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EIGENVALUE PROBLEM FOR A NABLA
FRACTIONAL DIFFERENCE EQUATION

WITH DUAL NONLOCAL BOUNDARY
CONDITIONS

N. S. Gopal1 and Jagan Mohan Jonnalagadda1,†

Abstract In this work, we study the existence of positive solutions for the
non-local boundary value problem for a finite nabla fractional difference equa-
tion with a parameter β > 0{

−
(
∇α

ρ(a)u
)
(t) = βf(t, u(t)), t ∈ Nb

a+2,

u(a) = g1(u), u(b) = g2(u).

With the help of properties of the Green’s functions and appropriate conditions
on the non-linear part of the difference equation, we are able to construct the
eigenvalue intervals of the considered boundary value problem using Guo–
Krasnoselskii fixed point theorem on a suitable cone. Finally, we provide a
couple of examples to demonstrate the applicability of established results.
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1. Introduction
Over the last few decades, the theory of fractional calculus has been extensively de-
veloped due to its properties, generalizing many results of differential calculus and
its non-local nature of fractional derivatives. The contributions of several math-
ematicians over the span of three centuries have resulted in a robust theory of
fractional differential equations for the functions of a real variable. Its roots can
be traced back to the Leibniz letter dated ”30th September 1695”. Today frac-
tional calculus has been successfully used for mathematical modeling in the fields
of medical sciences, computational biology, economics, physics and several areas of
engineering in the past three decades. For further applications and historical litera-
ture, we refer here to a few classical texts on fractional calculus by Miller–Ross [22],
Samko et al. [25], Podlubny [24] and Kilbas et al. [21].

On the other side of the coin, nabla fractional calculus is a branch of mathe-
matics that deals with arbitrary order differences and sums in the backward sense.
The theory of nabla fractional calculus is relatively young, with the most prominent
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works done in the past decade. The notion of nabla fractional difference and sum
can be traced back to the work of Gray and Zhang [9], and Miller and Ross [23]. In
this line, Atici & Eloe [3] developed nabla fractional Riemann–Liouville difference
operator, initiated the study of nabla fractional initial value problem and estab-
lished exponential law, product rule, and nabla Laplace transform. Following their
works, the contributions of several mathematicians have made the theory of discrete
fractional calculus a fruitful field of research in science and engineering. We refer
here to a recent monograph by Goodrich & Peterson [7] and the references therein,
which is an excellent source for all those who wish to work in this field.

The study of boundary value problems (BVPs) has a long past and can be fol-
lowed back to the work of Euler and Taylor on vibrating strings. On the discrete
fractional side, there is a sudden growth of interest in the development of nabla
fractional BVPs. Many authors have studied nabla fractional BVPs recently. To
name a few, Ahrendt [2], Goar [6], and Ikram [14] worked with self-adjoint Ca-
puto nabla BVPs. Brackins [5] studied a particular class of self-adjoint Riemann–
Liouville nabla BVPs and derived the Green’s function associated with it along
with a few of its properties. Gholami et al. [10] obtained the Green’s function for
a non-homogeneous Riemann–Liouville nabla BVP with Dirichlet boundary condi-
tions. Jonnalagadda [11, 15–19] analyzed some qualitative properties of two-point
non-linear Riemann–Liouville nabla BVPs associated with a variety of boundary
conditions. Goodrich [8] has analyzed FBVP with a non-local condition in the
delta case. Han [12], and Sun [26] have analyzed the existence and non-existence of
positive solutions to a discrete eigenvalue problem with conjugate conditions and
non-local conditions, respectively using Guo–Krasnoselskii fixed point theorem on
cone in the delta case, to the best of our knowledge very recently authors in [11]
have analyzed solution of nabla FBVP with non-local conditions.

We consider the following boundary value problem with dual non-local condi-
tions with parameter β > 0{

−(∇α
ρ(a)u)(t) = βf(t, u(t)), t ∈ Nb

a+2,

u(a) = g1(u), u(b) = g2(u),
(1.1)

where a, b ∈ R with b − a ∈ N3, 1 < α < 2, f : Nb
a+2 × R → R+ ∪ {0} and the

functionals g1, g2 : R → R. The present article is organized as follows: Section 2
contains a few preliminaries on nabla fractional calculus. In Section 3, we construct
the Green’s function corresponding to (1.1) and state a few of its properties. In
Section 4, we study the existence of at least one positive solution of (1.1) using the
Guo–Krasnoselskii fixed point theorem on cones. In Section 5, we obtain sufficient
conditions on the existence of a unique solution for the proposed class of boundary
value problems using the contraction mapping theorem. Finally, we conclude this
article with a few examples.

