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NORM EQUALITIES AND INEQUALITIES
FOR TRIDIAGONAL PERTURBED TOEPLITZ

OPERATOR MATRICES∗

Jiajie Wang1, Yanpeng Zheng2,† and Zhaolin Jiang1,†

Abstract Tridiagonal perturbed Toeplitz operator matrices is a class of im-
portant structured matrices. In this paper, we present several norm equalities
and inequalities for this class of matrices. The special norms we consider
include the usual operator norm and the Schatten p-norms. Moreover, pinch-
ing type inequalities are also discussed for general weakly unitarily invari-
ant norms. The proofs feature the special structure of tridiagonal perturbed
Toeplitz operator matrices.
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1. Introduction
Tridiagonal and tridiagonal perturbed Toeplitz operator matrices play an important
role in describing or solving problems of cutting-edge technology [16,24,25]. Block
tridiagonal and block tridiagonal perturbed Toeplitz operator matrices are of great
importance in the surface anomalous Hall effect [11,32], Markov chain [19], physics
[6,18,20,26,33] and to obtain general properties is of great utility. In general, there
is a lot of research on tridiagonal operator matrices or related operator matrices,
like their determinants, inverses, and spectra et al. [8–10,21–23,27–31].

The problem of estimating the norms of some operator matrices appearing in
various fields has attracted some authors to study [1, 13, 17]. Bhatia and Kittaneh
[2] used the Schatten p-norm version of the circulant operator matrix to extend
Clarkson’s inequality to several operators. They [3] had also given norm inequalities
for partitioned operators and an application. Bhatia et al. [4] considered pinchings
and norms of scaled triangular matrices. Besides, Jiang and Xu [15] considered
norm estimates of ω-circulant operator matrices. Jiang et al. presented the norm
equalities and inequalities for three circulant operator matrices in [14].
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Denote by B(H) the C∗-algebra of all bounded linear operators on a complex
separable Hilbert space H with inner product ⟨·, ·⟩. For A ∈ B(H), let ω(A) =
sup{|⟨Ax, x⟩| : x ∈ H, ∥x∥ = 1} and ∥A∥ = sup{|⟨Ax, y⟩| : x, y ∈ H, ∥x∥ = ∥y∥ = 1}
be the numerical radius and the usual operator norm of A, respectively. Let ⊕nH
denote the direct sum of n copies of H.

The weakly unitarily invariant norm τ [7] on B(H) is defined by τ(A) = τ(UAU∗)
for A ∈ B(H) and unitary operator U ∈ B(H). The Schatten p-norms ∥ · ∥p (1 ≤
p < ∞) [7], defined as ∥A∥p = (tr|A|p)1/p, where |A| = (A∗A)1/2, are unitarily
invariant.

Now we define the operator matrix (or the partitioned operator) A = [Ajk] in
B(⊕nH) by

Ax =


Σn

k=1A1kxk

...

Σn
k=1Ankxk


where every vector x = (x1 · · ·xn)

T ∈ ⊕nH, and Ajk ∈ B(H), j, k = 1, 2, . . . , n.
The pinching inequality [5, 7] for weakly unitarily invariant norms says that

τ
(
⊕n

j=1Ajj

)
≤ τ(A), (1.1)

where A = [Ajk].
For the operator norm and the Schatten p-norms, the inequality (1.1) becomes

max{∥Ajj∥ : j = 1, 2, . . . , n} ≤ ∥A∥ (1.2)

and  n∑
j=1

∥Ajj∥pp

1/p

≤ ∥A∥p (1.3)

for 1 ≤ p < ∞, respectively. As shown in [12], the equality (1.3) holds for 1 < p < ∞
if and only if A is block-diagonal, that is, if and only if Ajk = 0, for j ̸= k.

2. Norm equalities for special tridiagonal perturbed
Toeplitz operator matrices

The main results of this section are some norm equalities for tridiagonal perturbed
Toeplitz operator matrices. Some consequences are presented when the norm or the
tridiagonal perturbed Toeplitz operator matrix is specified.

Theorem 2.1. Let

D =



M +N N 0 · · · 0

N M N
.. .

...

0 N
.. .

. . . 0

...
. . .

