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NORM EQUALITIES AND INEQUALITIES
FOR TRIDIAGONAL PERTURBED TOEPLITZ
OPERATOR MATRICES*

Jiajie Wang!, Yanpeng Zheng®' and Zhaolin Jiang"'

Abstract Tridiagonal perturbed Toeplitz operator matrices is a class of im-
portant structured matrices. In this paper, we present several norm equalities
and inequalities for this class of matrices. The special norms we consider
include the usual operator norm and the Schatten p-norms. Moreover, pinch-
ing type inequalities are also discussed for general weakly unitarily invari-
ant norms. The proofs feature the special structure of tridiagonal perturbed
Toeplitz operator matrices.
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1. Introduction

Tridiagonal and tridiagonal perturbed Toeplitz operator matrices play an important
role in describing or solving problems of cutting-edge technology [16,24,25]. Block
tridiagonal and block tridiagonal perturbed Toeplitz operator matrices are of great
importance in the surface anomalous Hall effect [11,32], Markov chain [19], physics
[6,18,20,26,33] and to obtain general properties is of great utility. In general, there
is a lot of research on tridiagonal operator matrices or related operator matrices,
like their determinants, inverses, and spectra et al. [8-10,21-23,27-31].

The problem of estimating the norms of some operator matrices appearing in
various fields has attracted some authors to study [1,13,17]. Bhatia and Kittaneh
[2] used the Schatten p-norm version of the circulant operator matrix to extend
Clarkson’s inequality to several operators. They [3] had also given norm inequalities
for partitioned operators and an application. Bhatia et al. [4] considered pinchings
and norms of scaled triangular matrices. Besides, Jiang and Xu [15] considered
norm estimates of w-circulant operator matrices. Jiang et al. presented the norm
equalities and inequalities for three circulant operator matrices in [14].

TThe corresponding author.
Email: 937262674Qqq.com(J. Wang), zhengyanpeng0702@sina.com(Y. Zheng),
jzh1208@sina.com(Z. Jiang)
1School of Mathematics and Statistics, Linyi University, Linyi, 276000, China
2School of Automation and Electrical Engineering, Linyi University, Linyi, 276000,
China
*The research was supported by the Natural Science Foundation of Shan-
dong Province(No.ZR2020QA035), the National Natural Science Foundation of
China(No0.12001257) and the PhD Research Foundation of Linyi University(No.
LYDX2018BS067).


http://www.jaac-online.com
http://dx.doi.org/10.11948/20210489

672 J. Wang, Y. Zheng & Z. Jiang

Denote by B(H) the C*-algebra of all bounded linear operators on a complex
separable Hilbert space H with inner product (-,-). For A € B(H), let w(A4) =
sup{|(Az,z)| : x € W, [lx[| = 1} and [|A]| = sup{[(Az,y)| : z,y € H, [lz] = [[y]| = 1}
be the numerical radius and the usual operator norm of A, respectively. Let ®"H
denote the direct sum of n copies of H.

The weakly unitarily invariant norm 7 [7] on B(#) is defined by 7(A4) = 7(UAU*)
for A € B(#) and unitary operator U € B(H). The Schatten p-norms || - ||, (1 <
p < o0) [7], defined as ||All, = (tr|A]P)V/P, where |A| = (A*A)'/? are unitarily
invariant.

Now we define the operator matrix (or the partitioned operator) A = [Ax] in
B(®"H) by

YR ATy,
Az =
YR Ak

where every vector x = (x1 - x,)7 € ®"H, and Aj, € B(H),j,k =1,2,...,n.
The pinching inequality [5,7] for weakly unitarily invariant norms says that

T (@?:114]‘]') S T(A), (11)
where A = [Aj].
For the operator norm and the Schatten p-norms, the inequality (1.1) becomes
max{|| ] :j =1,2,....n} < || A] (1.2)
and
" 1/p
S lAglz] <Al (1.3)
j=1

for 1 < p < oo, respectively. Asshown in [12], the equality (1.3) holds for 1 < p < 0o
if and only if A is block-diagonal, that is, if and only if A;, =0, for j # k.

2. Norm equalities for special tridiagonal perturbed
Toeplitz operator matrices
The main results of this section are some norm equalities for tridiagonal perturbed

Toeplitz operator matrices. Some consequences are presented when the norm or the
tridiagonal perturbed Toeplitz operator matrix is specified.