2. Preliminaries
Denote the set of all real numbers and positive integers by R and Z+, respectively.
We use the following notations, definitions, and known results of nabla fractional
calculus [7]. Assume empty sums and products are 0 and 1, respectively.
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Definition 2.1. For a ∈ R, the sets Na and Nb
a, where b− a ∈ Z+, are defined by

Na = {a, a+ 1, a+ 2, ...}, Nb
a = {a, a+ 1, a+ 2, ..., b}.

Definition 2.2. We define the backward jump operator, ρ : Na+1 −→ Na, by

ρ(t) = t− 1, t ∈ Na+1.

Let u : Na → R and N ∈ N1. The first order backward (nabla) difference of
u is defined by

(
∇u
)
(t) = u(t) − u(t − 1), for t ∈ Na+1, and the N th-order nabla

difference of u is defined recursively by
(
∇Nu

)
(t) =

(
∇
(
∇N−1u

))
(t), for t ∈ Na+N .

Definition 2.3 (See [7]). Let t ∈ R \ {. . . ,−2,−1, 0} and r ∈ R such that (t+ r) ∈
R \ {. . . ,−2,−1, 0}, the generalized rising function is defined by

tr =
Γ(t+ r)

Γ(t)
.

Here Γ(·) denotes the Euler gamma function. Also, if t ∈ {. . . ,−2,−1, 0} and r ∈ R
such that (t+ r) ∈ R \ {. . . ,−2,−1, 0}, then we use the convention that tr = 0.

Definition 2.4 (See [7]). Let t, a ∈ R and µ ∈ R \ {. . . ,−2,−1}. The µth-order
nabla fractional Taylor monomial is given by

Hµ(t, a) =
(t− a)µ

Γ(µ+ 1)
,

provided the right-hand side exists.

We observe the following properties of the nabla fractional Taylor monomials.

Lemma 2.1 (See [14]). Let µ > −1 and s ∈ Na. Then the following hold:

1. If t ∈ Nρ(s), then Hµ(t, ρ(s)) ≥ 0 and if t ∈ Ns, then Hµ(t, ρ(s)) > 0.
2. If t ∈ Ns and −1 < µ < 0, then Hµ(t, ρ(s)) is an increasing function of s.
3. If t ∈ Ns+1 and −1 < µ < 0, then Hµ(t, ρ(s)) is a decreasing function of t.
4. If t ∈ Nρ(s) and µ > 0, then Hµ(t, ρ(s)) is a decreasing function of s.
5. If t ∈ Nρ(s) and µ ≥ 0, then Hµ(t, ρ(s)) is a non-decreasing function of t.
6. If t ∈ Ns and µ > 0, then Hµ(t, ρ(s)) is a increasing function of t.
7. If 0 < v ≤ µ, then Hv(t, a) ≤ Hµ(t, a), for each fixed t ∈ Na.

Lemma 2.2. Let a, b be two real numbers such that 0 < a ≤ b and 1 < α < 2.
Then (a−s)α−1

(b−s)α−1
is a decreasing function of s for s ∈ Na−1

0 .

Proof. It is enough to show that ∇s

(
(a−s)α−1

(b−s)α−1

)
< 0.

Consider

∇s

(
(a− s)α−1

(b− s)α−1

)

=
−(b− s)α−1(α− 1)(a− ρ(s))α−2 + (a− s)α−1(α− 1)(b− ρ(s))α−2

(b− s)α−1(b− ρ(s))α−1
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=
(α−1)

(
−(b−s)(b−ρ(s))α−2(a−ρ(s))α−2+(a−s)(a−ρ(s))α−2(b−ρ(s))α−2

)
(b−s)α−1(b−ρ(s))α−1

=
(α− 1)(b− ρ(s))α−2(a− ρ(s))α−2(−b+ s+ a− s)

(b− s)α−1(b− ρ(s))α−1

=
(α− 1)(b− ρ(s))α−2(a− ρ(s))α−2(a− b)

(b− s)α−1(b− ρ(s))α−1
.

Since b > a, it follows from Lemma 2.1 that ∇s

(
(a−s)α−1

(b−s)α−1

)
< 0. The proof is

complete.

Definition 2.5 (See [7]). Let u : Na+1 → R and ν > 0. The νth-order nabla sum
of u is given by

(
∇−ν

a u
)
(t) =

t∑
s=a+1

Hν−1(t, ρ(s))u(s), t ∈ Na+1.

