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1. Introduction
In this paper we investigate the existence of ground state solutions for the following
critical fractional Schrödinger equation

(−∆)su+ (1 + µa(x))u = f(u) + u2
∗
s−2u, x ∈ R3, (1.1)

where µ > 0, 2∗s = 6
3−2s is the fractional critical Sobolev exponent, (−∆)s is the

fractional laplacian operator defined by a normalization constant as

(−∆)su(x) = −1

2
C(3, s)

∫
R3

u(x+ y) + u(x− y)− 2u(x)

| y |3+2s
dy, ∀x ∈ R3,

where C(3, s) =
(∫

R3

1−cos(ζ1)
ζ3+2s

)−1

, ζ = (ζ1, ζ2, ζ3). More details on the fractional
laplace operator (−∆)s and fractional Sobolev spaces can be referred to [10]. We
consider the more general form of the equation (1.1)

(−∆)su+ V (x)u = f(x, u), x ∈ R3.

When s = 1, V (x) is steep potential, Clapp and Ding [7] established the ex-
istence and multiplicity of solutions when f(x, u) = λu + u2

∗−1. After Bartsch
and Wang in [5] firstly introduced the steep potential for which V (x) = 1 + λa(x),
many researchers have done similar researches. For example, T. Bartsch et al. [4]
considered the positive solutions for nonlinear Schrödinger equations. L.F. Yin et
al. in [20] got existence and concentration of ground state solutions by variational
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method for f(x, u) =|u|4 u + λuq−2u. For some other important results, one can
refer to [1, 2, 6, 9, 13,15] and the references therein.

When s ∈ (0, 1), X.D. Fang et al. [12] considered the ground state solution and
multiple solutions, where V and f(x, u) are periodic, asymptotically linear and sat-
isfying a monotonicity condition. In [21], H. Zhang et al. considered the superlinear
fractional Schrödinger equation where V and f are asymptotically periodic in x. F.
Patricio et al. in [11] got the positive solution where f(x, u) is superlinear and
subcritical growth with respect to u. J. Zhang et al. in [22] studied the critical case
and obtained the existence of ground state solutions by establishing Pohožave type
identity when s ∈ ( 34 , 1).

Inspired by the works described above and [3,8,14,18], in this paper, we discuss
the fractional critical problem under the following conditions:
(f1) f ∈ C(R,R), lim

t→0

f(t)
t = 0;

(f2) lim
|t|→∞

f(t)

|t|2∗−2t
= 0;

(f3) lim
t→∞

F (t)

t

2s
3−3s

= ∞, when s ∈ [ 34 , 1) and F (t) =
∫ t

0
f(x)dx;

(a1) a ∈ C(R3,R), a(x) ≥ 0 for all x ∈ R3, there exists a0 > 0 such that

meas{x ∈R : a(x) ≤ a0} <∞;

(a2) a(x) ∈ C1(R3,R), (∇a(x), x) ∈ L∞(R) ∪ L
2s
3 (R), let V (x) = 1 + µa(x) satisfy

3V (x)− (∇V (x), x) ≥ 0, x ∈ R3;
(a3) let Ω := inta−1(0) be non-empty.

The following is our main result.
Theorem 1.1. If (f1)-(f3) and (a1)-(a3) hold, there is a constant µ0 > 0 such that
µ > µ0, equation (1.1) has a nontrivial ground state solution.
Remark 1.1. Without Ambrosetti-Rabinowitz conditions, the boundedness of
Palais-Smale sequence is difficult to get. Moreover, the minimum value of the energy
functional is greater than zero, which can not be easily obtained by variational
method. In order to overcome these difficulties, we establish the Pohozaev type
identity and the Nehari-Pohozaev-Palais-Smale sequence.

2. Preliminaries and the functional setting
We now collect some preliminary results for the fractional Laplacian. For any
s ∈ [ 34 , 1), the fractional order Sobolev space:

Hs(R3) =
{
u ∈ L2 : [u]Hs <∞

}
,

where [u]Hs is the so-called Gagliardo seminorm defined as

[u]Hs(R3) =
(∫

R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2s
dxdy

) 1
2

.

