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PERSISTENCE AND EXTINCTION OF THE
TUMOR-IMMUNE STOCHASTIC MODEL

WITH EFFECTOR CELLS AND CYTOKINES∗

Jingnan Wang1,† and Shengnan Liu1

Abstract To investigate the effects of microenvironment on the tumor growth
and the loss rates of effector cells and cytokine, we present a stochastic tumor-
immune model with the treatment response of effector cells assisted by cy-
tokine to tumor growth. By using the comparison theorem, the Itô formula
and the law of large numbers, we prove the existence of globally unique pos-
itive solution and obtain the sufficient conditions for the extinction and the
persistence of tumor cells. Moreover, using our theoretical results, we perform
some numerical simulations to show that different noise intensities lead to dif-
ferent states of tumor cells, including tumor extinction and tumor persistence,
which confirms the obtained theoretical results and is useful for theoretical
guidance of inhibiting tumor growth in clinical medicine.

Keywords Stochastic responses, Itô formula, tumor-immune model, extinc-
tion, persistent in mean.
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1. Introduction

With the rapid development and mutual penetration of oncology, immunology and
molecular biology, immunological principles and methods have been applied to tu-
mor immunotherapy. It becomes a new research direction in tumor immunotherapy
to enhance anti-tumor immune response by using immune system supported exter-
nal input drugs of activating effector cells and cytokines [1,3,11,13,17]. In order to
explore tumor immunotherapy, scholars established many tumor-immune models to
study the mechanism of tumor-immune [4–6,12,14,15,18,21,22].

Different immune cells have different ways to eliminate tumors. According to
the characteristic of immune effector cells killing tumor cells under the support of
some cytokines [1,3,17], Kirschner and Panetta [12] established an immunotherapy
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model of tumor-immune interaction. The specific form is as follows

dx

dt
= cy − µ2x+

p1xz

g1 + z
+ s1

dy

dt
= r2y(1− by)− axy

g2 + y

dz

dt
=

p2xy

g3 + y
− µ3z + s2

(1.1)

where x(t) represents the number of effector cells; y(t) represents the number of
tumor cells; z(t) represents the number of cytokines (IL-2); c represents the anti-
genicity of the tumor; µ2 represents the loss rate of effector cells; r2 represents
the growth rates of tumor cells ; µ3 represents the loss rate of cytokines (IL-2); a
represents the strength of the immune response,s1 represents an external source of
effector cells such as LAK or TIL cells; s2 represents an external input of cytokines
(IL-2) into the system; Michaelis-Menten function p1x(t)z(t)

g1+z(t) ,ax(t)y(t)g2+y(t) ,
p2x(t)y(t)
g3+y(t) repre-

sent functional immune response functions. Authors [12] investigated the stability
and bifurcations. In 2001, DePillis [5] established a tumor model with immune
resistance and drug therapy, in which the functional response functions of immune
response have two types, one is the Michaelis-Menten function, the other is the
bilinear function.

In fact, the growth, the proliferation and the apoptosis of tumor cells are in-
fluenced by microenvironmental factors [2, 24, 25]. Hence, stochastic differential
equations are introduced into modeling tumor-immune mechanisms. For example,
the environmental noise and the time delay of tumor cell proliferation can lead
to stochastic resonance of tumor growth to the immunotherapy [6]. Based on the
theorem in tumor-immune system with periodic treatment, Li and Li [14] obtained
that the extinction and survival of tumor cells rely on the intensity of periodic
treatment. The microenvironment noise of tumor-immune system may affect the
stochastic persistence of tumor cells and effector immune cells [15].

Recently, the role of cytokines (IL-21) in the treatment of malignancies has
been widely investigated [3, 17]. In addition, many research results demonstrate
that the inhibition of tumor angiogenesis and the destruction of the microenviron-
ment depended on tumor survival may be attributed to direct effects on tumor cell
proliferation. Therefore, in this paper, based on the immunotherapy of hepatocel-
lular carcinomas, we replace two Michaelis-Menten functions of x and y with two
bilinear functions of x and y, as follows

ax(t)y(t)

g2 + y(t)
→ ax(t)y(t),

p2x(t)y(t)

g3 + y(t)
→ p2x(t)y(t).

