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Abstract M -eigenvalues of fourth-order partially symmetric tensors play an
important role in the nonlinear elastic material analysis. In this paper, we
establish sharp upper and lower bounds on the minimum M -eigenvalue via
extreme eigenvalue of the symmetric matrices extracted from elasticity Z-
tensors without irreducible conditions, which improves some existing results.
Based on the lower bound estimations for the minimum M -eigenvalue, we
provide some checkable sufficient or necessary conditions for the strong ellip-
ticity of elasticity Z-tensors. Numerical examples are given to demonstrate
the proposed results.
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1. Introduction
A fourth-order real tensor A is called a partially symmetric tensor, denoted by
A = (aijkl) ∈ E4,n, if

aijkl = ajikl = aijlk, i, j, k, l ∈ N = {1, 2, · · · , n}.

We know from [1–6, 14–16, 18, 23, 24, 27, 28] that it is the most well-known tensor
among fourth-order tensors and comes from the following bi-quadratic homogeneous
polynomial optimization problem:

min
x,y

f(x, y) = Ax2y2 =
∑

i,k∈N

∑
j,l∈N

aijklxixjykyl

s.t. x⊤x = 1, y⊤y = 1, x, y ∈ Rn.

(1.1)
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The optimization problem introduced by Dahl et al. [3] arises from the nonlin-
ear elastic material analysis. For example, a fourth-order partially symmetric ten-
sor with n = 2 or 3, called the elasticity tensor, can be used in the two/three-
dimensional field equations for a homogeneous compressible nonlinearly elastic ma-
terial without body forces [1, 16, 18]. In elastic material analysis, elastic materials
with the strong ellipticity can keep good properties [1,16,28]. Based on tensor char-
acterizations of elastic material, Han et al. [6] and Qi et al. [15] pointed out that
strong ellipticity condition holds if and only if the optimal value of (1.1) is positive.
To further characterize the strong ellipticity condition, Han et al. [6] introduced
M -eigenvalue of an elasticity tensor as follows. For λ ∈ R, x, y ∈ Rn, ifAxy2 = λx, Ax2y = λy;

x⊤x = 1, y⊤y = 1,

where (Axy2)i =
∑

j,k,l∈N

aijklxjykyl, (Ax2y)l =
∑

i,j,k∈N

aijklxixjyk, then the scalar

λ is called an M -eigenvalue of the tensor A, and x and y are called left and right
M -eigenvectors associated with λ.

Thus, the strong ellipticity condition holds for an elasticity tensor if and only
if its minimum M -eigenvalue is positive. However, it is not easy to compute the
minimum M -eigenvalues due to the complexity of the M -eigenvalue problem [10,
13]. Thus, some researchers turned to investigating structured tensors, such as
nonnegative tensors and M -tensors [4,24–26]. Particularly, Ding et al. [4] introduced
a structured partially symmetric tensor named elasticity Z-tensors and elasticity
M -tensors as follows.

Definition 1.1. Tensor A = (aijkl) ∈ E4,n is called an elasticity Z-tensor if there
exists a nonnegative tensor B ∈ E4,n and a real number s such that

A = sIM − B,

where IM = (eijkl) ∈ E4,n is called elasticity identity tensor with its entries

eijkl =

1, if i = j and k = l

0, otherwise.

If s ≥ ρM (B), we call A an elasticity M -tensor. Further, if s > ρM (B), then we call
A a nonsingular elasticity M -tensor.

As we know, an elasticity Z-tensor is a nonsingular elasticity M -tensor if and
only if the minimum M -eigenvalue is positive [4]. Thus, the key to verifying the
nonsingular elasticity M -tensors is whether the minimum M -eigenvalue is positive.
With the help of the theory of multi-linear algebra, researchers turned to investi-
gating eigenvalue inclusion to judge whether an elasticity Z-tensor is a nonsingular
elasticity M -tensor. Based on the minimum diagonal entries, He et al. [8] pro-
posed some bounds for the minimum M -eigenvalue of elasticity M -tensors under
irreducible conditions. Combining the maximum diagonal entries with accurate
eigenvector information, Wang et al. [21] established sharp bound estimations on
the minimum M -eigenvalue of elasticity Z-tensors in the absence of irreducible
conditions, and gave the checkable sufficient conditions for the strong ellipticity
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condition. In virtue of the relationship between M -eigenvalues and the extreme
eigenvalues of the corresponding symmetric matrices, Li et al. [12] established two-
sided bounds of M -eigenvalues. For an elasticity Z-tensor, not only the structural
features of the fourth-order tensor should be considered, but also the structural fea-
tures of the Z-tensor should be explored. Therefore, if we further explore structural
characteristics of the Z-tensor and combine the M -eigenvalue estimation technol-
ogy [12], we may propose tight bounds on the minimum M -eigenvalue of elasticity
Z-tensors, and accurately identify whether the elasticity Z-tensor is the nonsingu-
lar elasticity M -tensor and strong ellipticity of the elasticity Z-tensor holds. These
constitute the main motivation of the paper.