Theorem 2.1. Let

M+NNO--- 0
N MN .
D= 0 N .. 0 (2.1)
.M N
0 -0 NM+N

nxn
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be a tridiagonal perturbed Toeplitz operator matriz in B(H™), where M, N € B(H).
Then for every weakly unitarily invariant norm 7(-) such that

n

STC
D) = M — (2 —)N|). 2.2
(D) 7(862[ (2cos —)N]) (2.2)
Proof. Let
(n—1)7 3(n—1)7 5(n—1)7 2n—1)(n—1)7
COS n COS n COS on <+ COS S Tr—
cos (ngj)ﬂ' cos 3(n2—712)7r cos 5(n2—n2)7r . COS (271,—1%£:L—2)7T
2
U= | cos (";f:’)” cos 3("2:L3)7r cos 5("2:13)“ -+ cos W ®1, (2.3)
V2 V2 V2 V2
2 2 2 2

nxn

where T is the identity operator in B(H) and ® is the direct (Kronecker) product
of two matrices. It can be seen that the column vectors of the n x n matrix given
in the definition of U form an orthonormal set of vectors. Then it is easy to prove
that the operator matrix U is a unitary operator in B(#H (™).

Noting that the operator matrix U is a unitary operator in B (’H(")) and special
construction of the operator matrix ®, it follows that the operator matrix U such
that

UDU* = diag(M — (2COSZ)N,M— (20052—7T)N,~~ , M — (2cosn—7r)N). (2.4)
n n n

According to the invariance property of weakly unitarily invariant norms and
the equation (2.4), we get the weakly unitarily invariant norms 7(-) of the operator
matrix D satisfy the equation (2.2). O

Specifying the norm equality in Theorem 2.1 to the usual operator norm and to
the Schatten p-norms, we obtain the following equalities.

1.

w(D) = max {w(M — (2cos %)N) ts=1,2,...,n}.
In particular, (letting n = 3 ), we have

w(®) = max{w(M — N),w(M + N),w(M + 2N)}.

ID|| = max{[| M — (2cos ““)N||: s =1,2,...,n}.
n
In particular, (letting n = 3 ), we have

1D = max{||M — NI, [|M + N|, [[M +2N[[}.

)

=

191, = (Z [p — 2eos TN
s=1

for 1 < p < 0.
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In particular, (letting n = 3 ), we have

1
1Dllp = (IM = NI[j + |M + NI + [|M +2N|7)" .
Here we give some special cases of Theorem 2.1.

1. If M=0, then

w(D) = 2 max{| Cos%r |l w(N):s=1,2,...,n},

1] = 2max{| cos%r N :s=1,2,...,n),

and

1

n P
ST
o1, =2 (Z | cos |p> IVl

s=1

for 1 <p < oo.
2. If N=0, then

w(®) = w(M), 9] = [|M]],

and
1
1D, = n? [ M|l

for 1 < p < 0.
3. If M=N, then

w(D) = max{] 1-2cos T |w(M):s=1,2,...,n},
n

(1D = max{| 1—2(3058?7T [|M]:s=1,2,...,n},

and
1

- ST ’
191l = (Z [1—2cos— |p> Ml
s=1

for 1 <p < oo.
4. If N=iM, then

w(?®) = max{w((1 — (2cos %)z)M) cs=1,2,...,n},

9] = max{] 1 = (2cos )i | [M] 5 = 1,2,...,n},

and

|~

n P
ST .
191, = <§ |1 (2cos —)a p) 1M

s=1

for 1 < p < 0.
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Theorem 2.2. Let

M+p™32N 2N 0 - 0
PPN M pF2N
Q= 0 PN T e 0 (2.5)
M Pk N
0 o0 PN M4 pEEN

nxn

be a tridiagonal perturbed Toeplitz operator matriz in B(H™), where M, N € B(H),
p = e is the n'™ root of €%, 0 < p < 2m,0 =+/—1, k1 and ko are both positive
integers. Then for every weakly unitarily invariant norm 7(-) such that
- k1tka ST
= M—(2p 2 —)N]). 2.6
r(2) = (@M — (2™ cos )N (26)

s=1

ko—ky

Proof. Let Re B(H™) and R=diag(l,p~ = I,....p
Then it is easy to prove that the operator matrix R is a unitary operator in B(H(”)),
ie., RR*=1.