Definition 2.6 (See [7]). Let u : Na+1 → R, ν > 0 and choose N ∈ N1 such that
N − 1 < ν ≤ N . The νth-order Riemann–Liouville nabla difference of u is given by(

∇ν
au
)
(t) =

(
∇N

(
∇−(N−ν)

a u
))

(t), t ∈ Na+N .

Theorem 2.1 (See [7]). Assume v > 0 and N − 1 < v ≤ N . Then a general
solution of ∇v

ax(t) = 0 is given by

x(t) = c1(t− a)v−1 + c2(t− a)v−2 + · · ·+ cN (t− a)v−N , for t ∈ Na.

3. Green’s Function
In this section, we construct the Green’s function for the boundary value problem
(1.1) and derive a few properties of the same, which will be used in the rest of the
article.

Theorem 3.1 (See [5]). The nabla fractional boundary value problem

− (∇α
ρ(a)u)(t) = h(t), t ∈ Nb

a+2, (3.1)
u(a) = u(b) = 0,

where a, b ∈ R with b−a ∈ N2, 1 < α < 2 and h : Nb
a+2 → R, has the unique solution

u(t) =

b∑
s=a+2

G(t, s)h(s), t ∈ Nb
a, (3.2)

where the Green’s function G(t, s) is given by

G(t, s) =


G1(t, s) =

Hα−1(t, a)

Hα−1(b, a)
Hα−1(b, ρ(s)), t ∈ Ns−1

a ,

G2(t, s) =
Hα−1(t, a)

Hα−1(b, a)
Hα−1(b, ρ(s))−Hα−1(t, ρ(s)), t ∈ Nb

s.

(3.3)
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Lemma 3.1. The equivalent form of the homogeneous nabla fractional boundary
value problem with non-local conditions{

−(∇α
ρ(a)w)(t) = 0, for t ∈ Nb

a+2,

w(a) = g1(w), w(b) = g2(w),
(3.4)

is given by

w(t) = g1(w)
( b− t

b− a

) (t− a+ 1)α−2

Γ(α− 1)
+ g2(w)

(t− a)α−1

(b− a)α−1
, t ∈ Nb

a. (3.5)

Proof. From Theorem 2.1, the general solution of the equation −(∇α
ρ(a)w)(t) = 0,

is given by

w(t) = c1(t− a+ 1)α−1 + c2(t− a+ 1)α−2, t ∈ Nb
a, (3.6)

where c1 and c2 are arbitrary constants. Using w(a) = g1(w) and w(b) = g2(w),
respectively in (3.6), we have

g1(w)

Γ(α− 1)
= c1(α− 1) + c2,

g2(w) = c1(b− a+ 1)α−1 + c2(b− a+ 1)α−2.

Now, solving the above system of equations for c1 and c2, we have

c1 = −g1(w)(b− a+ 1)α−2

Γ(α− 1)(b− a)α−1
+

g2(w)

(b− a)α−1
,

c2 =
g1(w)

Γ(α− 1)
− (α− 1)

[
−g1(w)(b− a+ 1)α−2

Γ(α− 1)(b− a)α−1
+

g2(w)

(b− a)α−1

]
.

Substituting c1 and c2 in (3.6), we have

w(t) =

[
g2(w)

(b− a)α−1
− g1(w)(b− a+ 1)α−2

Γ(α− 1)(b− a)α−1

]
(t− a+ 1)α−1

+

[
g1(w)

Γ(α−1)
−(α−1)

[
−g1(w)(b−a+1)α−2

Γ(α−1)(b−a)α−1
+

g2(w)

(b−a)α−1

]]
(t−a+1)α−2

=
g1(w)(b− a+ 1)α−2

Γ(α− 1)(b− a)α−1

[
(α− 1)(t− a+ 1)α−2 − (t− a+ 1)α−1

]
+

g2(w)

(b−a)α−1

[
(t−a+1)α−1−(α−1)(t−a+1)α−2

]
+

g1(w)

Γ(α− 1)
(t− a+ 1)α−2

=
g1(w)

Γ(α− 1)

[
(t− a+ 1)α−2 − (b− a+ 1)α−2(t− a)α−1

Γ(α− 1)(b− a)α−1

]
+ g2(w)

(t− a)α−1

(b− a)α−1

= g1(w)
( b− t

b− a

) (t− a+ 1)α−2

Γ(α− 1)
+ g2(w)

(t− a)α−1

(b− a)α−1
.