. . . M N

0 · · · 0 N M +N


n×n

(2.1)
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be a tridiagonal perturbed Toeplitz operator matrix in B(H(n)), where M,N ∈ B(H).
Then for every weakly unitarily invariant norm τ(·) such that

τ(D) = τ
( n⊕
s=1

[M − (2 cos
sπ

n
)N ]
)
. (2.2)

Proof. Let

U =

√
2

n



cos (n−1)π
2n cos 3(n−1)π

2n cos 5(n−1)π
2n · · · cos (2n−1)(n−1)π

2n

cos (n−2)π
2n cos 3(n−2)π

2n cos 5(n−2)π
2n · · · cos (2n−1)(n−2)π

2n

cos (n−3)π
2n cos 3(n−3)π

2n cos 5(n−3)π
2n · · · cos (2n−1)(n−3)π

2n

...
...

...
...

...
√
2
2

√
2
2

√
2
2 · · ·

√
2
2


n×n

⊗ I, (2.3)

where I is the identity operator in B(H) and ⊗ is the direct (Kronecker) product
of two matrices. It can be seen that the column vectors of the n × n matrix given
in the definition of U form an orthonormal set of vectors. Then it is easy to prove
that the operator matrix U is a unitary operator in B(H(n)).

Noting that the operator matrix U is a unitary operator in B(H(n)) and special
construction of the operator matrix D, it follows that the operator matrix U such
that

UDU∗ = diag
(
M − (2 cos

π

n
)N,M − (2 cos

2π

n
)N, · · · ,M − (2 cos

nπ

n
)N
)
. (2.4)

According to the invariance property of weakly unitarily invariant norms and
the equation (2.4), we get the weakly unitarily invariant norms τ(·) of the operator
matrix D satisfy the equation (2.2).

Specifying the norm equality in Theorem 2.1 to the usual operator norm and to
the Schatten p-norms, we obtain the following equalities.

1.
ω(D) = max

{
ω
(
M − (2 cos

sπ

n
)N
)
: s = 1, 2, . . . , n

}
.

In particular, (letting n = 3 ), we have

ω(D) = max{ω(M −N), ω(M +N), ω(M + 2N)}.

2.
∥D∥ = max{∥M − (2 cos

sπ

n
)N∥ : s = 1, 2, . . . , n}.

In particular, (letting n = 3 ), we have

∥D∥ = max{∥M −N∥, ∥M +N∥, ∥M + 2N∥}.

3.

∥D∥p =

(
n∑

s=1

∥∥∥M − (2 cos
sπ

n
)N
∥∥∥p
p

) 1
p

for 1 ≤ p < ∞.
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In particular, (letting n = 3 ), we have

∥D∥p =
(
∥M −N∥pp + ∥M +N∥pp + ∥M + 2N∥pp

) 1
p .

Here we give some special cases of Theorem 2.1.

1. If M=0, then

ω(D) = 2max{| cos sπ
n

| ω(N) : s = 1, 2, . . . , n},

∥D∥ = 2max{| cos sπ
n

| ∥N∥ : s = 1, 2, . . . , n},

and

∥D∥p = 2

(
n∑

s=1

| cos sπ
n

|p
) 1

p

∥N∥p

for 1 ≤ p < ∞.

2. If N=0, then
ω(D) = ω(M), ∥D∥ = ∥M∥,

and
∥D∥p = n

1
p ∥M∥p

for 1 ≤ p < ∞.

3. If M=N , then

ω(D) = max{| 1− 2 cos
sπ

n
| ω(M) : s = 1, 2, . . . , n},

∥D∥ = max{| 1− 2 cos
sπ

n
| ∥M∥ : s = 1, 2, . . . , n},

and

∥D∥p =

(
n∑

s=1

| 1− 2 cos
sπ

n
|p
) 1

p

∥M∥p

for 1 ≤ p < ∞.

4. If N=iM , then

ω(D) = max{ω((1− (2 cos
sπ

n
)i)M) : s = 1, 2, . . . , n},

∥D∥ = max{| 1− (2 cos
sπ

n
)i | ∥M∥ : s = 1, 2, . . . , n},

and

∥D∥p =

(
n∑

s=1

| 1− (2 cos
sπ

n
)i |p

) 1
p

∥M∥p

for 1 ≤ p < ∞.
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Theorem 2.2. Let

Q =



M + ρ
k1+k2

2 N ρk2N 0 · · · 0

ρk1N M ρk2N
.. .