Then the fractional Sobolev space

Hs(R3) =

{
u ∈ L2 :

∫
R3

∫
R3

|u(x)− u(y)|2

|x− y|3+2s
dxdy +

∫
R3

u2(x)dx <∞
}
.
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Hs(R3) equipped with the norm

∥u∥Hs(R3) := [u]Hs(R3) + |u|L2(R3).

Then Hs(R3) is a Hilbert space with the inner product

⟨u, v⟩ =
∫
R3

∫
R3

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|3+2s

dxdy +

∫
R3

u(x)v(x)dx.

It is well known that the fractional soblev space Hs(R3) is continuously embed-
ding into Lq where q ∈ [2, 2∗s], and Hs(R3) is compactly embedding into Lq

loc, where
q ∈ [1, 2∗s). Then we define the best fractional Sobolev constants

S = inf
u∈Hs(R3)\{0}

∫
R3 | (−∆)

s
2u |2dx(∫

R3 | u |2
∗
sdx

) 2

2∗s

.

Moreover, for any µ > 0, we define the following space

E =

{
u ∈ Hs(R3) :

∫
R3

µa(x)u2 <∞

}
,

with the inner product as follows

⟨u, φ⟩ =
∫
R3

(−∆)
s
2u(−∆)

s
2φdx+

∫
R3

(1 + µa(x))uφdx,

the corresponding norm

∥u∥=
[∫

R3

((−∆)
s
2u)2 + (1 + µa(x))u2dx

] 1
2

.

Then the energy functional I : E → R is

I(u) =
1

2

∫
R3

((−∆)
s
2u)2 + (1 + µa(x))u2dx−

∫
R3

F (u)dx− 1

2∗s

∫
R3

u2
∗
sdx.

It is easy to know that I(u) is well defined and the derivative is given by

⟨I ′(u), φ⟩=
∫
R3

(−∆)
s
2u(−∆)

s
2φ+(1+µa(x))uφdx−

∫
R3

f(u)φdx−
∫
R3

u2
∗
s−2uφdx.

Thus, u is a solution of (1.1) if and only if u is a critical point of I.

Lemma 2.1 ( [13]). Let (E, ∥·∥E) be a real Banach space and I ∈ C1(E,R) satisfies
I(0) = 0 and
(i) there exists constants ρ, κ > 0 such that I

∣∣
∂Bρ

≥ κ;
(ii) There is an e ∈ X\Bρ such that I(e) < 0;
Then for any constant c = inf

γ∈Γ
max
0≤t≤1

I(γ(t)) ≥ κ, there is a sequence uk ∈ E such

that I(uk) → c and I ′(uk) → 0, where Γ = {γ ∈ C1([0, 1], E), γ(0) = 0, γ(1) = e}.
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Lemma 2.2 (Mountain Pass Geometry). E is a fractional Sobolev space, I ∈
C ′(E,R), If (f1), (f2) and (a1) hold, then
(i) there exists a positive constant ρ such that I(u) > 0 for any ∥u∥ = ρ;
(ii) There exists e ∈ Hs(R3) such that ∥e∥ > ρ, and I(e) < 0.

Proof. (i) By (f1), (f2), there are constants η ∈ (0, 1), Cη > 0 such that

|f(u) |≤ η |u | +Cη |u |2
∗
s−1 . (2.1)

From a(x) > 0, for any µ > 0, we have∫
R3

u2dx ≤∥u∥2 . (2.2)

By (2.2) and Hölder inequality, for any τ ∈ (2, 2∗s), we have∫
R3

uτdx ≤ S
2∗s (2−τ)

2(2∗s−2) ∥u∥τ . (2.3)

Together with (2.1), (2.2) and (2.3), we get

I(u) =
1

2

∫
R3

(
(−∆)

s
2u

)2

+(1 + µa(x))u2dx−
∫
R3

F (u)dx− 1

2∗s

∫
R3

u2
∗
sdx

≥ 1

2

∫
R3

(
(−∆)

s
2u

)2

+(1 + µa(x))u2dx− η

2

∫
R3

u2dx− Cη

2∗s

∫
R3

u2
∗
sdx

≥ 1− C1

2
∥u∥2 −Cµ + 1

2∗s
S− 2∗s

2 ∥u∥2
∗
s .