The proof is complete.
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Lemma 3.2. w satisfies the following property:

max
t∈Nb

a

w(t) ≤ g1(w) + g2(w), (3.7)

where w is given by (3.5).

Proof. Consider

w(t) =
( b− t

b− a

) (t− a+ 1)α−2

Γ(α− 1)
g1(w) +

(t− a)α−1

(b− a)α−1
g2(w).

Clearly,
(

b−t
b−a

)
is a decreasing function with respect to t for t ∈ Nb

a. It follows

from Lemma 2.1 that (t−a+1)α−2

Γ(α−1) is a decreasing function of t and (t−a)α−1

(b−a)α−1
is an

increasing function of t for t ∈ Nb
a. Thus, we have

max
t∈Nb

a

( b− t

b− a

)
= 1,

max
t∈Na

b

(t− a+ 1)α−2

Γ(α− 1)
=

(a− a+ 1)α−2

Γ(α− 1)
= 1,

max
t∈Nb

a

(t− a)α−1

(b− a)α−1
= 1,

implying that
w(t) ≤ g1(w) + g2(w), for t ∈ Nb

a.

The proof is complete.

Theorem 3.2 (See [15]). Let 1 < α < 2 and f : Nb
a ×R → R. The equivalent form

of (1.1) is given by

u(t) = w(t) + β

b∑
s=a+2

G(t, s)f(s, u(s)), t ∈ Nb
a,

where the Green’s function G(t, s) and w(t) are given by (3.3) and (3.5), respectively.

Theorem 3.3 (See [5, 15]). The Green’s function G(t, s) defined in (3.3) satisfies
the following properties:

1. G(a, s) = G(b, s) = 0, for all s ∈ Nb
a+1.

2. G(t, a+ 1) = 0, for all t ∈ Nb
a.

3. G(t, s) > 0, for all (t, s) ∈ Nb−1
a+1 × Nb

a+2.

4. max
t∈Nb−1

a+1

G(t, s) = G(s− 1, s) for all s ∈ Nb
a+2.

5.
∑b

s=a+1 G(t, s) ≤ Λ, for all (t, s) ∈ Nb
a × Nb

a+1, where

Λ =
( b− a− 1

αΓ(α+ 1)

)( (α− 1)(b− a) + 1

α

)α−1

. (3.8)
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4. Eigenvalue Problem
In this section, we show the existence of positive solutions of (1.1) using the Guo–
Krasnoselskii fixed point theorem on a suitable cone.

Definition 4.1. Let B be a Banach space over R. A closed nonempty subset K of
B is said to be a cone provided,
(i) au+ bv ∈ K, for all u, v ∈ K and all a, b ≥ 0, and
(ii) u ∈ K and −u ∈ K implies u = 0.

Definition 4.2. An operator is called completely continuous if it is continuous and
maps bounded sets into pre-compact sets.

Lemma 4.1 (See [1]). [Guo–Krasnoselskii fixed point theorem] Let B be a Banach
space and K ⊆ B be a cone. Assume that Ω1 and Ω2 are open sets contained in B
such that 0 ∈ Ω1 and Ω1 ⊆ Ω2. Assume further that T : K ∩ (Ω2 \ Ω1) −→ K is a
completely continuous operator. If either

1. ∥Ty∥ ≤ ∥y∥ for y ∈ K ∩ ∂Ω1 and ∥Ty∥ ≥ ∥y∥ for y ∈ K ∩ ∂Ω2; or
2. ∥Ty∥ ≥ ∥y∥ for y ∈ K ∩ ∂Ω1 and ∥Ty∥ ≤ ∥y∥ for y ∈ K ∩ ∂Ω2;

holds, then T has at least one fixed point in K ∩ (Ω2 \ Ω1).

We make use of the following lemmas, which will be used later in the proof of
our main result. This results have recently appeared in [11] and the same has be
proved here for the completeness of article.

Lemma 4.2. There exists a number λ ∈ (0, 1), such that

min
t∈Nd

c

G(t, s) ≥ λmax
t∈Nb

a

G(t, s) = λG(s− 1, s), (4.1)

where, c, d ∈ Nb−1
a+1, such that c = a+

⌈
b−a+1

4

⌉
and d = a+ 3

⌊
b−a+1

4

⌋
.

Proof. By using the properties of Green’s function and Taylor monomials from
Definition 2.4, Lemma 2.1 and Theorem 3.3, respectively.

