+ ◦ ϕ+ 〈∂y ˆ[R](y∗), y〉.

Lemma 2.1. Denote Â0 = A+ ∂2
y ĥ.

(1). Assume that Â0 is nonsingular. Then there is a y∗ such that Ω+ = Ω.
Moreover, |∂q

ξy∗| ≤
cγN+7sm−1µ

η̄N , |q| ≤ N .

(2). Assume that

 Â0 ΩT

Ω 0

 is nonsingular. Then, on a given energy surface,

{y, h(y) = ẽ+}, there is a y∗ such that Ω+ = tΩ. Moreover, |∂q
ξy∗| ≤

cγN+7sm−1µ
η̄N , |q| ≤ N .

Proof. Consider the first part of this Lemma, first. Assume that there is a y∗
such that

Ã+(ξ)y∗ + ∂yĥ(y∗) = −P01, (2.20)

which means the preservation of frequency during KAM step.
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Denote M∗ = max
ξ∈Λ0

|(A0 + ∂2
y ĥ)

−1| + 1, M∗ = max
|l|≤d,|j|≤m+5,
|y|≤s0,ξ∈Λ0

|∂l
ξ∂

j
yh0(y, ξ)|. We

could make s0 small such that

M∗(M
∗ + 1)s0 <

1

8
.

Denote

B(y, ξ) = Ã+ +

1∫
0

∂2ĥ(θy, ξ)

∂y2
dθ.

Then (2.20) is changed to

B(y∗, ξ)y∗ = −P01. (2.21)

Since |Ã+−A0|Λ ≤ µ
1
2
0 (according to the definition of Ã+) and |∂

2ĥ
∂y2 |D(s) ≤ (M∗+1)s,

we have

|Â0 −B(y∗)| ≤ |Â0 −A0|+ |A0 − Ã+|+ |B(y∗)− Ã+|

≤ s20 + µ
1
2
0 + (M∗ + 1)s0

≤ 1

2M∗
.

Therefore, B(y∗) is nonsingular and

|B−1(y∗)| ≤
|Â−1

0 |
1− |Â0 −B(y∗)||Â−1

0 |
≤ 2M∗.

Hence,

|y∗| ≤ 2M∗|P01| ≤ 2M∗γ
N+7sm−1µ.

Moreover, with Cauchy estimate, we have

|∂q
ξy∗| ≤

cγN+7sm−1µ

η̄N
,

for |q| ≤ N.
Next, we consider the second part. Assume that there is a (y∗, t∗) such that 〈Ω̃+, y〉+ 1

2 〈y, Ã+y〉+ ĥ(y) + ˆ[R](y) = 0,

Ã+(ξ)y + ∂yĥ(y) + tΩ(ξ) + P01 = 0,
(2.22)

which means the preservation of frequency ratio during KAM step on a given energy
surface if 〈∂y ˆ[R](y∗), y〉 is small enough that could be put into the new perturbation.

Denote ă =
∫ 1

0
Ã+θy∗ + ∂yĥ(θy∗) + ∂y[R̂](θy∗)dθ. Rewrite (2.22) as follows:B(y∗, ξ) Ω̃+

Ω̃+ + ă 0

 y∗

t∗

 =

−P01

0

 , (2.23)
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which implies that formally y∗

t∗

 =

B(y∗, ξ) Ω̃+

Ω̃+ + ă 0

−1 −P01

0

 . (2.24)

Since det

 A x

yT a

 = a detA − yTadjAx, where A is an n × n-matrix, x, y ∈ Rn,

we have

B(y∗, ξ) Ω̃+

Ω̃+ + ă 0

−1

=

adj

B(y∗, ξ) Ω̃+

Ω̃+ + ă 0


det

B(y∗, ξ) Ω̃+

Ω̃+ + ă 0



=

adj

 B(y∗, ξ) Ω̃+

(Ω̃+ + ă)T 0


(Ω̃+ + ă)TadjB(y∗, ξ)Ω̃+

=

adj

 B(y∗, ξ) Ω̃+

(Ω̃+ + ă)T 0


(Ω + P01 + ă)TadjB(y∗, ξ)(Ω + P01)

=

adj

 B(y∗, ξ) Ω̃+

(Ω̃+ + ă)T 0


b̌

,

where b̌ = ΩTadjB(y∗, ξ)Ω + ΩTadjB(y∗, ξ)P01 + (P01 + ă)adjB(y∗, ξ)Ω + (P01 +
ă)adjB(y∗, ξ)P01. Hence,

|

 y∗

t∗

 | ≤ (
1

ΩTadjB(y∗, ξ)Ω
+O(µ0))|adj

B(y∗, ξ) Ω̃+

Ω̃+ + ă 0

−P01

0

 |

≤ γN+7sm−1µ.