The remainder of this paper is organized as follows. In Section 2, some pre-
liminary results are recalled. In Section 3, we propose an improved upper bound
and two lower bounds for the minimum M -eigenvalue via the minimum eigenvalue
of the symmetric matrices extracted from elasticity Z-tensors without irreducible
conditions. In Section 4, we establish some sufficient conditions to verify whether
an elasticity Z-tensor is strong ellipticity and a nonsingular elasticity M -tensor.
Numerical examples are proposed to verify the efficiency of the obtained results.

2. Preliminaries
We begin our work by collecting some definitions and important properties of elas-
ticity Z-tensors [4, 8, 15].

Definition 2.1. Let A = (ai1i2...im) be an m-th order n dimensional real square
tensor. A is called reducible if there exists a nonempty proper index subset J ⊂
{1, 2, . . . , n} such that ai1i2...im = 0, ∀ i1 ∈ J,∀ i2, . . . , im /∈ J. If A is not reducible,
then we call A to be irreducible.

Lemma 2.1 (Theorem 1 of [15]). M -eigenvalues always exist. If x and y are left
and right M -eigenvectors of A, associated with an M -eigenvalue λ, then λ = Ax2y2.

Recently, Wang et al. [21] proposed new characterizations of the minimum M -
eigenvalue and corresponding to M -eigenvectors for elasticity Z-tensors based on
Theorem 6 of [4].

Lemma 2.2 (Lemma 2.4 of [21]). Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor
and τM (A) be the minimum M -eigenvalue. Then, there exist nonnegative left and
right M -eigenvectors (x, y) corresponding to τM (A) such that

Axy2 = τM (A)x, Ax2y = τM (A)y.

He et al. [8] established the lower bound of the minimum M -eigenvalue for an
irreducible elasticity M -tensor.

Lemma 2.3 (Theorem 3.1 of [9]). Let A = (aijkl) ∈ E4,n be an irreducible elasticity
M -tensor. Then

τM (A) ≥ max{min
i∈N

{αi −Ri(A),min
l∈N

{βl − Cl(A)}},

where αi = min
l∈N

aiill, βl = min
i∈N

aiill, Ri(A) = γi + ri(A), Cl(A) = δl + cl(A),

γi = max
l∈N

{
∑

j∈N,j ̸=i

|aijll|}, δl = max
i∈N

{
∑

k∈N,k ̸=l

|aiikl|}, ri(A) =
∑

j,k,l∈N,k ̸=l

|aijkl|, cl(A) =
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i,j,k∈N,i ̸=j

|aijkl|.

Wang et al. [21] pointed out that the bound in Theorem 3.2 is tighter than that
of Theorem 3.1 of [8].

Lemma 2.4 (Theorem 3.2 of [21]). Let A = (aijkl) ∈ E4,n be an irreducible elas-
ticity M -tensor. Then,

τM (A) ≥ max{min
i∈N

{µi −Gi(A)},min
l∈N

{κl −Ml(A)}}

≥ max{min
i∈N

{αi −Ri(A),min
l∈N

{βl − Cl(A)}},

where Gi(A)=ωi(A)−1
2ri(A), µi=max

l∈N
{aiill}, ωi(A)=max

l∈N
{µi−aiill−

∑
j∈N,j ̸=i

aijll},

ri(A) =
∑

j,k,l∈N,k ̸=l

aijkl, Ml(A) = ml(A)− 1

2
cl(A), κl = max

i∈N
{aiill},

ml(A) = max
i∈N

{κl − aiill −
∑

k∈N,k ̸=l

aiikl}, cl(A) =
∑

i,j,k∈N,i ̸=j

aijkl.