In addition, by considering the effect of microenvironment noise, we introduce
stochastic perturbation into the loss rate of effector cells, the growth rate of tu-
mor cells, the loss rate of cytokines in model (1.1), and assume that parameters
µ2, r2, µ3 are disturbed by µ2 + ρ1dB1(t), r2 + ρ2dB2(t), µ3 + ρ3dB3(t), respec-
tively. Here ρ1, ρ2 and ρ3 represent the intensities of environmental white noises
for the loss rate of effector cells, the growth rate of tumor cells and the loss rate of
cytokines, respectively. Bi(t), i = 1, 2, 3,(Bi(0) = 0) are mutually independent stan-
dard Brownian motions defined on a complete probability space (Ω,F , {Ft}t≥0, P )
with a filtration {Ft}t≥0 satisfying the usual conditions(i.e., it is increasing and
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right continuous while F0 contains all p-null sets), ρ2i > 0. Therefore, our modified
tumor-immune model with white noise is as follows

dx = (cy(t)− µ2x(t) +
p1x(t)z(t)

g1 + z(t)
+ s1)dt− ρ1x(t)dB1(t)

dy = (r2y(t)− βy2(t)− ax(t)y(t))dt+ ρ2y(t)dB2(t)

dz = (p2x(t)y(t)− µ3z(t) + s2)dt− ρ3z(t)dB3(t)

(1.2)

where β = r2b and x(t), y(t), z(t) represent the number of effector cells, tumor
cells(hepatocellular carcinomas), cytokines (IL-21), respectively. c, r2, µ2, p1, g1,
s1, r2, b, a, p2, µ3, s2 are the similar parameters in model (1.1).

The rest of the paper is organized as follows. In Section 2, we give some nota-
tions, definitions and the theory of stochastic differential equation. In Section 3,
we prove that the tumor-immune solutions with the initial value in R3

+ are glob-
ally positive and uniformly bounded in mean. In addition, we derive the sufficient
conditions of the extinction and persistence of tumor cells. In Section 4, we per-
form numerical simulations to verify our obtained theorems and show the effects
of stochastic intensity on tumor extinction and tumor survival. In section 5, we
give some suggestions for the immunotherapy methods of inhibiting tumor growth,
based on our obtained theoretical analysis and numerical results.

2. Theory of stochastic differential equation
For the convenience of investigation into the sufficient conditions of tumor cell
extinction and tumor survival under the interference of microenvironment white
noise, we introduce the following definitions [7–10,15,16] and theories [19,20].

(i) The tumor cell y(t) will go to extinction a.s. if limt→∞ y(t) = 0.
(ii) The tumor cell y(t) will be strong persistent in the mean a.s. if

⟨y(t)⟩∗ = lim
t→∞

inf⟨y(t)⟩ > 0.

(iii) ⟨y(t)⟩ = 1
t

∫ t

0
y(s)ds, ⟨y(t), y(t)⟩ = 1

t

∫ t

0
y2(s)ds.

Lemma 2.1 (Theorem 6.4, [19, 20]). Let X(t) be a d-dimensional Itô progress on
t ≥ 0 with the stochastic differential

dX(t) = f(t)dt+ g(t)dB(t)

where f(t) ∈ L1(R+, R
d) and g(t) ∈ L2(R+, R

d×m) . Let V (X(t), t) ∈ C2,1(Rd ×
R+, R). Then V (X(t), t) is again an Itô progress with the stochastic differential
given by

dV (X(t), t) = LV (X(t), t)dt+ VX(X(t), t)g(t)dB(t) a.s.

where LV (X(t), t) = Vt(X(t), t) + VX(X(t), t)f(t) + 1
2 trace(gT (t)VXX(X(t), t)g(t)).

Lemma 2.2 (Lemma 6.1, [19, 20]). Let f ∈ C([0,∞) × Ω, (0,∞)) and F (t) ∈
C([0,∞)×Ω, R). Suppose there are constants λ0, λ and T , such that for all t ≥ T ,
the following condition holds

ln f(t) ≥ λt− λ0

∫ t

0

f(s)ds− F (t) (2.1)
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where lim
t→∞

F (t)
t = 0 a.s. , then the following conclusion holds

lim inf
t→∞

1

t

∫ t

0

f(s)ds ≥ λ

λ0
a.s..

Lemma 2.3 (Chapter VI Theorem1.1*, [23]). (comparison theorem): If the follow-
ing one-dimensional stochastic differential equations

dx1(t) =f1(x1(t), t)dt+ g(x1(t), t)dB1(t), x1(0) = x̃1 ∈ R
dx2(t) =f2(x2(t), t)dt+ g(x2(t), t)dB1(t), x2(0) = x̃2 ∈ R

(where fi(x(t), t) ∈ C([0,∞) × R), g(x(t), t) ∈ C([0,∞) × R)) both have solutions.
Furthermore, if the pathwise uniqueness of solution holds for at least one of the
above two stochastic differential equations and following conditions hold

(i) ρ(s) is the function defined on [0,∞), ρ(0) = 0,
∫ +∞
0+

ρ(s)ds = ∞ and satisfies

|g(x1(t), t)− g(x2(t), t)| ≤ ρ (|x1(t)− x2(t)|) , x1(t), x2(t) ∈ R, t ≥ 0;

(ii) f1(x(t), t) ≤ f2(x(t), t), ∀t ≥ 0,x(t) ∈ R;
(iii) x1(0) ≤ x2(0), then x1(t) ≤ x2(t), t ≥ 0, a.s., where xi(t)(i = 1, 2) are the

solutions processes of the above two stochastic differential equations, respec-
tively.