Multiplying the both sides of the equation (2.5) by R from the left and by R*
from the right yields respectively, we obtain

(kg —k1)(n—=2) (kg —ky)(n—1)
2 I,p 2 )

k1tkg k1tkg

M+p =2 Np =z N 0 0
pEEN M pUEEN
RQR* = 0 pTEEN 0 . (27)
M L
0 0 pEEN My RN

nxn
According to the invariance property of weakly unitarily invariant norms, the equa-
tion (2.7) and the Theorem 2.1, we get the weakly unitarily invariant norms 7(-) of
the operator matrix £ satisfy the equation (2.6). O

Corollary 2.1. Let Q € B(H™) be given as in (2.5). If p = 27, ki = 1 and
ko =n — 1, then, we have
() = T(é[M + (2cos ZT)NY).
s=1 n
Corollary 2.2. Let Q € B(H™) be given as in (2.5). If ky = k and ky = 2n — k,

then, we have
n

: ST
= M — (2¢'? cos —)N]).
m(Q) T(s@[ (2€* cos —~) 1)
Corollary 2.3. Let Q € B(H™) be given as in (2.5). If ky = k and ko =n — k,
then, we have
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Theorem 2.3. Let

M+ /pipaN poN 0 -+ 0
piN M poN :
G = 0 pN . 0 (2.8)
M pa N
0 .+ 0 pN M+ /pipaN

nxn

be a tridiagonal perturbed Toeplitz operator matriz in B(?—[(")), where M, N € B(H),
the p1 and ps are both complex numbers and |p1| = |p2|. Then for every weakly
unitarily invariant norm 7(-) such that

n

7(&) = 7(PIM — (2/pipz cos %)N]). (2.9)

s=1
Proof. Let T € B(H™) and T = diag(I, (£)31,..., ()" I,(2)"z I). Then
it is easy to prove that T is a unitary operator in B(H(™), i.e., TT* = I.
Multiplying the both sides of the equation (2.8) by T from the left and by T*
from the right yields respectively, we get

M + \/pipzN \/pipzN 0 0

VPip2N M /pip2N ;

TeT* = 0 JomN 0 . (2.10)
: B M VPipaN

0 0  /pipaN M + \/pipaN

nxn

According to the invariance property of weakly unitarily invariant norms, the
equation (2.10) and the Theorem 2.1, we have the desired result, i.e., the equation
(2.9) for the weakly unitarily invariant norms 7(-) of the operator matrix &. O

3. Pinching type inequalities for tridiagonal per-
turbed Toeplitz operator matrices

In this section we discuss pinching type inequalities for tridiagonal perturbed Toeplitz
operator matrices. We also show that the equalities conditions in these norm in-
equalities are intimately connected to the class of tridiagonal perturbed Toeplitz
operator matrices.
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Theorem 3.1. Let

M+iN+L)N O - 0
L M N
W = 0 L .. 0 (3.1)
LM N
0 ++ 0 L M+ (N+1L)

nxn

be a tridiagonal perturbed Toeplitz operator matriz in B(?—[(”)), where L, M,N €
B(H). Then for every weakly unitarily invariant norm 7(-) such that

n

(W) > 7(@M ~ (cos —)(N + L)) (3.2)
s=1

Specially, the inequality (3.2) with equality if and only if N = L.
Proof. Let Y € B(H(™) and

00 -.---01
0---0 I0
Y=|:."T7T 00 . (3.3)

0.

I00---0

nxn
Then it is easy to prove that Y is a unitary operator in B(H(™) and
M+ (N+L)N+L 0 0
N+ L 2M N+L
W+YWY™ = 0 N+L . 0 . (3.4)

2M N+ L

0 0 N+L2M+(N+1L)

nxn

By the equation (3.4) and Theorem 2.1, we obtain

(W + YWY = T(é[zM — (2cos %T)(N +1))). (3.5)

s=1

Now, from the equation (3.5), the invariance property of weakly unitarily invariant
norms and the triangle inequality, we have

n

(W) = (@M — (cos =) (N + L)), O
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Specifying the norm equality in Theorem 3.1 to the usual operator norm and to
the Schatten p-norms, we obtain the following corollary.

Corollary 3.1. Let L, M, N € B(H) and

M+YL N O - 0
L MN .
W = 0 L . . 0
.M N
0 -0 L M+2ML

nxn

be a tridiagonal perturbed Toeplitz operator matriz in B(?—l(”)), Then

()
w(W) > max{w(M — (cos %)(N +L):s=12,...,n}

with equality when N = L.
(it)
ST

12| > max{[|[M — (cos “Z)(N + L)||: s = 1,2,...,n}

n

with equality when N = L.