Then there is a constant ρ ∈ (0, 1) such that I(u) > 0 for all ∥ u ∥= ρ.
(ii) We choose a fixed u ∈ E \ {0}, for t→ +∞, then

I(tu) =
t2

2

∫
R3

(
(−∆)

s
2u

)2

+(1 + µa(x))u2dx−
∫
R3

F (tu)dx− t2
∗
s

2∗s

∫
R3

u2
∗
sdx

≥ t2

2

∫
R3

(
(−∆)

s
2u

)2

+(1 + µa(x))u2dx− t2
∗
s

2∗s

∫
R3

u2
∗
sdx

→ −∞.

We choose e = tu for t large enough such that ∥ e ∥> ρ, I(e) < 0.

Lemma 2.3. If µ > 0, (f1)− (f3) and (a1), (a3) hold, then there is a uε ∈ E \ {0},
such that 0 < c ≤ max

t≥0
I(tuε) <

1
3S

3
2s .

Proof. From [17], we know that the best Soblev constant can be attained by
the function ũ = κ

(µ2+|x−x0|2)
3−2s

2

with κ ∈ R \ {0}, µ > 0 and the fixed x0 ∈

R3. Let ū = ũ(x)
∥ũ∥

L
2∗s (R3) , u∗(x) = ū( x

S
1
2s
) and Uε(x) = ε−

3−2s
2 u∗(xε ). Thus, we

have ∥ u∗ ∥2
∗
s

L2∗s (R3)
= ∥Uε∥

2∗s
2∗s(R3) = S

3
2s . ψ(x) is a truncated function defined as

ψ(x) =

1 if x ∈ Br,

0 if x ∈ Bc
r .
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Let uε(x) = ψ(x)Uε(x), it is easy to get | uε(x) |≤| Uε(x) |≤ Cε
3−2s

2 , and∫
R3

| (−∆)
s
2uε |2 dx ≤ S

3
2s + o(ε3−2s), (2.4)∫

R3

| uε |2
∗
s dx = S

3
2s + o(ε3).

By a direct calculation, there exists a κ0 such that∫
R3

| uε |2 dx ≤
∫
B2r(0)

| Uε(x) |2 dx

= ε−(3−2s)

∫
B2r(0)

κ20
(µ2+ | x

εS
1
2s

|)3−2s

≤ Cε2s
∫ 2r

µS
1
2s ε

B2r(0)

t2

(1 + t2)3−2s
dt

=

O
(
ε2s | log ε |

)
, s = 3

4 ,

O
(
ε3−2s

)
, s ∈ ( 34 , 1).

(2.5)

From Lemma 2.2, there exists tε > 0 such that I(tεuε) = max
t≥0

I(tuε), for I ′(tεuε) =
0 and (a3), we have

0 = tε

∫
Ω

|(−∆)
s
2uε |2 +tε

∫
Ω

u2εdx−
∫
Ω

f(tεuε)uεdx− t
2∗s−1
ε

≤ tε

∫
Ω

|(−∆)
s
2uε |2 +tε

∫
Ω

u2εdx− t
2∗s−1
ε .

Then we get that

t2
∗
s−2 ≤

∫
Ω

| (−∆)
s
2uε |2 dx+

∫
Ω

u2εdx,

combine with (2.4) and (2.5), one get that tε ≤ C, where C is a constant independent
of ε. For some constant C1 > 0, one gets tε ≥ C1 > 0 for ε > 0 small. Otherwise,
there is a sequence εn → 0 as n → ∞ such that tεn → 0 as n → ∞, along a
subsequence, we get tεnuεn → 0 in E as n→ ∞, therefore

0 < c ≤ max
t≥0

I(tuεn(x)) = I(tεnuεn(x)) → 0,

it is a contradiction. From (f3) and [17], for any M > 0, there is TM > 0 such that
t ∈ [TM ,+∞], one gets

∫
|x−x0|<ε

F (uε) ≥

 CMε2s | lnε |, s = 3
4 ,

CMε3−3s, s ∈ ( 34 , 1).