In order to characterize the M -eigenvalue of elasticity Z-tensors by the minimum
eigenvalue of the symmetric matrices extracted from elasticity Z-tensors, we end
this section with some important results of the symmetric matrices [7].

Lemma 2.5. Let P = (pij) ∈ R[n]×[n] be a real symmetric matrix and λmin(P ) (or
λmax(P )) denote the minimal (or maximal) eigenvalue of P. Then,

λmin(P ) = min
x⊤x=1,x∈Rn

(x⊤Px) ≤ x⊤Px ≤ max
x⊤x=1,x∈Rn

(x⊤Px) = λmax(P ).

3. Bounds for the minimum M-eigenvalue of elas-
ticity Z-tensors

In this section, inspired by Z-eigenvalue and M -eigenvalue intervals [8–12, 17, 19–
22], we propose sharp lower and upper bounds on the minimum M -eigenvalue of
elasticity Z-tensors based on the minimum eigenvalues of symmetric matrices.

Theorem 3.1. Let A = (aijkl) ∈ E4,n be an elasticity tensor and τM (A) be the
minimum M -eigenvalue. Then,

τM (A) ≤ min{min
i∈N

µii,
ω

n
},

where µii is the minimum eigenvalue of the symmetric matrix A(i, i, :, :), ω is the
minimum eigenvalue of the symmetric matrix

∑
i,j∈N

A(i, j, :, :) and A(i, j, :, :) is the

symmetric matrix by fixing i and j indices of A.

Proof. Let τM (A) be the minimum M -eigenvalue of A. It follows from Lemma
2.1 that

τM (A) = min
x,y

{fA(x, y) = Ax2y2 : x⊤x = 1 and y⊤y = 1}. (3.1)
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On the one hand, for a feasible solution x̃ = (0, . . . , x̃i = 1, . . . , 0) and y⊤y = 1,
from Lemma 2.4, we can get

τM (A) = min
x,y

Ax2y2 ≤ min
y

Ax̃2y2 = min
y

∑
k,l∈N

aiiklykyl

= min
y

y⊤A(i, i, :, :)y = µii. (3.2)

Further, τM (A) ≤ min
i∈N

µii holds.
On the other hand, setting a feasible solution x̄ = ( 1√

n
, . . . , 1√

n
) and y⊤y = 1,

one has

τM (A) = min
x,y

Ax2y2 ≤ min
y

Ax̄2y2 =

min
y

∑
i,j∈N

∑
k,l∈N

aijklykyl

n

=

min
y

y⊤
∑

i,j∈N

A(i, j, :, :)y

n
=

ω

n
. (3.3)

Equation (3.3), in conjunction with (3.2), provides upper bounds on the minimum
M -eigenvalue.

In the following, we show the results of Theorem 3.1 improve the results of
Theorem 3.1 of [21].

Lemma 3.1 (Theorem 3.1 of [21]). Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor
and τM (A) be the minimum M -eigenvalue. Then,

τM (A) ≤ min{min
i,l∈N

aiill,

∑
i∈N

Si(A)

n2
},

where Si(A) =
∑

j,k,l∈N

aijkl.

Corollary 3.1. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor. Then

min{min
i∈N

µii,
ω

n
} ≤ min{min

i,l∈N
aiill,

∑
i∈N

Si(A)

n2
}.

Proof. It follows from (3.2) that

µii = min
y

y⊤A(i, i, :, :)y ≤ min
l∈N

aiill,

and
min
i∈N

µii ≤ min
i,l∈N

aiill.

Meanwhile,

ω

n
=

min
y

y⊤
∑

i,j∈N

A(i, j, :, :)y

n
= min

y
Ax̄2y2 ≤ Ax̄2ȳ2

=
∑

i,j,k,l∈N

aijkl
1√
n

1√
n

1√
n

1√
n
=

∑
i∈N

Si(A)

n2
,
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where (x̄, ȳ) = ( 1√
n
, · · · , 1√

n
, 1√

n
, · · · , 1√

n
).

Consequently,

min{min
i∈N

µii,
ω

n
} ≤ min{min

i,l∈N
aiill,

∑
i∈N

Si(A)

n2
}.

In what follows, we establish sharp lower bounds for the minimum M -eigenvalue
of elasticity Z-tensors.