Moreover, for |q| ≤ N,

|∂q
ξy∗| ≤

cγN+7sm−1µ

η̄N
.

2.1.5. Estimate for New Hamiltonian

By the estimate of |∂q
ξy∗| together with definitions of e+, Ω+ and A+, we have

|∂q
ξ (e+ − e)| ≤ cγN+7sµ

η̄N
,
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|∂q
ξ (Ω+ − Ω)| ≤ cγN+7sµ

η̄N
,

|∂q
ξ (A+ −A)| ≤ cγN+7µ

η̄N
.

Denote ϕt
F1

, ϕt
F2

as the components of ϕt
F in x, y planes, respectively, and let

XF be the vector field defined by

 dx
dt

dy
dt

 =


0r×r Ir×r 0r×(n−2r)

−Ir×r 0r×r 0r×(n−2r)

0(n−2r)×r 0(n−2r)×r 0(n−2r)×(n−2r)


 ∂F (x,y)

∂x

∂F (x,y)
∂y

 . (2.25)

Then ϕt
F = id +

∫ t

0
XF ◦ ϕλ

F dλ. For any (y, x) ∈ D3, we let t∗ = sup{t ∈ [0, 1] :

ϕt
F (y, x) ∈ D4}. Since s+ ≤ s

16 , we get D4 ⊂ D∗, where D4 = D(4s+, r+ + 3
8 (r −

r+)), D∗ = D( s2 , r+ + 6
7 (r − r+)). Further, we have

|ϕt
F1
(y, x)| = |x|+ |

∫ t

0

(Ir×r, 0r×(n−2r))Fy ◦ ϕλ
F dλ|

≤ 2

8
(r − r+) +

cµΓ(r − r+)

η̄N
≤ r+ +

3

8
(r − r+),

|ϕt
F2
(y, x)| = |y|+ |

∫ t

0

 −Ir×r

0(n−2r)×r

Fx ◦ ϕλ
F dλ|

≤ s+ +
csmµΓ(r − r+)

η̄N
≤ 4s+,

supposed
cµΓ(r − r+)

η̄N
<

1

8
(r − r+), (2.26)

cs2µΓ(r − r+)

η̄N
< 3s+, (2.27)

which implies that ϕt
F (y, x) ∈ D4 for all 0 ≤ t ≤ t∗. Then ϕt

F : D3 → D4 for all
0 ≤ t ≤ 1. Therefore, ϕ1

F : D+ → D(s, r). It follows that |ϕt
F − id|D̃ ≤ cµΓ(r−r+)

η̄N .
With Gronwall Inequality and

Dϕt
F = Did+

∫ t

0

(I ·D2F ) ◦ ϕλ
F ·Dϕλ

F dλ,

where I =


0r×r Ir×r 0r×(n−2r)

−Ir×r 0r×r 0r×(n−2r)

0(n−2r)×r 0(n−2r)×r 0(n−2r)×(n−2r)

, we have

|Dϕt
F −Did| ≤

∫ t

0

e
∫ t
s
|−I·D2F◦ϕr

F |dr| − I ·D2F ◦ ϕs
F |ds

≤ cµΓ(r − r+)

η̄N
. (2.28)
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Lemma 2.2. Assume

∆+ <
γN+7
+ sm+µ+

η̄N+
, (2.29)

where

∆+ =
γN+7s2m−1µ2 + µ2s2mΓ2(r − r+) + γN+7µ(s(m+1)(1+b+σ) +

sm+1
+

s )

η̄N
.

Then there is a constant c such that

|∂q
ξP+|D+×Λ̄+

≤ c
γN+7
+ sm+µ+

η̄N+
.

Proof. According to the definition of [R̂] and Lemma 2.1, we deduce

|∂q
ξ

(
〈∂y ˆ[R](y∗), y〉

)
| ≤ cγN+7s2m−1µ2

η̄N
.

Directly, combining (2.10), (2.13), (2.19) and Lemma 2.1,

|∂q
ξ

∫ 1

0

{Rt, F} ◦ ϕt
F dt ◦ ϕ| ≤

cµ2s2mΓ2(r − r+)

η̄N
.

Besides
|∂q

ξ (P −R) ◦ ϕ1
F ◦ ϕ| ≤ cγN+7µ

η̄N
(s(m+1)(1+b+σ) +

sm+1
+

s
),

finally,

|∂q
ξP+| ≤ ∆+ ≤

γN+7
+ sm+µ+

η̄N+
.