3. Extinction and persistence of tumor cells
In this section, we use the method in published papers [8–10, 15, 16] to prove that
there is a globally unique positive solution in model (1.2).

Theorem 3.1. For any positive initial value (x0, y0, z0) ∈ R3
+, if µ2 > p1, then

there is a unique solution (x(t), y(t), z(t)) in model (1.2) as t ≥ 0, and the solution
will remain in R3

+ with probability 1.

Proof. Since the coefficients of model (1.2) satisfy the locally Lipschitz condition
for any initial value (x0, y0, z0) ∈ R3

+, there is a unique local solution (x(t), y(t), z(t))
of model (1.2) on t ∈ [0, τe), where τe is the explosion time. To show that this
solution is global, we only need to show τe = ∞ a.s. Let k0 ≥ 0 be sufficiently large
so that x0, y0, z0 all lie within the interval

[
1
k0
, k0

]
. For each integer k ≥ k0, we

define the stopping time

τk = inf

{
t ∈ [0, τe) : min{x(t), y(t), z(t)} ≤ 1

k
or max {x(t), y(t), z(t)} ≥ k

}
.

By the definition of stopping time, we know that τk is increasing as k → ∞. Set
τ∞ = limk→∞ τk. Since τ∞ ≤ τe a.s., we know that if τ∞ = ∞ a.s., then τe = ∞
a.s., that is to say, for all t ≥ 0, (x(t), y(t), z(t)) ∈ R3

+ a.s.
Next, we will prove τ∞ = ∞ a.s.by contradiction. Assuming the contrary, if τ∞

cannot reach ∞, there exist constants T > 0 and ε ∈ (0, 1) such that P {τ∞ ≤ T} >
ε. Thus there exists an integer k1 ≥ k0 such that

P {τk ≤ T} > ε, k > k1. (3.1)
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We define a C3− function V : R3
+ → R̄+ by

V (x, y, z) = θ (x− 1− lnx) + y − 1− ln y +
a

p2
(z − 1− ln z) (3.2)

where θ = a/(µ2−p1) is positive constant as µ2 > p1. The nonnegativity of function
V (x, y, z) can be seen from the inequality u− 1− lnu ≥ 0 , ∀u > 0. Let k ≥ k0 and
θ > 0 be arbitrary. Applying the Itô formula, we have

dV (x, y, z)=LV (x, y, z)dt−θ(x−1)ρ1dB1(t)+(y−1)ρ2dB2(t)−
a

p2
(z−1)ρ3zdB3(t).

Here

LV (x, y, z) =θ(1− 1

x
)(cy(t)−µ2x(t)+

p1x(t)z(t)

g1+z(t)
+s1)+(1− 1

y
)(r2y(t)−βy2(t)

− ax(t)y(t))+
a

p2
(1− 1

z
)(p2x(t)y(t)−µ3z(t)+s2)+

1

2
(θρ21+ρ22+

aρ23
p2

).

By computing, we have

LV (x, y, z) =θ(s1+µ2)− r2 +
a(s2 + µ3)

p2
+

1

2
(θρ21 + ρ22 +

a

p2
ρ23) + (θc+ r2 + β)y

− βy2 + (a− θµ2)x+
θp1x(t)z(t)

g1 + z(t)
− θ(cy + s1)

x
− θzp1

g1 + z

− aµ3

p2
z − a(p2xy + s2)

p2z
.

(3.3)
Then we have inequality

LV (x, y, z) ≤θ(s1 + µ2)− r2 +
a(s2 + µ3)

p2
+

1

2
(θρ21 + ρ22 +

a

p2
ρ23) +

(θc+ r2 + β)2

4β

+ (a− θ(µ2 − p1))x.
(3.4)

Since θ = a/(µ2 − p1), we obtain

LV (x, y, z) ≤ K, (3.5)

where K = θ(s1 + µ2) − r2 +
a(s2+µ3)

p2
+ 1

2 (θρ
2
1 + ρ22 +

a
p2
ρ23) +

(θc+r2+β)2

4β . K is a
positive constant. Thus we obtain

dV (x, y, z) ≤ Kdt−θ(x−1)ρ1dB1(t)+(y−1)ρ2dB2(t)−
a

p2
(z−1)ρ3dB3(t). (3.6)

By integrating both sides of inequality (3.6) from 0 to τk∧T and taking expectation,
we obtain

E [V (x (τk ∧ T ) , y (τk ∧ T ) , z (τk ∧ T ))] ≤ V (x0, y0, z0) + E

(∫ τk∧T

0

Kdt

)
.