...

0 ρk1N
.. .

. . . 0

...
. . .

. . . M ρk2N

0 · · · 0 ρk1N M + ρ
k1+k2

2 N


n×n

(2.5)

be a tridiagonal perturbed Toeplitz operator matrix in B(H(n)), where M,N ∈ B(H),
ρ = e

iφ
n is the nth root of eiφ, 0 < φ ≤ 2π, i =

√
−1, k1 and k2 are both positive

integers. Then for every weakly unitarily invariant norm τ(·) such that

τ(Q) = τ(

n⊕
s=1

[M − (2ρ
k1+k2

2 cos
sπ

n
)N ]). (2.6)

Proof. Let R∈B(H(n)) and R=diag
(
I, ρ

k2−k1
2 I, . . . , ρ

(k2−k1)(n−2)
2 I, ρ

(k2−k1)(n−1)
2 I

)
.

Then it is easy to prove that the operator matrix R is a unitary operator in B(H(n)),
i.e., RR∗ = I.

Multiplying the both sides of the equation (2.5) by R from the left and by R∗

from the right yields respectively, we obtain

RQR∗ =



M + ρ
k1+k2

2 N ρ
k1+k2

2 N 0 · · · 0

ρ
k1+k2

2 N M ρ
k1+k2

2 N
.. .

...

0 ρ
k1+k2

2 N
.. .

. . . 0

...
. . .

. . . M ρ
k1+k2

2 N

0 · · · 0 ρ
k1+k2

2 N M + ρ
k1+k2

2 N


n×n

. (2.7)

According to the invariance property of weakly unitarily invariant norms, the equa-
tion (2.7) and the Theorem 2.1, we get the weakly unitarily invariant norms τ(·) of
the operator matrix Q satisfy the equation (2.6).

Corollary 2.1. Let Q ∈ B(H(n)) be given as in (2.5). If φ = 2π, k1 = 1 and
k2 = n− 1, then, we have

τ(Q) = τ(

n⊕
s=1

[M + (2 cos
sπ

n
)N ]).

Corollary 2.2. Let Q ∈ B(H(n)) be given as in (2.5). If k1 = k and k2 = 2n− k,
then, we have

τ(Q) = τ(

n⊕
s=1

[M − (2eiφ cos
sπ

n
)N ]).

Corollary 2.3. Let Q ∈ B(H(n)) be given as in (2.5). If k1 = k and k2 = n − k,
then, we have

τ(Q) = τ(

n⊕
s=1

[M − (2e
iφ
2 cos

sπ

n
)N ]).
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Theorem 2.3. Let

S =



M +
√
ρ1ρ2N ρ2N 0 · · · 0

ρ1N M ρ2N
.. .

...

0 ρ1N
.. .

. . . 0

...
. . .

. . . M ρ2N

0 · · · 0 ρ1N M +
√
ρ1ρ2N


n×n

(2.8)

be a tridiagonal perturbed Toeplitz operator matrix in B(H(n)), where M,N ∈ B(H),
the ρ1 and ρ2 are both complex numbers and |ρ1| = |ρ2|. Then for every weakly
unitarily invariant norm τ(·) such that

τ(S) = τ(

n⊕
s=1

[M − (2
√
ρ1ρ2 cos

sπ

n
)N ]). (2.9)

Proof. Let T ∈ B(H(n)) and T = diag
(
I, (ρ2

ρ1
)

1
2 I, . . . , (ρ2

ρ1
)

n−2
2 I, (ρ2

ρ1
)

n−1
2 I
)
. Then

it is easy to prove that T is a unitary operator in B(H(n)), i.e., TT ∗ = I.
Multiplying the both sides of the equation (2.8) by T from the left and by T ∗

from the right yields respectively, we get

TST ∗ =



M +
√
ρ1ρ2N

√
ρ1ρ2N 0 · · · 0

√
ρ1ρ2N M

√
ρ1ρ2N

.. .
...

0
√
ρ1ρ2N

.. .
. . . 0

...
. . .