2.2. Iteration Lemma
Next, we will give an Iteration Lemma which insures process of infinite KAM steps.
Let r0, s0, γ0, µ0, Λ0, H0, N0, e0, Ω0, P0, D̃0 = D(r0, β0), D0 = D(r0, s0) and
Φ0 = id be given as above. For ν = 1, 2, · · · , let

sν = s1+b+σ
ν−1 , µν = c0s

σ
ν−1µν−1, γν = γ0(1−

ν∑
i=1

1

2i+1
), Kν = ([log

1

sν−1
] + 1)3,

∆ν = γN+7
ν−1 s2m−1

ν−1 µ2
ν−1 + µ2

ν−1s
2m
ν−1Γ

2(rν−1 − rν) + γN+7
ν−1 µ(s

(m+1)(1+b+σ)
ν−1 +

sm+1
ν

sν−1
),

Λν = {ξ ∈ Λν−1 : |〈k, ων−1(ξ)〉| >
γν−1

|k|τ
, 0 < |k| ≤ Kν}, η̄ν = η̄ν−1 −

η̄0
2ν+1

,

Dν = D(rν , sν), D̃ν = D(rν +
7

8
(rν−1 − rν), s0),

where c0 is the maximum among c mentioned above.
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Lemma 2.3. Assume µ0 = µ0(ε) is sufficiently small. The following hold for all
ν = 0, 1, · · · :

(1)

|eν − e0|Λν , |Ων − Ω0|Λν , |ων − ω0|Λν , |hν − h0|Λν ≤ 2γN+7
0 µ∗,

|eν+1 − eν |Λ∞ , |Ων+1 − Ων |Λ∞ , |ων+1 − ων |Λ∞ , |hν+1 − hν |Λ∞ ≤ γN+7
0 µ∗

2ν+1
,

|∂q
ξPν |Dν×Λ̄ν

≤ γN+7
ν s2νµν

η̄Nν
;

(2) Φν+1 : D̃ν+1 × Λν+1 → D̃ν is canonical and real analytic with respect to
(y, x) ∈ D̃ν+1, ξ ∈ Λν+1. Moreover, Hν+1 = Hν ◦Φν+1, and, on D̃ν+1×Λν+1,

|Φν+1 − id|, |DΦν+1 −Did|, |DiΦν+1| ≤
µ∗

2ν+1
, 2 ≤ i ≤ m;

(3) Λν+1 = {ξ ∈ Λν : |〈k, ων(ξ)〉| > γν

|k|τ ,Kν < |k| ≤ Kν+1}.

Proof. The lemma will be proved by verifying conditions (2.8), (2.9), (2.17),
(2.26), (2.27) and (2.29) for all ν = 0, 1, · · · .

Directly,

µν = cν0µ0s
σ((1+b+σ)ν−1)

b+σ

0 ,

sν = s
(1+b+σ)ν

0 .

Then sν+1 = sνs
(1+b+σ)ν(b+σ)
0 ≤ sνs

b+σ
0 ≤ sν

16 , which implies that (2.8) holds. Let
Eν = rν−rν+1

8 = δν+2γ0(1−δ)
16 and using δ(1 + b+ σ) > 1, we get

Eν

2
log

1

sν
=

δν+2γ0(1− δ)

32
log s

−(1+b+σ)ν

0 ≥ −γ0δ
2(1− δ)

32
log s0 ≥ 1.

Therefore

log(n+N + 1)! + 3(n+N) log([log
1

sν
] + 1)− Eν

2
([log

1

sν
] + 1)3

≤ −(m+ 1)(1 + b+ σ) log
1

sν
.

Thus ∫ ∞

Kν+1

λn+Ne−
λEν

2 dλ ≤ (n+N + 1)!Kn+N
ν+1 e−

Kν+1Eν
2 ≤ sm+1

ν+1 ,

i.e. (2.9) holds. Obviously,

sνK
τ+1
ν+1 ≤ s

(1+b+σ)ν

0 (log
1

s
(1+b+σ)ν

0

+ 2)3(τ+1).

When β > 0, ξ > 1 and c > 1 are constant, xβ(log 1
x + c)ξ → 0. Therefore, (2.17)

holds.
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Let l0 = b, η = 8 + n+ 4[τ ] + 4, where [τ ] is the integral part of τ . Combining

Γν =
∑

|j|≤2, 0<|k|≤Kν+1

|k|τ(|j|+|q|+1)+|j|+|q|+|z|e−
|k|(r−r+)

8 ≤ η!

Eη
ν

and

µl0
ν

Eη+1
ν

= (
16

γ0(1− δ)δν+2
)η+1cν0µ

l0
0 s

σ
b+σ ((1+b+σ)ν−1)

0 ≤ c∗µ
l0
0 (

sσ0 c0
δη+1

)ν ,

when ε0 small enough, we get

c0µνΓν

Eν η̄Nν
≤ c0η!

µl0
ν

Eη+1
ν

≤ 1,

i.e. (2.26) holds. (2.27) holds obviously, since c0sνµνΓν

sν+1η̄N
ν

≤ 3.