Consider, for s ∈ Nb
a+2,

G(t, s)

G(s− 1, s)
=


(t− a)α−1

(s− a− 1)α−1
, for s > t,

(t− a)α−1

(s− a− 1)α−1
− (t− s+ 1)α−1(b− a)α−1

(b− s+ 1)α−1(s− a− 1)α−1
, for s ≤ t.

Now, for s > t and c ≤ t ≤ d, G1(t, s) is an increasing function with respect to t.
Then, we have

min
t∈Nd

c

G1(t, s) = G1(c, s) =
(c− a)α−1(b− s+ 1)α−1

Γ(α)(b− a)α−1
.

For t ≥ s and c ≤ t ≤ d, G2(t, s) is an decreasing function with respect to t. Then,
we have

min
t∈Nd

c

G2(t, s) = G2(d, s) =
(d− a)α−1(b− s+ 1)α−1

Γ(α)(b− a)α−1
− (d− s+ 1)α−1

Γ(α)
.
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Thus,

min
t∈Nd

c

G(t, s) =


G2(d, s), for s ∈ Nc

a+2,

min{G2(d, s), G1(c, s)}, for s ∈ Nd−1
c+1 ,

G1(c, s), for s ∈ Nb
d,

=

{
G2(d, s), for s ∈ Nr

a+2,

G1(c, s), for s ∈ Nb
r,

where c < r < d. Consider

mint∈Nd
c
G(t, s)

G(s− 1, s)
=


(d− a)α−1

(s− a− 1)α−1
− (d− s+ 1)α−1(b− a)α−1

(b− s+ 1)α−1(s− a− 1)α−1
, for s∈Nr

a+2,

(c− a)α−1

(s− a− 1)α−1
, for s ∈ Nb

r.

Thus,

min
t∈Nd

c

G(t, s) ≥ λ(s)max
t∈Nb

a

G(t, s), (4.2)

where

λ(s) = min

[
(c− a)α−1

(s− a− 1)α−1
,

(d− a)α−1

(s− a− 1)α−1
− (d− s+ 1)α−1(b− a)α−1

(b− s+ 1)α−1(s− a− 1)α−1

]
.

Let for s ∈ Nb
r, denote by

λ1(s) =
(c− a)α−1

(s− a− 1)α−1

≥ (c− a)α−1

(b− a− 1)α−1
.

Similarly, for s ∈ Nr
a+2, we take

λ2(s) =
1

(s− a− 1)α−1

[
(d− a)α−1 − (d− s+ 1)α−1(b− a)α−1

(b− s+ 1)α−1

]
.

By Lemma 2.2, we see that (d−s+1)α−1

(b−s+1)α−1
is a decreasing function for s ∈ Nr

a+2. Then

λ2(s) ≥
1

(s− a− 1)α−1

[
(d− a)α−1 − (d− a− 1)α−1(b− a)α−1

(b− a− 1)α−1

]

>
1

(d− a)α−1

[
(d− a)α−1 − (d− a− 1)α−1(b− a)α−1

(b− a− 1)α−1

]
.

Thus,
min
t∈Nd

c

G(t, s) ≥ λmax
t∈Nb

a

G(t, s), (4.3)
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where

λ = min

[
(c− a)α−1

(b− a− 1)α−1
, 1− (d− a− 1)α−1(b− a)α−1

(b− a− 1)α−1(d− a)α−1

]
. (4.4)

Since G1(c, s) > 0 and G2(d, s) > 0, we have λ(s) > 0 for all s ∈ Nb
a+2, imply-

ing λ > 0. It would be suffice to prove that one of the terms (c−a)α−1

(b−a−1)α−1
, 1 −

(d−a−1)α−1(b−a)α−1

(b−a−1)α−1(d−a)α−1
is less then 1. It follows from Lemma 2.1 that

(c− a)α−1

(b− a− 1)α−1
< 1.

Therefore, we conclude that λ ∈ (0, 1). The proof is complete.

Lemma 4.3. There exists a number λ0 ∈ (0, 1) such that

min
t∈Nd

c

w(t) ≥ λ0 max
t∈Nb

a

w(t), (4.5)

where w is given by (3.5).

Proof. Clearly,
(

b−t
b−a

)
is a decreasing function with respect to t for t ∈ Nb

a. It

follows from Lemma 2.1 that (t−a+1)α−2

Γ(α−1) is a decreasing function of t and (t−a)α−1

(b−a)α−1

is an increasing function of t for t ∈ Nb
a. Then, there exists M1,M2 > 0 such that

min
t∈Nd

c

( b− t

b− a

) (t− a+ 1)α−2

Γ(α− 1)
= M1,

min
t∈Nd

c

(t− a)α−1

(b− a)α−1
= M2 < 1.