Theorem 3.2. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor and τM (A) be the
minimum M -eigenvalue. Then,

τM (A) ≥ max{min
i∈N

µi(A),min
l∈N

κl(A)},

where µi(A) is the minimum eigenvalue of the symmetric matrix
∑
j∈N

A(i, j, :, :) and

κl(A) is the minimum eigenvalue of the symmetric matrix
∑
k∈N

A(:, :, k, l).

Proof. Let τM (A) be the minimum M -eigenvalue of A. It follows from Lemma
2.2 that there exist nonnegative left and right M -eigenvectors (x, y) corresponding
to τM (A). Setting xp = max

i∈N
{xi}, by x⊤x = 1, one has 0 < xp ≤ 1. Since A is an

elasticity Z-tensor, then aijkl ≤ 0 for all i, j, k, l ∈ N except for i = j and k = l.
Recalling the p-th equation of τM (A)x = Axy2, from Lemma 2.5, we deduce

τM (A)xp =
∑

j,k,l∈N

apjklxjykyl ≥
∑

j,k,l∈N

apjklxpykyl

= (y⊤
∑
j∈N

A(p, j, :, :)y)xp ≥ min
y⊤y=1

(y⊤
∑
j∈N

A(p, j, :, :)y)xp

= µp(A)xp,

that is,

τM (A) ≥ µp(A). (3.4)

On the other hand, setting yt = max
l∈N

{yl}, from the t-th equation of τM (A)y = Ax2y

and Lemma 2.5, one has

τM (A)yt =
∑

i,j,k∈N

aijktxixjyk ≥
∑

i,j,k∈N

aijktxixjyt

= (x⊤
∑
k∈N

A(:, :, k, t)x)yt ≥ min
x⊤x=1

(x⊤
∑
k∈N

A(:, :, k, t)x)yt

= κt(A)yt,

which implies

τM (A) ≥ κt(A). (3.5)

By (3.4) and (3.5), we obtain the desired results.
Now, we are at a position to prove that the lower bound in Theorem 3.2 is

sharper than that of Theorem 3.2 of [21].



Identifying strong ellipticity via bounds on the minimum M -eigenvalue 615

Corollary 3.2. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor. Then

max{min
i∈N

µi(A),min
l∈N

κl(A)} ≥ max{min
i∈N

{µi −Gi(A)},min
l∈N

{κl −Ml(A)}},

where µi, κl, Gi(A) and Ml(A) are defined in Lemma 2.4.

Proof. Since A is an elasticity Z-tensor, we can obtain aijkl ≤ 0 for all i, j, k, l ∈ N
except for i = j and k = l and

µi −Gi(A) = µi − ωi(A) +
1

2
ri(A)

= µi −max
l∈N

{µi − aiill −
∑

j∈N,j ̸=i

aijll}+
1

2

∑
j,k,l∈N,k ̸=l

aijkl

= min
l∈N

{
∑
j∈N

aijll}+
1

2

∑
j,k,l∈N,k ̸=l

aijkl.

By Gersghorin theorem [7], for a matrix Q = (qkl) ∈ Rn×n, there exists k ∈ N such
that

λmin(Q) ≥ qkk − rk(Q) ≥ min
k∈N

qkk − rk(Q) = min
l∈N

qll − rk(Q),

where rk(Q) =
∑

l∈N,l ̸=k

|qkl|. Thus, for the symmetric matrix
∑
j∈N

A(i, j, :, :), there

exists k ∈ N such that

µi(A) = λmin(
∑
j∈N

A(i, j, :, :)) ≥ min
l∈N

{
∑
j∈N

aijll} −
∑

l∈N,l ̸=k

|
∑
j∈N

aijkl |

= min
l∈N

{
∑
j∈N

aijll}+
∑

j,l∈N,l ̸=k

aijkl. (3.6)

Since A is partially symmetric, it holds that

1

2
(aijkl + aijlk) = aijkl,∀l ∈ N, l ̸= k

and ∑
j,l∈N,l ̸=k

aijkl ≥
1

2

∑
j,k,l∈N,l ̸=k

aijkl. (3.7)

Summing (3.6) and (3.7), one has

µi(A) ≥ µi −Gi(A),∀i ∈ N. (3.8)

Following the similar arguments to the proof of (3.8), we deduce

κl(A) ≥ κl −Ml(A),∀l ∈ N. (3.9)