. . . M
√
ρ1ρ2N

0 · · · 0
√
ρ1ρ2N M +

√
ρ1ρ2N


n×n

. (2.10)

According to the invariance property of weakly unitarily invariant norms, the
equation (2.10) and the Theorem 2.1, we have the desired result, i.e., the equation
(2.9) for the weakly unitarily invariant norms τ(·) of the operator matrix S.

3. Pinching type inequalities for tridiagonal per-
turbed Toeplitz operator matrices

In this section we discuss pinching type inequalities for tridiagonal perturbed Toeplitz
operator matrices. We also show that the equalities conditions in these norm in-
equalities are intimately connected to the class of tridiagonal perturbed Toeplitz
operator matrices.
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Theorem 3.1. Let

W =



M + 1
2 (N + L) N 0 · · · 0

L M N
.. .

...

0 L
.. .

. . . 0

...
. . .

. . . M N

0 · · · 0 L M + 1
2 (N + L)


n×n

(3.1)

be a tridiagonal perturbed Toeplitz operator matrix in B(H(n)), where L,M,N ∈
B(H). Then for every weakly unitarily invariant norm τ(·) such that

τ(W) ≥ τ(

n⊕
s=1

[M − (cos
sπ

n
)(N + L)]). (3.2)

Specially, the inequality (3.2) with equality if and only if N = L.

Proof. Let Y ∈ B(H(n)) and

Y =



0 0 · · · 0 I

0 · · · 0 I 0

... . .
.
I 0 0

0 . .
.
. .
.
. .
. ...

I 0 0 · · · 0


n×n

. (3.3)

Then it is easy to prove that Y is a unitary operator in B(H(n)) and

W+YWY ∗ =



2M + (N + L) N + L 0 · · · 0

N + L 2M N + L
.. .

...

0 N + L
.. .

. . . 0

...
. . .

. . . 2M N + L

0 · · · 0 N + L 2M + (N + L)


n×n

. (3.4)

By the equation (3.4) and Theorem 2.1, we obtain

τ(W+ YWY ∗) = τ(

n⊕
s=1

[2M − (2 cos
sπ

n
)(N + L)]). (3.5)

Now, from the equation (3.5), the invariance property of weakly unitarily invariant
norms and the triangle inequality, we have

τ(W) ≥ τ(

n⊕
s=1

[M − (cos
sπ

n
)(N +L)]).
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Specifying the norm equality in Theorem 3.1 to the usual operator norm and to
the Schatten p-norms, we obtain the following corollary.

Corollary 3.1. Let L,M,N ∈ B(H) and

W =



M + N+L
2 N 0 · · · 0

L M N
.. .

...

0 L
.. .

. . . 0

...
. . .

. . . M N

0 · · · 0 L M + N+L
2


n×n

be a tridiagonal perturbed Toeplitz operator matrix in B(H(n)). Then
(i)

ω(W) ≥ max{ω(M − (cos
sπ

n
)(N + L)) : s = 1, 2, . . . , n}

with equality when N = L.
(ii)

∥W∥ ≥ max{∥M − (cos
sπ

n
)(N + L)∥ : s = 1, 2, . . . , n}

with equality when N = L.
(iii)

∥W∥p ≥

(
n∑

s=1

∥∥∥M − (cos
sπ

n
)(N + L)

∥∥∥p
p

) 1
p

for 1 < p < ∞ with equality if and only if N = L.

Proof. In view of Theorem 2.1, it is enough to prove the “only if” part of (iii).
Assume that

∥W∥pp =

n∑
s=1

∥∥∥M − (cos
sπ

n
)(N + L)

∥∥∥p
p

for 1 < p < ∞ and consider the same U in the equation (2.3), then we have

∥W∥pp = ∥UWU∗∥pp ,

i.e., ∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



M + N+L
2 N 0 · · · 0

L M N
.. .

...

0 L
.. .

. . . 0

...
. . .

. . . M N

0 · · · 0 L M + N+L
2


n×n

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

p

p
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=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



M − (N + L) cos π
n W12 · · · · · · W1n

−W12
. . .

. . .
. . . W2n

...
. . .

. . .
. . .

...

...
. . .