Then we have

E [V (x (τk ∧ T ) , y (τk ∧ T ) , z (τk ∧ T ))] ≤ V (x0, y0, z0) +KT. (3.7)
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Let Ωk = {τk ∧ T} for k ≥ k1. By inequality (3.1), we have P (Ωk) ≥ ε. Note
that for every ω ∈ Ωk, at least one of x (τk, ω) or y (τk, ω) or z (τk, ω) equals either
k or 1

k , therefore
V (x(τk), y (τk) , z (τk)) ≥ f(k)

where f(k) = M
[(

1
k − 1 + ln k

)
∧ (k − 1− ln k)

]
, M = max{θ, 1, a/p2}. By in-

equality (3.7), we have

V (x0, y0, z0) +KT ≥ E
[
IΩk(ω)V (x (τk) , y (τk) , z (τk))

]
≥ εf(k),

where IΩk(ω) is the indicator function of Ωk. Let k → ∞, which leads to ∞ >
V (x0, y0, z0) + KT = ∞, which is contradiction. It is clear that the assumption
that τ∞ cannot reach ∞ does not hold. Therefore, we have τ∞ = ∞ a.s., and
this means that x(t), y(t) and z(t) will not cause a blast in any finite time with
probability 1, that is to say, model (1.2) must have a unique globally positive
solution (x(t), y(t), z(t)) for any given initial condition in R3

+ a.s. This completes
the proof.

Lemma 3.1 (Lemma 2.2, [8]). Let Φ is a solution of the following equation

dΦ(t) = (r2Φ(t)− βΦ2(t))dt+ ρ2Φ(t)dB2(t). (3.8)

Then
lim
t→∞

supE[Φ(t)] ≤ r2
β
. (3.9)

Theorem 3.2. If µ2 > p1, then the solution (x(t), y(t), z(t)) of model (1.2) with
any positive initial value (x0, y0, z0) ∈ R+

3 is uniformly bounded in mean. The
specific form is as follows

lim
t→∞

supE[x(t)] ≤ cr2 + βs1
β(µ2 − p1)

; lim
t→∞

supE[y(t)] ≤ r2
β
;

lim
t→∞

supE[y(t) +
a

p2
z(t)] ≤ (r2 + µ3)

2

4µ3β
+

as2
p2µ3

(3.10)

Proof. By the second equation of model (1.2) and (3.8), we obtain y(t) ≤ Φ(t).
Since inequality (3.9) in Lemma 3.1 holds, it is easy to see that

lim
t→∞

supE[y(t)] ≤ r2
β
. (3.11)

Next, we show x(t) is bounded in mean. By integrating the first equation of model
(1.2) from 0 to t, we have

x(t) = x(0)+

∫ t

0

(
cy(t)− µ2x(t) +

p1x(t)z(t)

g1 + z(t)
+ s1

)
dt−ρ1

∫ t

0

x(t)dB1(t). (3.12)

By taking expectation both sides of (3.12), we obtain

E[x(t)] = x(0) + c

∫ t

0

E[y(t)]dt−
∫ t

0

E

[
µ2x(t)−

p1x(t)z(t)

g1 + z(t)
− s1

]
dt. (3.13)
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Differentiating both sides of (3.13) with respect to t, we obtain

dE[x(t)]

dt
= cE[y(t)]− µ2E[x(t)] + E

[
p1x(t)z(t)

g1 + z(t)

]
+ s1. (3.14)

For x > 0, y > 0 and z > 0, we obtain
dE[x(t)]

dt
≤ cE[y(t)] + s1 − µ2E[x(t)] + p1E[x(t)]. (3.15)

Thus, by (3.11) and the comparison theorem, if µ2 > p1, then we obtain

lim
t→∞

supE[x(t)] ≤ cr2 + βs1
β(µ2 − p1)

.

Next, we show y(t) + a
p2
z(t)is bounded in mean. Let

G(t) = y(t) +
a

p2
z(t).

Calculating the time derivative of G(t) along model (1.2) , we obtain

dG(t) =

(
(r2 + µ3)y(t)− βy2 − µ3G(t) +

a

p2
s2

)
dt

+ ρ2y(t)dB2(t)−
a

p2
ρ3z(t)dB3(t).