It follows from (3.8) and (3.9) that the desired results hold.
Next, we shall obtain sharp lower bound on the minimum M -eigenvalue by

choosing xp as a component with the largest modulus and xq as an arbitrary com-
ponent of left M -eigenvector x.
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Theorem 3.3. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor and τM (A) be the
minimum M -eigenvalue. Then

τM (A) ≥ max{min
i∈N

max
v∈N,v ̸=i

ξi,v(A),min
l∈N

max
u∈N,u ̸=l

ρl,u(A)},

where

ξi,v(A) =
1

2
[µvv + µv

i (A)− (∆i,v(A))
1
2 ],

∆i,v(A) = (µvv − µv
i (A))2 + 4µivµ

v
v(A), µv

i (A) = λmin(
∑

j∈N,j ̸=v

A(i, j, :, :)),

ρl,u(A) =
1

2
[κuu + κu

l (A)− (θl,u(A))
1
2 ],

θl,u(A) = (κuu − κu
l (A))2 + 4κulκ

u
u(A), κu

l (A) = λmin(
∑

k∈N,k ̸=u

A(:, :, k, l)),

µiv denotes the minimum eigenvalue of the symmetric matrix A(i, v, :, :) with v ̸= i
and κul denotes the minimum eigenvalue of the symmetric matrix A(:, :, u, l) with
u ̸= l.

Proof. Let τM (A) be the minimum M -eigenvalue with nonnegative left and right
M -eigenvectors (x, y). Set xp = max

i∈N
{xi} > 0. Since A is an elasticity Z-tensor,

then aijkl ≤ 0 for all i, j, k, l ∈ N except for i = j and k = l. By the p-th equation
of τM (A)x = Axy2 and from Lemma 2.4, for any q ∈ N, q ̸= p, one has

τM (A)xp =
∑

j,k,l∈N

apjklxjykyl =
∑

j,k,l∈N,j ̸=q

apjklxjykyl +
∑

k,l∈N

apqklxqykyl

≥
∑

j,k,l∈N,j ̸=q

apjklxpykyl +
∑

k,l∈N

apqklxqykyl

= (y⊤
∑

j∈N,j ̸=q

A(p, j, :, :)y)xp +
∑

k,l∈N

apqklxqykyl

≥ λmin(
∑

j∈N,j ̸=q

A(p, j, :, :))xp + λmin(A(p, q :, :))xq

= µq
p(A)xp + µpqxq,

equivalently,

(µq
p(A)− τM (A))xp ≤ −µpqxq. (3.10)

Since xq ≥ 0, we now break up the argument into two cases.
Case 1. xq > 0. Recalling the q-th equation of τM (A)x = Axy2, we deduce

τM (A)xq =
∑

j,k,l∈N

aqjklxjykyl =
∑

j,k,l∈N,j ̸=q

aqjklxjykyl +
∑

k,l∈N

aqqklxqykyl

≥
∑

j,k,l∈N,j ̸=q

aqjklxpykyl +
∑

k,l∈N

aqqklxqykyl

= (y⊤
∑

j∈N,j ̸=q

A(q, j, :, :)y)xp +
∑

k,l∈N

aqqklxqykyl



Identifying strong ellipticity via bounds on the minimum M -eigenvalue 617

≥ λmin(
∑

j∈N,j ̸=q

A(q, j, :, :))xp + λmin(A(q, q :, :))xq

= µq
q(A)xp + µqqxq,

that is,

(µqq − τM (A))xq ≤ −µq
q(A)xp. (3.11)

Multiplying (3.10) with (3.11) yields

(µq
p(A)− τM (A))(µqq − τM (A)) ≤ µpqµ

q
q(A), (3.12)

equivalently,

τM (A)2 − [µq
p(A) + µqq]τM (A) + µqqµ

q
p(A)− µpqµ

q
q(A) ≤ 0. (3.13)

Solving (3.13) for τM (A), one has

τM (A) ≥ 1

2
[µqq + µq

p(A)− (∆p,q(A))
1
2 ],

where
∆p,q(A) = (µqq − µq

p(A))2 + 4µpqµ
q
q(A).

From the arbitrariness of q, we obtain

τM (A) ≥ max
q∈N,q ̸=p

1

2
[µqq + µq

p(A)− (∆p,q(A))
1
2 ].