. . .
. . . Wn−1,n

−W1n · · · · · · −Wn−1,n M − (N + L) cos nπ
n


n×n

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

p

p

=

n∑
s=1

∥∥∥M − (N + L) cos
sπ

n

∥∥∥p
p
,

where Wij = ( 1−(−1)i+j

n

∑n−1
k=1 cos

(2k−1)(n−i)π
2n cos (2k+1)(n−j)π

2n )(N − (−1)i+j−1L),
(i = 1, 2, . . . , n−1; j = i+1, i+2, . . . , n−1), and Win = ( 1−(−1)i+n

√
2n

cos (n−i)π
2n )(N−

(−1)i+n−1L), (i = 1, 2, . . . , n − 1). Now employing (3), we conclude that UWU∗

must be block diagonal, i.e., N − L = 0, and hence N = L, as required.

4. Norm equalities and pinching type inequalities
for anti-tridiagonal perturbed Hankel operator
matrices

In this section, we discuss norm equalities and pinching type inequalities for anti-
tridiagonal perturbed Hankel operator matrices.

Theorem 4.1. Let

V =



0 · · · 0 N M +N

... . .
.
N M N

0 . .
.
. .
.
N 0

N M ..
.
. .
. ...

M +N N 0 · · · 0


n×n

(4.1)

be an anti-tridiagonal perturbed Hankel operator matrix in B(H(n)), where M,N ∈
B(H). Then for every weakly unitarily invariant norm τ(·) such that

τ(V) = τ(

n⊕
s=1

(−1)s+1[M − (2 cos
sπ

n
)N ]), (4.2)

where n is odd, and

τ(V) = τ(

n⊕
s=1

(−1)s[M − (2 cos
sπ

n
)N ]), (4.3)

where n is even.
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Proof. Multiplying the both sides of the equation (4.1) by using the same U in
the equation (2.3) from the left and by U∗ from the right yields respectively, when
n is odd, we have

UVU∗ =

n⊕
s=1

(−1)s+1[M − (2 cos
sπ

n
)N ], (4.4)

when n is even, we have

UVU∗ =

n⊕
s=1

(−1)s[M − (2 cos
sπ

n
)N ]. (4.5)

Hence, from the invariance property of weakly unitarily invariant norms, the equa-
tion (4.4) and the equation (4.5), we get the desired result, i.e., the equation (4.2)
and the equation (4.3) for the weakly unitarily invariant norms τ(·) of the operator
matrix V.

Theorem 4.2. Let

X =



0 · · · 0 N M + N+L
2

... . .
.
N M L

0 . .
.
. .
.
L 0

N M ..
.
. .
. ...

M + N+L
2 L 0 · · · 0


n×n

(4.6)

be an anti-tridiagonal perturbed Hankel operator matrix in B(H(n)), where L,M,N ∈
B(H). Then for every weakly unitarily invariant norm τ(·) such that

τ(X) ≥ τ
( n⊕
s=1

(−1)s+1[M − (cos
sπ

n
)(N + L)]

)
, (4.7)

where n is odd and

τ(X) ≥ τ
( n⊕
s=1

(−1)s[M − (cos
sπ

n
)(N + L)]

)
, (4.8)

where n is even.
Specially, the inequalities (4.7) and (4.8) with equality if and only if N = L.

Proof. By using the same Y in the equation (3.3) and the equation (4.6), it is
easy to prove that

X+ Y XY ∗ =



0 · · · 0 N + L 2M +N + L

... . .
.

N + L 2M N + L

0 . .
.

. .
.

N + L 0

N + L 2M ..
.

. .
. ...

2M +N + L N + L 0 · · · 0


n×n

. (4.9)
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Hence, from the equation (4.9) and Theorem 4.1, we have the result that when n is
odd

τ(X+ Y XY ∗) = τ
( n⊕
s=1

(−1)s+1[2M − (2 cos
sπ

n
)(N + L)]

)
, (4.10)

and when n is even

τ(X+ Y XY ∗) = τ
( n⊕
s=1

(−1)s[2M − (2 cos
sπ

n
)(N + L)]

)
. (4.11)

Now, from the equation (4.10), the equation (4.11), the invariance property of
weakly unitarily invariant norms and the triangle inequality, we obtain the desired
results like the inequalities (4.7) and (4.8).
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