(3.16)

By integrating (3.16) from 0 to t, we have

G(t) =G(0) +

∫ t

0

((r2 + µ3)y(t)− βy2 − µ3G(t) +
a

p2
s2)dt+ ρ2

∫ t

0

y(t)dB2(t)

− a

p2
ρ3

∫ t

0

z(t)dB3(t).

(3.17)
By taking expectation both sides of (3.17), we obtain

E[G(t)] = G(0) +

∫ t

0

E[((r2 + µ3)y(t)− βy2 − µ3G(t) +
a

p2
s2]dt. (3.18)

Differentiating both sides of (3.18) with respect to t, we obtain

dE[G(t)] = E[(r2 + µ3)y(t)− βy2 +
a

p2
s2]− µ3E[G(t))]. (3.19)

By (3.19), we obtain

dE[G(t)] ≤ (r2 + µ3)
2

4β
+

a

p2
s2 − µ3E[G(t))].

Thus, by the comparison theorem, we have

lim
t→∞

supE[G(t)] ≤ (r2 + µ3)
2

4µ3β
+

as2
p2µ3

that is
lim
t→∞

supE[y(t) +
a

p2
z(t)] ≤ (r2 + µ3)

2

4µ3β
+

as2
p2µ3

.

This completes the proof.
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Remark 3.1. Since the solution of model (1.2) is positive, from (3.10), it is clear
that

lim
t→∞

supE[z(t)] ≤ p2(r2 + µ3)
2

4aµ3β
+

s2
µ3

.

Theorem 3.2 shows that when the loss rate µ2 of effector cells is greater than the
rate p1 of stimulated by cytokines (IL-2), effector cells,tumor cells and cytokines
(IL-2) are all uniformly bounded in mean.

Lemma 3.2. Let (x(t), y(t), z(t)) be a positive solution of model (1.2) with any
positive initial value (x0, y0, z0) ∈ R+

3 . If 2µ2 > c+ 2p1 + ρ21, then

lim
t→∞

supE[x2(t)] ≤
c(

2r2+ρ2
2

2β )2 + 2s1(cr2+βs1)
β(µ2−p1)

2µ2 − c− 2p1 − ρ21
; lim

t→∞
supE[y2(t)] ≤

(
2r2 + ρ22

2β

)2

.

(3.20)

Proof. Applying the Itô formula, we have

dy2(t) = 2y(t)(r2y(t)− βy2(t)− ax(t)y(t))dt+ ρ22y
2dt+ 2ρ2y

2(t)dB2(t). (3.21)

Since x(t) > 0 and y(t) > 0, we have

dy2(t) ≤ ((2r2 + ρ22)y
2(t)− 2βy3(t))dt+ 2ρ2y

2(t)dB2(t). (3.22)

By integrating (3.22) from 0 to t, taking expectation and differentiating with respect
to t, we obtain

dE[y2(t)]

dt
≤ (2r2 + ρ22)E[y2(t)]− 2βE[y3(t)]

≤ (2r2 + ρ22)E[y2(t)]− 2β(E[y2(t)])1+1/2.

(3.23)

Thus, we have

lim
t→∞

supE[y2(t)] ≤
(
2r2 + ρ22

2β

)2

. (3.24)

Applying the Itô formula, we have

dx2(t) = 2x(t)

(
cy(t)− µ2x(t) +

p1x(t)z(t)

g1 + z(t)
+ s1

)
dt+ ρ21x

2dt− 2ρ1x
2(t)dB(t).

(3.25)
Since z(t) > 0 , we have

dx2(t) ≤ (cx2(t)+cy2(t)−2µ2x
2(t)+2p1x

2(t)+2s1x+ρ21x
2)dt−2ρ1x

2(t)dB1. (3.26)

By integrating (3.26) from 0 to t, taking expectation and differentiating with respect
to t, we obtain

dE[x2(t)]

dt
≤ cE[y2(t)] + 2s1E[x(t)]− (2µ2 − c− 2p1 − ρ21)E[x2(t)]. (3.27)

By (3.10) and (3.24), if 2µ2 > c+ 2p1 + ρ21, then we obtain

lim
t→∞

supE[x2(t)] ≤
c(

2r2+ρ2
2

2β )2 + 2s1(cr2+βs1)
β(µ2−p1)

2µ2 − c− 2p1 − ρ21
.