Take λ0 = min(M1,M2). Clearly λ0 ∈ (0, 1). Thus, for all t ∈ Nd
c , we have

w(t) ≥min
t∈Nd

c

[( b− t

b− a

) (t− a+ 1)α−2

Γ(α− 1)

]
g1(w) + min

t∈Nd
c

[
(t− a)α−1

(b− a)α−1

]
g2(w)

=M1g1(w) +M2g2(w)

≥λ0g1(w) + λ0g2(w)

=λ0

[
max
t∈Nb

a

( b− t

b− a

) (t− a+ 1)α−2

Γ(α− 1)

]
g1(w) + λ0

[
max
t∈Nb

a

(t− a)α−1

(b− a)α−1

]
g2(w)

≥λ0 max
t∈Nb

a

w(t).

The proof is complete.

Lemma 4.4. If f is non-negative, then there exists a constant λ ∈ (0, 1) such that

min
t∈Nd

c

[ b∑
s=a+2

G(t, s)f(t, u(s))
]
+ min

t∈Nd
c

w(t)

≥λmax
t∈Nb

a

[ b∑
s=a+2

G(t, s)f(t, u(s))
]
+ λmax

t∈Nb
a

w(t). (4.6)
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Proof. It follows from Lemma 4.2 and Lemma 4.3 that

min
t∈Nd

c

[ b∑
s=a+2

G(t, s)f(s, u(s))
]
+ min

t∈Nd
c

w(t)

≥
b∑

s=a+2

min
t∈Nd

c

[G(t, s)]f(s, u(s)) + λ0 max
t∈Nb

a

w(t)

≥ λ

b∑
s=a+2

max
t∈Nb

a

[G(t, s)]f(s, u(s)) + λ0 max
t∈Nb

a

w(t)

≥ λmax
t∈Nb

a

b∑
s=a+2

G(t, s)f(s, u(s)) + λmax
t∈Nb

a

w(t),

where λ = min(λ, λ0) ∈ (0, 1). The proof is complete.
We know from Theorem 3.2 that the equivalent form of (1.1) is given by

u(t) = w(t) + β

b∑
s=a+2

G(t, s)f(s, u(s)), t ∈ Nb
a,

where the Green’s function G(t, s) and w(t) are given by (3.3) and (3.5), respectively.
Note that any solution u : Nb

a → R of (1.1) can be viewed as a real (b−a+1)-tuple
vector. Consequently, u ∈ Rb−a+1. Define the operator Tβ : Rb−a+1 → Rb−a+1 by

(
Tβu

)
(t) = w(t) + β

b∑
s=a+2

G(t, s)f(s, u(s)), t ∈ Nb
a. (4.7)

Clearly, u is a fixed point of Tβ if and only if u is a solution of (1.1). We use the
fact that B = Rb−a+1 is a Banach space equipped with the maximum norm

∥u∥ = max
t∈Nb

a

|u(t)|,

for any u ∈ B. We define the cone K by

K =

{
u ∈ B : u(t) ≥ 0 and min

t∈Nd
c

u(t) ≥ λ ∥u(t)∥
}
. (4.8)

It follows from Lemma 4.4 that

min
t∈Nd

c

(Tβu)(t) ≥min
t∈Nd

c

[
β

b∑
s=a+2

G(t, s)f(s, u(s))

]
+ min

t∈Nd
c

w(t)

≥βλmax
t∈Na

b

b∑
s=a+2

G(t, s)f(s, u(s)) + λmax
t∈Nb

a

w(t)

≥λ∥Tβu∥.

Clearly (Tβu)(t) ≥ 0 whenever u ∈ K for all t ∈ Nb
a. Thus, Tβ : K → K. Since Tβ

is a summation operator defined on a discrete finite set, it is trivially completely
continuous. We state here the following hypotheses, which will be used later.
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(F1) f(t, u) = h(t)g(u) where h is a positive function defined on Nb
a and g is a

non-negative function defined on R.
(F2) lim

u→0+

g(u)
u = 0, lim

u→+∞
g(u)
u = +∞.

(F3) lim
u→0+

g(u)
u = +∞, lim

u→+∞
g(u)
u = 0.

(g1) There exists a number r1>0 such that g1(u), g2(u)≤ r1
3 , whenever 0≤u≤r1.