Hence, for ε small enough, we have

F (x0) =

Mx20, s = 3
4 ,

Mx
2s

3−3s

0 , s ∈ ( 34 , 1).
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Together with (2.5), one has

lim
ε→0+

∫
|x−x0|<ε

F (uε)dx∫
Ω
|uε(x) |2 dx

= +∞. (2.6)

Moreover we get that∫
|x−x0|<ε

F (uε)dx ≥ C

∫
|x−x0|<ε

|uε |2≥ C

∫
Ω

|uε |2 dx, (2.7)

by (a2), (2.5), (2.6), (2.7) and tε ≤ C, we consider

I(tεuε) =
t2ε
2

∫
R3

|(−∆)
s
2uε |2 dx+

t2ε
2

∫
R3

(1 + µa(x))u2εdx

−
∫
R3

F (tεuε)dx− t
2∗s
ε

2∗s

∫
R3

|uε |2
∗
s dx

=
t2ε
2

∫
Ω

|(−∆)
s
2uε |2 dx+

t2ε
2

∫
Ω

u2εdx−
∫
Ω

F (tεuε)dx− t
2∗s
ε

2∗s

∫
Ω

|uε |2
∗
s dx

≤ max
t≥0

( t2
2

∫
Ω

| (−∆)
s
2uε |2 dx+

t2

2

∫
Ω

u2εdx
)

−
∫
Ω

F (tεuε)dx+
t
2∗s
ε

2∗s

∫
Ω

|uε |2
∗
s dx

≤ 1

3
S

3
2s + o(ε

1
2 )−

∫
|x−x0|≤ε

F (tεuε)dx+ C

∫
Ω

| uε |2 dx

≤ 1

3
S

3
2s .

Lemma 2.4. Assume (f1) − (f3), (a1) and (a3) hold, let {uk} ⊂ Hs(R) be a
sequence such that I(uk) → c (c < 1

3S
3
2s ), I ′(uk) → 0, then uk is bounded.

Proof. If we assume that ∥uk ∥→ ∞, let vk = uk

∥uk∥ , then vk ⇀ v weakly in Hs(R),
vk → v a.e. in R.

If v(x) = 0 a.e. in E for x ∈ R3, by (f1), (f2), there is a constant ω ∈ (0, 1θ −
1
2∗s
)

satisfied θ ∈ (4, 2∗s) and a constant Cω > 0 such that

| 1
θ
f(uk)uk − F (uk) |≤ ω |uk |2

∗
s +Cω |uk |2,

then (
I(uk)−

1

θ
⟨I ′(uk)uk⟩

)
≥

(1
2
− 1

θ

)
∥uk ∥2 −Cω

∫
R3

|uk |2 dx,

thus, we derive that

1

∥ uk ∥2
(
I(uk)−

1

θ
⟨I ′(uk)uk⟩

)
≥

(1
2
− 1

θ

)
−Cω

∫
R3

| vk |2 dx.

We have known that I(uk) → c, I ′(uk) → 0 and ∥ uk ∥→ ∞, then through a simple
calculation, we get 0 ≥ ( 12 − 1

θ ), it is a contradiction.
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If v(x) ̸= 0, let Ω = {x ∈ R3 : v(x) ̸= 0}, by vk(x) = uk

∥uk∥ → v(x) for any
x ∈ Ω, we have lim

n→∞
uk(x) → ∞, from (f3), there is a constant K,C > 0, such that

F (u) ≥ Ku2 + C and by Fatou’s lemma

0 = lim
n→∞

c+ o(1)

∥uk ∥
= lim

n→∞

I(uk)

∥uk ∥

= lim
n→∞

[
1

2
− 1

∥uk ∥2

∫
R3

F (u)dx− 1

2∗s ∥uk ∥2

∫
R3

u2
∗
sdx

]
≤ lim

n→∞

[
1

2
−
∫
R3

F (uk)

u2k
v2kdx

]
≤ 1

2
−K

∫
R3

v2dx,

when K is big enough, it is a contradiction. Thus, uk is bounded.