This completes the proof.
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Theorem 3.3. Let (x(t), y(t), z(t)) be the solution of model (1.2) with any positive
initial value (x0, y0, z0) ∈ R+

3 . If µ2 > as1/r2 and ρ22 > 2(r2µ2−as1)
µ2

, then we have

⟨x(t)⟩∗ =
s1
µ2

, lim
t→∞

y(t) = 0, ⟨z(t)⟩∗ =
s2
µ3

. (3.28)

Proof. By integrating the first equation of model (1.2) from 0 to t and dividing
it by t, we have

x(t)− x0

t
= c⟨y(t)⟩ − µ2⟨x(t)⟩+ p1

⟨
x(t)z(t)

g1 + z(t)

⟩
+ s1 −

1

t

∫ t

0

ρ1x(s)dB1(s).

By computing, we have

⟨x(t)⟩ = c

µ2
⟨y(t)⟩+ p1

µ2

⟨
x(t)z(t)

g1 + z(t)

⟩
+

s1
µ2

− 1

tµ2

∫ t

0

ρ1x(s)dB1(s)−
x(t)− x0

tµ2

≥ s1
µ2

− N1(t)

t
− x(t)− x0

tµ2

(3.29)
where

N1(t) =

∫ t

0

ρ1
µ2

x(s)dB1(s)

which is a local continuous martingale and N1(0) = 0. Based on the strong law of
large numbers for local martingales in the method of [9], by (3.10) and (3.20), we
obtain

lim
t→∞

N1(t)

t
= 0 a.s.

By (3.29), we obtain

⟨x(t)⟩∗ = lim
t→∞

inf⟨x(t)⟩ ≥ s1
µ2

a.s. (3.30)

In addition, applying the Itô formula to the first equation of model (1.2), we obtain

d ln
1

x(t)
=

(
−cy(t)

x(t)
+ µ2 −

p1z(t)

g1 + z(t)
− s1

x(t)
+

1

2
ρ21

)
dt+ ρ1dB1(t). (3.31)

Then integrating both sides of (3.31) from 0 to t we have

ln
1

x(t)
−ln

1

x0
=

(
µ2 +

1

2
ρ21

)
t−
∫ t

0

(
cy(s)

x(s)
+

p1z(s)

g1 + z(s)
+

s1
x(s)

)
ds+

∫ t

0

ρ1dB1(s).

(3.32)
By computing, (3.32) becomes

ln
1

x(t)
≥ µ2t− c

∫ t

0

y(s)

x(s)
ds− s1

∫ t

0

1

x(s)
ds− p1

∫ t

0

z(s)ds. (3.33)

Let

f(t) =
1

x(t)
, F (t) = c

∫ t

0

y(s)

x(s)
ds+ p1

∫ t

0

z(s)ds.
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It is clear that lim
t→∞

F (t)
t = 0, based on Lemma 2.2, let λ = µ2 and λ0 = s1 in (3.2),

we obtain
lim inf
t→∞

1

t

∫ t

0

1

x(s)
ds ≥ µ2

s1
a.s.

which implies
⟨x(t)⟩∗ ≤ s1

µ2
a.s. (3.34)

combining (3.30) and (3.34), we have

⟨x(t)⟩∗ = lim
t→+∞

inf⟨x(t)⟩= s1
µ2

a.s.

Applying the Itô formula to the second equation of model (1.2), we get

d ln y(t) = (r2 − βy(t)− ax(t)− 1

2
ρ22)dt+ ρ2dB2(t). (3.35)

By integrating (3.35) from 0 to t and dividing it by t, we have

ln y(t)− ln y0
t

= r2 − β ⟨y(t)⟩ − a ⟨x(t)⟩ − 1

2
ρ22 +

N2

t
(3.36)

where
N2(t) =

∫ t

0

ρ2dB2(s)

which is a local continuous martingale and N2(0) = 0 and

lim
t→∞

⟨N2, N2⟩
t

= ρ22 < ∞ a.s.

By the strong law of large numbers for local martingales, we obtain

lim
t→∞

N2(t)

t
= 0 a.s.

Taking the superior limit on both sides of inequality (3.36), we have

lim sup
t→∞

ln y(t)

t
≤ 2(r2µ2 − as1)− µ2ρ

2
2

2µ2
a.s.

If µ2 > as1/r2 and ρ22 > 2(µ2r2−as1)
µ2

, then we obtain

lim sup
t→∞

ln y(t)

t
≤ 0 a.s.

which implies
lim
t→∞

y(t) = 0 a.s.

By using same method of ⟨x(t)⟩∗ = s1
µ2
, we can obtain that ⟨z(t)⟩∗ = s2

µ3
, This

completes the proof.