(g2) There exists a number r∗2>0 such that g1(u), g2(u)≥ r∗2
3λ

, whenever r2≤u≤r∗2 .
(g3) There exists a number r3>0 such that g1(u), g2(u)≥ r3

3λ
, whenever 0≤u≤r3.

(g4) There exists a number r2>0 such that g1(u), g2(u)≤ r2
3 , whenever r2≤u≤ r2

λ
.

Denote by

G = max
(t,s)∈Nb

a×Nb
a+2

G(t, s),

H = max
t∈Nb

a

h(t) and h = min
t∈Nb

a

h(t).

Theorem 4.1. Assume that the conditions (F1)-(F2) and (g1)-(g2) hold good. If
there exists a sufficiently small positive constant δ and a sufficiently large constant
M such that H(b− a− 1)δ < h(b− a− 1)M holds for each

β ∈
[
(Gh(b− a− 1)M)−1, (GH(b− a− 1)δ)−1

]
, (4.9)

then (1.1) has at least one positive solution.

Proof. By condition (F2), there exists r1 > 0 and a sufficiently small constant
δ
3 > 0 such that

g(u) ≤ δr1
3

, whenever 0 < u ≤ r1. (4.10)

Set Ω1 = {u ∈ B : ∥u∥ < r1}. Thus, by (4.9), (4.10), (g1), and Lemma 3.2, for
u ∈ K with ∥u∥ = r1, we have

∥Tβu∥ ≤ max
t∈Na

b

∣∣∣∣∣β
b∑

s=a+2

G(t, s)f(s, u(s))

∣∣∣∣∣+max
t∈Nb

a

|w(t)|

≤ β

b∑
s=a+2

max
t∈Na

b

[G(t, s)]h(s)g(u) + g1(u) + g2(u)

≤ βGH
δr1
3

(b− a− 1) +
r1
3

+
r1
3

≤ r1 = ∥u∥.

Therefore, ∥Tβu∥ ≤ ∥u∥ for u ∈ K∩∂Ω1. Similarly, by condition (F2), we can find
0 < r1 < r2 and a sufficient large constant M such that

g(u) ≥ Mr2

3λ
2 , for u ≥ r2. (4.11)

Set r∗2 = r2
λ

> r2 and Ω2 = {u ∈ B : ∥u∥ < r∗2}. Then, for u ∈ K with ∥u∥ = r∗2 , we
have

min
t∈Nd

c

u(t) ≥ λ∥u∥ = λr∗2 ,
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implying that u(t) ≥ r2 for t ∈ Nb
a. Therefore, by (4.9), (4.11), (g2) and Lemma 4.3,

we have

∥Tβu∥ ≥ min
t∈Nd

c

|Tβu(t)|

≥ min
t∈Nd

c

[
β

b∑
s=a+2

G(t, s)f(s, u(s))

]
+ min

t∈Nd
c

w(t)

≥ β

b∑
s=a+2

min
t∈Nc

d

[G(t, s)]f(s, u(s)) + λ(g1(u) + g2(u))

≥ λβ

b∑
s=a+2

max
t∈Na

b

[G(t, s)]h(s)g(u) + λ(g1(u) + g2(u))

≥ λβGh
Mr2

3λ
2 (b− a− 1) + λ

(
r∗2
3λ

+
r∗2
3λ

)
≥ r∗2

3
+

2r∗2
3

= r∗2 = ∥u∥ .

Thus, we conclude that ∥Tβu∥ ≥ ∥u∥, for u ∈ ∂Ω2 ∩ K. By part (1) of Lemma 4.1,
we conclude that Tβ has a fixed point u0 in K∩(Ω2 \Ω1), satisfying r1 < ∥u0∥ < r∗2 .
The proof is complete.

Theorem 4.2. Assume that the conditions (F1)-(F3) and (g3)-(g4) hold good. If
there exists a sufficiently large constant L such that H(b − a − 1) < h(b − a − 1)L
holds for each

β ∈
[
(Gh(b− a− 1)L)−1, (GH(b− a− 1))−1

]
, (4.12)

then (1.1) has at least one positive solution.