Lemma 2.5. If (a1), (a3), (f1) − (f3) hold, there is a constant µ0 > 0, for any
µ > µ0, there holds u ̸= 0 and I ′(u) = 0.

Proof. By Lemma 2.1, Lemma 2.2 and Lemma 2.4, we get that there is a bounded
sequence {uk} ⊂ E, along a subsequence still written as {uk}. There exists a u ∈ E

such that uk ⇀ u , I(u) → c < 1
3S

3
2s and I ′(uk) → 0. For any φ ∈ C∞(R), we have

⟨I ′(uk), φ⟩ = 0, and∫
R3

(−∆)
s
2uk(−∆)

s
2φ+(1+µa(x))ukφdx→

∫
R3

(−∆)
s
2u(−∆)

s
2φ+

(
1+µa(x)

)
uφdx,∫

R3

f(uk)φdx−
∫
R3

u
2∗s−2
k uφdx→

∫
R3

f(u)φdx−
∫
R3

u2
∗
s−2uφdx.

So we derive that I ′(u) = 0.
Suppose that u = 0, then uk ⇀ 0, Br(y) be a bounded ball, we have

lim
n→∞

sup
y∈R3

∫
Br(y)

| u |2 dx ≥ 0.

Next, we will discuss two cases to show that this hypothesis does not hold.
If lim

n→∞
sup
y∈R3

∫
Br(y)

| u |2 dx = 0, by Lions Lemma( [19], Lemma 1.21), we can

derive that
∫
|x|≤r

| uk |p dx → 0, where p ∈ (2, 2∗s). From (f1) and (f2), there is a
ε > 0 satisfying Cε > 0 such that |F (uk) |≤ε(u2k + u

2∗s
k ) + Cε |uk |q, q ∈ (2, 2∗s). By

Lebesgue dominated convergence theorem, there is

lim
n→∞

∫
R3

F (uk)dx = 0, lim
n→∞

∫
R3

f(uk)ukdx = 0.

Thus

I(uk) =
1

2
∥uk ∥2 −

∫
R3

F (uk)dx− 1

2∗s

∫
R3

u
2∗s
k dx

=
1

2
∥uk ∥2 − 1

2∗s

∫
R3

u
2∗s
k dx+ ok(1),
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and

ok(1) = I ′(uk) = ∥uk ∥2 −
∫
R3

f(uk)ukdx−
∫
R3

u
2∗s
k dx

= ∥uk ∥2 −
∫
R3

u
2∗s
k dx. (2.8)

We take a subsequence, which is still recorded as {uk}. Then there exists l ≥ 0
such that

lim
k→∞

∥uk ∥2= lim
k→∞

|uk |
2∗s
2∗s
= l. (2.9)

Suppose l = 0, then ∥ uk ∥→ 0 in E, I(uk) → 0. But we have already known that
I(uk) → c > 0, there is a contradiction. Therefore, l > 0 holds. By I(uk) → c > 0,
(2.8) and (2.9), we get

3c ≥ l + 1, (2.10)
by the definition of S, we derive that

∥ uk ∥2≥
∫
R3

(
(−∆)

s
2uk

)2

dx ≥ S
(∫

R3

| uk |2
∗
s

) 2
2∗s ,

which could get l ≥ S
3
2s as k → ∞, combining with (2.10), we derive that c ≥ 1

3S
3
2s ,

a contradiction.
If we assume that lim

n→∞
sup
y∈R3

∫
Br(y)

|u |2 dx > 0, there is a positive constant α > 0

such that

lim
k→∞

sup
y∈R3

∫
Br(y)

|u |2dx = α > 0.