Remark 3.2. Theorem 3.3 shows that when the effector cells loss rate µ2 and noise
intensity ρ2 of tumors are both larger, tumor cells will go to extinction.
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Theorem 3.4. Suppose that (x(t), y(t), z(t)) is the solution of model (1.2) with
any positive initial value (x0, y0, z0) ∈ R+

3 . If µ2 > (r2p1 + as1)/r2 and ρ22 <
2(r2(µ2−p1)−as1)

µ2−p1
, then tumor cells will be strong persistent in mean ⟨y(t)⟩∗ > 0 as

t → ∞, and

lim sup
t→∞

⟨x(t)⟩ <
r2 − 1

2ρ
2
2

a
, lim inf

t→∞
⟨z(t)⟩ ≥ s2

µ3
.

Proof. By integrating the first equation of model (1.2) from 0 to t and dividing
it by t, we have

x(t)− x0

t
= c⟨y(t)⟩ − µ2⟨x(t)⟩+ p1

⟨
x(t)z(t)

g1 + z(t)

⟩
+ s1 −

1

t

∫ t

0

ρx(s)dB1(s).

By computing, we have

µ2 ⟨x(t)⟩ ≤ c ⟨y(t)⟩+ p1 ⟨x(t)⟩+ s1 −
1

t

∫ t

0

ρ1x(t)dB1(s)−
x(t)− x0

t
. (3.37)

Applying the Itô formula, we have

d ln y(t) = (r2 − βy(t)− ax(t)− 1

2
ρ22)dt+ ρ2dB2(t). (3.38)

By integrating both sides of the equation (3.38) from 0 to t, we have

ln y(t)− ln y0
t

= r2 − β ⟨y(t)⟩ − a ⟨x(t)⟩ − 1

2
ρ22 +

1

t

∫ t

0

ρ2dB2(s). (3.39)

By (3.39), we obtain

β ⟨y(t)⟩ = r2 −
1

2
ρ22 − a ⟨x(t)⟩+ 1

t

∫ t

0

ρ2dB2(s)−
ln y(t)− ln y0

t
. (3.40)

Submitting (3.37)into (3.40), if µ2 > p1, then we obtain

β ⟨y(t)⟩ ≥ r2 −
1

2
ρ22 −

ac

µ2 − p1
⟨y(t)⟩ − as1

µ2 − p1
+

a

(µ2 − p1)t

∫ t

0

ρ1x(t)dB1(s)

+
a(x(t)− x0)

t(µ2 − p1)
+

1

t

∫ t

0

ρ2dB2(s)−
ln y(t)− ln y0

t
.

(3.41)
By (3.41) and x(t), y(t), z(t) are all positive, we obtain

⟨y(t)⟩ ≥ r2(µ2 − p1)− as1
β(µ2 − p1) + ac

− (µ2 − p1)ρ
2
2

2(β(µ2 − p1) + ac)
− (ln y(t)− ln y0)(µ2 − p1)

t(β(µ2 − p1) + ac)
.

(3.42)
Taking the inferior limit on both sides of (3.42), if µ2 > p1, we have

lim inf
t→∞

⟨y(t)⟩ ≥ r2(µ2 − p1)− as1
β(µ2 − p1) + ac

− (µ2 − p1)ρ
2
2

2(β(µ2 − p1) + ac)
. (3.43)

If µ2 > (r2p1 + as1)/r2 and ρ22 < 2(r2(µ2−p1)−as1)
µ2−p1

, then lim inf
t→∞

⟨y(t)⟩ > 0,that is to
say, tumor cells will be strong persistent ⟨y(t)⟩∗ > 0. By (3.39) and ⟨y(t)⟩∗ > 0, we
have

lim sup
t→∞

⟨x(t)⟩ <
r2 − 1

2ρ
2
2

a
.
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In addition, by integrating the second equation of model (1.2) from 0 to t and
dividing it by t, we have

z(t)− z0
t

= p2⟨x(t)y(t)⟩ − µ3⟨z(t)⟩+ s2 −
1

t

∫ t

0

ρ3z(s)dB3(s).

By the strong law of large number for local martingales, we obtain

lim inf
t→∞

⟨z(t)⟩ ≥ s2
µ3

.

This completes the proof.

Remark 3.3. Theorem 3.4 shows that when the effector cells loss rate µ2 is larger
and noise intensity ρ2 of tumors is weak, tumor cells will be strong persistent in the
mean. It is reveal that stochastic factors can control tumor growth. The various
external stochastic disturbances are considered in many systems with external dis-
turbances have been considered to study delayed dynamics [26–28]. Zhang et al [26]
investigated Hybrid multi-delay impulsive control for synchronisation of multi-links
stochastic delayed complex networks with semi-Markov jump. Zhai et al [27] in-
vestigated Stabilization of stochastic complex networks with delays based on com-
pletely aperiodically intermittent control. Zhou et al [28] investigated Stability of
stochastic Lévy noise coupled systems with mixed delays.