Further,

τM (A) ≥ min
i∈N

max
v∈N,v ̸=i

1

2
[µvv + µv

i (A)− (∆i,v(A))
1
2 ]. (3.14)

Case 2. xq = 0. Recalling (3.10), we have τM (A) ≥ µq
p(A), which implies that

τM (A) ≥ µq
p(A) is a solution of (3.12).

On the other hand, with yt = max
l∈N

{yl} and the t-th equation of τM (A)y = Ax2y,
it is clear that

τM (A)yt =
∑

i,j,k∈N,k ̸=t

aijktxixjyk +
∑
i,j∈N

aijttxixjyt.

Following the similar arguments to the proof of (3.14), we deduce

τM (A) ≥ min
l∈N

max
u∈N,u ̸=l

1

2
[κuu + κu

l (A)− (θl,u(A))
1
2 ]. (3.15)

As a consequence, the desired results hold from (3.14) and (3.15).
Next, we use Example 4.1 of [21] to show the superiority of our results.
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Example 3.1. Consider an elasticity Z-tensor A = (aijkl) ∈ E4,3 defined by the
entries 

a1111 = a2222 = a3333 = 5, a1122 = a1133 = a2233 = 6,

a2211 = a3311 = a3322 = 7, a2123 = a1223 = a2132 = a1232 = −0.2,

a1112 = a1121 = −1, a2212 = a2221 = −0.5, a1222 = a2122 = −2,

a3313 = a3331 = −0.5, a1333 = a3133 = −2, a1311 = a3111 = −1,

a2223 = a2232 = −0.5, a2322 = a3222 = −1, a2333 = a3233 = −2,

a1213 = a1231 = a2113 = a2131 = −0.2,

a3132 = a3123 = a1332 = a1323 = −0.2, aijkl = 0, otherwise.

By computations, we obtain that the minimum M -eigenvalue and corresponding
with left and right M -eigenvectors are

(τM (A), x̄, ȳ) = (2.5000, (0.7071, 0, 0.7071, 0), (0.7071, 0.7071, 0)) .

The bounds given in the different literatures are shown in Table 1.

Table 1. Comparisons of the existing results with our methods

References Bounds
Lemma 2.4 and Theorem 3.1 of [8] −0.8000 ≤ τM (A) ≤ 5.0000

Lemma 2.4 and Theorem 3.2 of [8] −0.6667 ≤ τM (A) ≤ 5.0000

Theorems 3.1 and 3.2 of [21] 0.3000 ≤ τM (A) ≤ 3.4000

Theorems 3.1 and 3.3 of [21] 0.3900 ≤ τM (A) ≤ 3.4000

Theorems 3.1 and 3.2 1.9241 ≤ τM (A) ≤ 2.7643

Theorems 3.1 and 3.3 2.0779 ≤ τM (A) ≤ 2.7643

4. Identifying strong ellipticity and elasticity M-
tensors

In this section, we establish some sufficient or necessary conditions for identifying
an elasticity M -tensor and strong ellipticity based on the conclusions in Theorems
3.1-3.3.

Theorem 4.1. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor. If

max{min
i∈N

µi(A),min
l∈N

κl(A)} > 0, (4.1)

then strong ellipticity of A is satisfied, and A is a nonsingular elasticity M -tensor.

Proof. It follows from Theorem 3.2 and (4.1) that

τM (A) ≥ max{min
i∈N

µi(A),min
l∈N

κl(A)} > 0,

which implies that strong ellipticity is satisfied, and A is a nonsingular elasticity
M -tensor.
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Theorem 4.2. Let A = (aijkl) ∈ E4,n be an elasticity Z-tensor. If

max{min
i∈N

max
v∈N,v ̸=i

ξi,v(A),min
l∈N

max
u∈N,u ̸=l

ρl,u(A)} > 0,

then strong ellipticity of A is satisfied, and A is a nonsingular elasticity M -tensor.

Proof. Following the similar arguments to the proof of Theorem 4.1, we obtain
the desired results.

With the help of Theorem 3.1, we are now ready to propose a necessary condition
of nonsingular elasticity M -tensors or strong ellipticity.

Theorem 4.3. Let A = (aijkl) ∈ E4,n be a nonsingular elasticity M -tensor or be
strong ellipticity. Then

min
i∈N

µii > 0 and
ω

n
> 0, (4.2)

where µii and ω are defined in Theorem 3.1.