For convenience, let Dr={x ∈ R3 \Br : a(x) ≥ a0}, Ar={x ∈ R3 \Br : a(x)<a0},
moreover, meas(Ar) → 0 as r → ∞ by (a1), one has

lim sup
k→∞

∫
Dr

u2k ≤ lim sup
k→∞

1

1 + µa0

∫
R3

(1 + µak)u
2
kdx

≤ 1

1 + µa0
lim sup
k→∞

∥uk ∥2

≤ C

1 + µa0
, (2.11)

where ∥uk ∥2≤ C is independent of k and µ, then take µ ≥ 4C
αa0

such that
∫
Dr
u2k ≤

C
1+µa0

≤ C
µa0

≤ α
4 uniformly in k. Moreover, we verify that∫

Ar

u2kdx ≤
(∫

Ar

uqkdx

) 2
q
(∫

Ar

1dx

) q−2
q

≤ ∥uk ∥2 (meas(Ar))
q−2
q

≤ C(meas(Ar))
q−2
q → 0, (2.12)

where q ∈ (2, 2∗s] and uniformly in k. From uk → 0 in Lp
loc(R3) with q ∈ (2, 2∗s],

(2.11) and (2.12), as r → ∞, we have

α = lim
k→∞

sup
y∈R3

∫
Br

u2kdx ≤ lim sup
k→∞

∫
R3

u2dx
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= lim sup
k→∞

(∫
Br

|uk |2 dx+

∫
Bc

r

|uk |2 dx
)

= lim sup
k→∞

(∫
Dr

u2kdx+

∫
Ar

u2kdx

)
≤ α

4
.

This is a contradiction. Hence, there exists u ̸= 0 such that uk ⇀ u in E and
I ′(u) = 0, the proof is finished.
Proof of Theorem 1.1. By Lemma 2.2 - Lemma 2.5, there is a bounded sequence
{uk} ⊂ E such that I(uk) → c < 1

3S
3
2s , I ′(uk) → 0. We take a subsequence still

denoted by {uk}, then uk ⇀ u in E, I(uk) → c < 1
3S

3
2s , I ′(uk) → 0 , I(u) → c <

1
3S

3
2s and I ′(u) → 0. Let

N =
{
u ∈ E \ {0} : I ′(u) = 0

}
, m = inf

N
I(u).

By the argument above, we know that N is not empty. Now we claim that m > 0.
We establish the Pohozaev type identity of equation (1.1) as follows

P (u) : =
3− 2s

2

∫
R3

|(−∆)
s
2u|2 dx+

3

2

∫
R3

(1 + µa(x))u2dx

−3

∫
R3

F (u)dx− 3

2∗s

∫
R3

|u|2
∗
s dx = 0. (2.13)

Moreover we have

I(u) = I(u)− 1

2∗s
I ′(u)

=
(1
2
− 1

2∗s

)∫
R3

|(−∆)
s
2u |2 +(1 + µa(x))u2dx

+
1

2∗s

∫
R3

f(u)udx−
∫
R3

F (u)dx. (2.14)

Combined with (2.13) (2.14) and (a2), for s ∈ [ 34 , 1), u ̸= 0, we have

I(u) =
4s− 3

6

∫
R3

|(−∆)
s
2u|2 +

1

2

∫
R3

(1 + µa(x))u2dx

−1

6

∫
R3

(∇(1 + µa(x)), x)u2dx+
1

2∗s

∫
R3

(f(u)u+ u2
∗
s )dx

≥ 4s− 3

6

∫
R3

|(−∆)
s
2u|2 +

1

2∗s

∫
R3

(f(u)u+ u2
∗
s )dx

> 0.

Thus, we get m > 0. Assume uk ⇀ u weakly in E, similar to the proof of Lemma
2.5, we derive I(u) = m and I ′(u) = 0 with u ̸= 0 from I(uk) → m < 1

3S
3
2 and

I ′(uk) = 0, so m is attained by u. The proof is completed.
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