4. Numerical simulations
In this section, we perform some numerical simulations to show the possible dy-
namics of effector cells, tumor cells and cytokines in Theorems 1-4. By referring to
the value of parameters in paper [12], choosing parameters of model (1.2) as follows

c =0.05, µ2 = 0.28, p1 = 0.1238, g1 = 2× 107, s1 = 0.12, r2 = 0.98, β = 0.98× 10−8,

a =0.8, p2 = 0.98, u3 = 0.98, s2 = 0.05
(4.1)

the initial value
(x0, y0, z0) = (1, 1, 1) (4.2)

and several different intensities of environmental white noises, we perform some
numerical simulations and obtain Figs.1-4. With parameters (4.1) and initial value
(4.2), in Figure 1, we observe that if the model (1.2) has no white noise, then there
exists a unique interior equilibrium of model(1.2), which shows the persistent states
of tumor cells, effector cells and cytokines of model (1.2) on the left of Figure 1;
and if the model (1.2) with white noise ρ1 = 0.1, ρ2 = 1.15 and ρ1 = 0.1, ρ2 = 1.15
and ρ3 = 0.1, then tumor cells of model (1.2) will go to extinction on the right
of Figure 1, which shows that numerical simulations agree with analytic prediction
of Theorem 3.3, at the same time, parameters meet the conditions ρ22 = 1.3225 >
2(µ2r2−as1)

µ2
= 1.2743 and ⟨x(t)⟩∗ = s1

µ2
= 0.4286, ⟨z(t)⟩∗ = s2

µ3
= 0.0510. With

parameters (4.1) and initial value (4.2), Figures 2 and 3 shows the persistence state
of tumor cells in model (1.2), it is clear that in which parameters of model (1.2)
meet the condition ρ22 < 2(r2(u2−p1)−as1)

µ2−p1
= 0.7308 in Theorem 3.4. Figures 2 and

show that Tumor cells are persistent, since parameters ρ2 = 0.1 and ρ2 = 0.7 of
model (1.2) meet the persistence conditions ρ22 < 0.7308.
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Figure 1. Waveform plots of effector cell x(t), tumor cell y(t) and cytokine z(t) of model(1.2): Left is
ρi = 0, i = 1, 2, 3; right is ρ1 = 0.1, ρ2 = 1.15, ρ3 = 0.1
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Figure 2. Waveform plots of effector cell x(t), tumor cell y(t) and cytokine z(t) of model(1.2) with
ρ1 = 0.1, ρ3 = 0.1: Left is ρ2 = 0.1; right is ρ2 = 0.7
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Figure 3. Waveform plots of effector cell x(t), tumor cell y(t) and cytokine z(t) of model(1.2) with
ρ2 = 0.7: Left is ρ1 = 1.15, ρ3 = 0.1; right is ρ1 = 0.1, ρ3 = 1.15
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Figure 4. Waveform plots of effector cell x(t), tumor cell y(t) and cytokine z(t) of model(1.2) with
ρ1 = 1.15, ρ3 = 1.15 : Left is ρ2 = 0.7; right is ρ2 = 1.15

In Figure 4, there exist two stronger intensities of microenvironment noises for
the loss rates of effector cells and cytokines. In the left of Figure 4, ρ2 = 0.7 of
model (1.2) meets the persistence conditions ρ22 < 0.7308; in the right of Figure 4,
ρ2 = 1.15 of model (1.2) meets the extinction condition ρ22 > 1.2743, which indicate
that the escape and survival of tumor cells are closely related to the intensity of the
microenvironment noise for the tumor (hepatocellular carcinoma) growth but not
the intensity of the microenvironment noise for the loss rates of effector cells and
cytokines.

5. Conclusion

In this paper, through studying the dynamical behaviors of the stochastic tumor-
immune model with the treatment response of effector cells assisted by cytokine to
tumor growth, we obtain the existence of globally unique positive solution and suffi-
cient conditions for tumor extinction and tumor persistence. In addition, theoretical
analysis and numerical results show that the intensity of tumor microenvironmen-
tal noise is an important factor for inhibiting the growth of tumor cells. Numerical
simulation results reveal that if the intensity of tumor microenvironmental noise
is greater than the extinction critical value, then tumor cells will be extinct as
t → ∞. Therefore, according to the theoretical prediction and numerical simula-
tion results, we suggest that hospitals should encourage experts, researchers and
doctors to explore strategies to adjust the intensity of environmental fluctuation
on tumor growth, such as finding new drugs which can inhibit tumor growth, and
exploring minimally invasive ablation therapy to destroy the microenvironment of
tumor growth. In addition, we suggest that patients should rationalize their sleep
and diet habits together with mediating exercise to enhance human immunity.
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