Proof. Since A is a nonsingular elasticity M -tensor or is strong ellipticity, we
obtain that the minimum M -eigenvalue of τM (A) > 0. This, together with Theorem
3.1 yields

0 < τM (A) ≤ min{min
i∈N

µii,
ω

n
}.

Thus, the results hold.
The following example shows that the results given in Theorems 4.1 and 4.2 can

check whether an elasticity Z-tensor is a nonsingular elasticity M -tensor, and verify
the strong ellipticity of an elasticity Z-tensor.

Example 4.1. Consider an elasticity Z-tensor A = (aijkl) ∈ E4,3 defined by the
entries



a1111 = a2222 = a3333 = 5, a1122 = a1133 = a2233 = 6,

a2211 = a3311 = a3322 = 7, a2123 = a1223 = a2132 = a1232 = −1,

a1112 = a1121 = −1, a2212 = a2221 = −0.2, a1222 = a2122 = −2,

a3313 = a3331 = −0.2, a1333 = a3133 = −2, a1311 = a3111 = −1,

a2223 = a2232 = −0.2, a2322 = a3222 = −1, a2333 = a3233 = −2,

a1213 = a1231 = a2113 = a2131 = −1,

a3132 = a3123 = a1332 = a1323 = −1, aijkl = 0, otherwise.

By computations, the bounds given in the different literatures are shown in the
following table.
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Table 2. The bounds of the minimum M-eigenvalue in different literatures

References Bounds
Lemma 2.4 and Theorem 3.1 of [8] −5.0000 ≤ τM (A) ≤ 5.0000

Lemma 2.4 and Theorem 3.2 of [8] −4.6214 ≤ τM (A) ≤ 5.0000

Theorems 3.1 and 3.2 of [21] −0.4000 ≤ τM (A) ≤ 2.5333

Theorems 3.1 and 3.3 of [21] −0.3037 ≤ τM (A) ≤ 2.5333

Theorems 3.1 and 3.2 0.8000 ≤ τM (A) ≤ 1.8336

Theorems 3.1 and 3.3 0.9232 ≤ τM (A) ≤ 1.8336

From Table 2, the existing results, such as Theorems 3.1-3.2 of [8] and Theorems
3.2-3.3 of [21], cannot verify the strong ellipticity condition of A. Fortunately, we
can deduce that A is a nonsingular elasticity M -tensor and strong ellipticity holds
by Theorems 4.1-4.2.

We give the following example to show that Theorem 4.2 is more accurate than
Theorem 4.1 in judging the strong ellipticity of elasticity Z-tensors.

Example 4.2. Consider an elasticity Z-tensor A = (aijkl) ∈ E4,2 defined by the
entries

a1111 = 1.9, a1122 = a2222 = 2.1, a2211 = 2,

a1112 = a1121 = a1212 = a1221 = a2112 = a2121 = a2212 = a2221 = −1,

aijkl = 0, otherwise.

By computations, the bounds given in the different literatures are shown in
Table 3.

Table 3. Verifying the strong ellipticity of elasticity Z-tensors by different literatures

References Bounds
Lemma 2.4 and Theorem 3.1 of [8] −1.1000 ≤ τM (A) ≤ 1.9000

Lemma 2.4 and Theorem 3.2 of [8] −1.0518 ≤ τM (A) ≤ 1.9000

Theorems 3.1 and 3.2 of [21] −0.1000 ≤ τM (A) ≤ 0.0250

Theorems 3.1 and 3.3 of [21] −0.0362 ≤ τM (A) ≤ 0.0250

Theorems 3.1 and 3.2 −0.0025 ≤ τM (A) ≤ 0.0236

Theorems 3.1 and 3.3 0.0215 ≤ τM (A) ≤ 0.0236

By Table 3, only Theorem 4.2 can judge that strong ellipticity of A holds, and
A is a nonsingular elasticity M -tensor.

5. Conclusions
In this paper, we established sharp lower and upper bounds on the minimum M -
eigenvalue of elasticity Z-tensors based on structural characteristics of fourth-order
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tensors and Z-tensors, which improved the existing results [8,21]. Meanwhile, some
checkable sufficient (or necessary) conditions for the strong ellipticity were estab-
lished via the bound estimations of minimum M -eigenvalue for elasticity Z-tensors.
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