Moreover, by making ε0 small, we have c0µ
a0
ν Γ3

ν ≤ 1
2ν for given a0 > 0. Next for

each ν ≥ 1

|∂l
ξ∆ν+1| ≤

(
γN+7
ν s2m−1

ν µ2
ν + µ2

νs
2m
ν Γ2(rν − rν+1)

+γN+7
ν µ(s(m+1)(1+b+σ)

ν +
sm+1
ν+1

sν
)
)
/η̄Nν

=
(
γN+7
ν s2m−1

ν µ2
ν + µ2

νs
2m
ν Γ2(rν − rν+1)

+γN+7
ν µsm+1

ν+1 (1 +
1

sν
)
)
/η̄Nν

≤
(
γN+7
ν+1

γN+7
ν

γN+7
ν+1

smν+1s
2m−1−m(1+b+σ)−2σ
ν µ2

ν+1

+γN+7
ν+1 µ2

ν+1s
m
ν+1

s
2m−2σ−m(1+b+σ)
ν Γ2(rν − rν+1)

γN+7
ν+1

+γN+7
ν+1

γN+7
ν

γN+7
ν+1

µν+1s
m
ν+1s

1+b+σ−σ
ν (1 +

1

sν
)
)
/η̄Nν

≤ γN+7
ν+1 smν+1µν+1

(γN+7
ν

γN+7
ν+1

s2m−1−m(1+b+σ)−2σ
ν µν+1

+µν+1
s
2m−2σ−m(1+b+σ)
ν Γ2(rν − rν+1)

γN+7
ν+1

+
γN+7
ν

γN+7
ν+1

s1+b
ν (1 +

1

sν
)
)
/η̄Nν

≤
γN+7
ν+1 smν+1µν+1

η̄Nν+1

,

i.e. (2.29) holds.
For brevity we omit the measure estimate of |Λ0 \ Λ∗| and for details we refer

the reader to [5, 22,38,39].
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3. Proof of Main Theorem
The study about the influence of the small non-integrable Hamiltonian on the folia-
tion of the integrable Hamiltonian on Poisson manifold (M,Π) is closely related to
the persistence of invariant tori for Hamiltonian (1.2) on Poisson manifold (M,Π).

Without loss of generality, we assume that there is a closed region Λ ⊂ Rd

and a Cl0 diffeomorphism y : Λ → M (= y(Λ)). Let ξ ∈ Λ and consider the
transformation: y 7→ y + y(ξ). Then (1.2) turns into a parameterized Hamiltonian
system of the following form:

H = N (y, ξ) + εP (x, y, ξ), (3.1)

N = e(ξ) + 〈Ω(ξ), y〉+ 1

2
〈y,A(ξ)y〉+

m∑
|j|=3

hj(ξ)y
j +

∑
|j|>m

hj(ξ)y
j ,

where ξ ∈ Λ = {λ : |λ| ≤ δ1} ⊂ Rd, x, y and ε defined as above. Consider the
following symplectic transformation:

x → x, y → ε
1

4(m−1) y, H → ε−
1

4(m−1)H,

then the Hamiltonian (3.1) is changed to

H = N (y, ξ, ε̃) + ε
m

4(m−1) P̃ (x, y, ξ), (3.2)

N =
e(ξ)

ε
1

4(m−1)

+ 〈Ω(ξ), y〉+ ε
1

4(m−1)

2
〈y,A(ξ)y〉+

m∑
|j|=3

ε
|j|−1

4(m−1)hj(ξ)y
j ,

P̃ = ε
3m−5

4(m−1)P (x, y, ξ) +
∑

|j|>m

ε
|j|−m−1
4(m−1) hj(ξ)y

j .

Moreover,

|∂l
ξP̄ | ≤ c

γN+7smµ

η̄N
, |l| ≤ N,

if γ = ε
m

48(7+N)(m−1) , s = ε
1

6(m−1) , µ = ε
m

16(m−1) , η̄ = ε
(3(1−b)−4(b+σ))m

56N(m−1) . Hence, with
Theorem 2.1 we can get Theorem 1.1.

Remark 3.1. Normal forms (3.2) and (2.2) seem a little different. In normal
form (3.2), the perturbation is O(ε

m
4(m−1) ), which is small enough comparing the

integrable part. This term ε
1

4(m−1)

2 〈y,A(ξ)y〉 +
m∑

|j|=3

ε
|j|−1

4(m−1)hj(ξ)y
j is bad for the

preservation of the frequency and frequency ratio, since the coefficient is related to
ε

1
4(m−1) . In fact, in our case, this difficulty could be overcome since the coefficient

of the perturbation is ε
m

4(m−1) . We could achieve the proof of Theorem 1.1 step by
step using the proof of Theorem 2.1.
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