(ii)

-

ool > (Z 31— (eon Ty + L)HZ) E

for 1 < p < oo with equality if and only if N = L.

Proof. In view of Theorem 2.1, it is enough to prove the “only if” part of (iii).

Assume that
p

= |1 = (cos )V + 1)

s=1

p

for 1 < p < 0o and consider the same U in the equation (2.3), then we have

1215 = [|UWU[;,

ie.,

_ - p
M+MEN O - 0

L MN .

0 L’ 0

M N

0 0 L M+ ML

- 2 _anp



Norm equalities and inequalities. . . 679

- - p
M —(N+L)cosT Wig - --- Win
_W12 WZn
Wn—l,n
—Win oo =Wy M — (N + L) cos °F
- —nXxXn P

7

- p
= E HM*(N‘FL)COSﬂ
n
s=1

p

,1)1'-%—.7’

where W;; = (1= —
. . . . —(=1)tt" n—i)mw

(i= 1,2,.‘.,n71;j =i+1,i+2,...,n—1),and W;,, = (1 (\/%T)L cos ¢ 2n) )(N—

(=)L), (i = 1,2,...,n — 1). Now employing (3), we conclude that UJU*

must be block diagonal, i.e., N — L =0, and hence N = L, as required. O

Z’Z;ll CoS (2k—1)(n—1)7 COS (2k+1%£Ln7j)7T)(N o (71)1'4,».]'71[/)’

2n

4. Norm equalities and pinching type inequalities
for anti-tridiagonal perturbed Hankel operator
matrices

In this section, we discuss norm equalities and pinching type inequalities for anti-

tridiagonal perturbed Hankel operator matrices.

Theorem 4.1. Let

0 -0 NM+N
" NM N
g = 0 SN0 (4.1)
N M. .
M+NN O - O

nxn

be an anti-tridiagonal perturbed Hankel operator matriz in B(H(”)), where M, N €
B(H). Then for every weakly unitarily invariant norm 7(-) such that

n

7(0) = (@@ (-1 M - (QCOS%T)N]), (4.2)
where n is odd, and
() = (@(=1)°[M — (2cos = )N]), (4.3)
s=1

where n is even.
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Proof. Multiplying the both sides of the equation (4.1) by using the same U in
the equation (2.3) from the left and by U* from the right yields respectively, when
n is odd, we have

n

* = D=1 M — (2cos ZZ)N 44
UpU @( )*H M = (2cos —)N], (44)
when n is even, we have
- ST
* = —1)*[M — (2cos —)N]. 4.
Usu 36:91( )*[M — (2cos —)N] (4.5)

Hence, from the invariance property of weakly unitarily invariant norms, the equa-
tion (4.4) and the equation (4.5), we get the desired result, i.e., the equation (4.2)
and the equation (4.3) for the weakly unitarily invariant norms 7(-) of the operator
matrix J. O

Theorem 4.2. Let

0 -0 NM+ML
"NM L
X = 0 ST L 0 (4.6)
N M.
M+ L o - 0

nxn

be an anti-tridiagonal perturbed Hankel operator matriz in B(H™), where L, M, N &
B(H). Then for every weakly unitarily invariant norm 7(-) such that

n

ﬂﬁzT“EpwH%M—@m%mN+Lm, (4.7)

where n 1s odd and

n

(%) = 7(E@(=1)[M — (cos Z)(N + L)), (4.8)

s=1

where n is even.
Specially, the inequalities (4.7) and (4.8) with equality if and only if N = L.

Proof. By using the same Y in the equation (3.3) and the equation (4.6), it is
easy to prove that

0 0 N+L2M+N+L

N+L 2M N+ L

X+YXY" = 0 . N4L 0 . (4.9)
N+L  2M
OM+N+LN+L 0 - 0

nxn
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Hence, from the equation (4.9) and Theorem 4.1, we have the result that when n is
odd

T(X+YXY") =7( é(fl)”lpM — (2cos %)(N + L)]), (4.10)

s=1
and when n is even

T(X+YXY") = 7(@D(-1)*[2M — (2cos %T)(N +1L)). (4.11)

s=1
Now, from the equation (4.10), the equation (4.11), the invariance property of
weakly unitarily invariant norms and the triangle inequality, we obtain the desired
results like the inequalities (4.7) and (4.8). O
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