Proof. By condition (F3), there exists r3 > 0 and a sufficiently large constant
L > 0 such that g(u) ≥ Lr3

3λ
for 0 < u ≤ r3. Set Ω1 = {u ∈ B : ∥u∥ < r3}. Then,

for u ∈ Ω1, we have

∥Tβu∥ ≥ min
t∈Nd

c

|Tβu(t)| ≥ min
t∈Nd

c

[
β

b∑
s=a+2

G(t, s)f(s, u(s))

]
+ min

t∈Nd
c

w(t)

≥ β

b∑
s=a+2

min
t∈Nc

d

[G(t, s)]f(s, u(s)) + λ(g1(u) + g2(u))

≥ λβ

b∑
s=a+2

max
t∈Na

b

[G(t, s)]h(s)g(u) + λ(g1(u) + g2(u))

≥ λβGh
Lr3

3λ
(b− a− 1) + λ

(
r3

3λ
+

r3

3λ

)
≥ r3

3
+

2r3
3

= r3 = ∥u∥ ,
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implying that ∥Tβu∥ ≥ ∥u∥, for u ∈ ∂Ω1 ∩ K. Now, we consider two cases for the
construction of Ω2.
Case 1: Suppose g is bounded. Then, there exists R1 ≥ r2 such that g(u) ≤ R1

3 , for
r2 ≤ u ≤ r2

λ
. From (4.12), we know that β ≤ (GH(b− a− 1))−1. Thus, we have

∥Tβu∥ = max
t∈Na

b

[
β

b∑
s=a+2

G(t, s)f(s, u)

]
+max

t∈Nb
a

w(t)

≤ β

b∑
s=a+2

max
t∈Na

b

[G(t, s)]h(s)g(u) + g1(u) + g2(u)

≤ βGH
R1

3
(b− a− 1) +

r2
3

+
r2
3

≤ βGH
R1

3
(b− a− 1) +

R1

3
+

R1

3
≤ R1 = ∥u∥.

Case 2: Suppose g is unbounded. Then, there exists some constant R2 and a
sufficiently small δ2 such that g(u) ≤ δ2u

3 for u ≥ R2, and for 0 < u ≤ R2, g(u) ≤
g(R2). Let R = max{R1, R2}. Now, we assume that Ω2 = {u ∈ β : ∥u∥ < R}. So,
g(u) ≤ δ2R

3 . Thus, by (4.12), we know that β ≤ (GH(b − a − 1))−1 < (GHδ2(b −
a− 1))−1. Then, we have

∥Tβu∥ ≤ max
t∈Na

b

[
β

b∑
s=a+2

G(t, s)f(s, u)

]
+max

t∈Nb
a

w(t)

≤ β

b∑
s=a+2

max
t∈Na

b

[G(t, s)]h(s)g(u) + g1(u) + g2(u)

≤ βGH
δ2R

3
(b− a− 1) +

r2
3

+
r2
3

≤ βGH
δ2R

3
(b− a− 1) +

R

3
+

R

3
< R = ∥u∥.

Thus, we have ∥Tβu∥ ≤ ∥u∥ in both the cases for u ∈ ∂Ω2 ∩ K. By part (2) of
Lemma 4.1, we conclude that T has a fixed point u ∈ K ∩ (Ω2 \ Ω1). The proof is
complete.

5. Uniqueness of Solutions
In this section, we present the uniqueness result for the boundary value problem
(1.1) using the contraction mapping theorem. We also construct a few examples to
illustrate the applicability of established results.

Theorem 5.1 (Contraction Mapping Theorem, see [1]). Let S be a closed subset
of Rn. Assume T : S → S is a contraction mapping, i.e. there exists a number
µ, 0 ≤ µ ≤ 1, such that ∥Tu− Tv∥ ≤ µ ∥u− v∥ , for all u, v ∈ S. Then, T has a
unique fixed point u0 ∈ S.
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Theorem 5.2. Assume that f(t, u), g1(u) and g2(u) are Lipschitz with respect
to u, i.e there exist a′, b′, c′ > 0, such that |f(t, u1) − f(t, u2)| ≤ a′ ∥u1 − u2∥,
|g1(u1) − g1(u2)| ≤ b′ ∥u1 − u2∥ and |g2(u1) − g2(u2)| ≤ c′ ∥u1 − u2∥, whenever
u1, u2 : R → R. Then, the boundary value problem (1.1) has a unique solution
provided

a′βΛ + b′ + c′ < 1 (5.1)

holds.

Proof. Consider

∥Tβu1 − Tβu2∥ =max
t∈Nb

a

|(Tβu1)(t)− (Tβu2)(t)|

≤max
t∈Nb

a

∣∣∣∣∣β
b∑

s=a+2

G(t, s)[f(s, u1)− f(s, u2)]

∣∣∣∣∣
+max

t∈Nb
a

[( b− t

b− a

)
Hα−2(t, ρ(a))

]
|g1(u1)− g1(u2)|

+max
t∈Nb

a

[
(t− a)α−1

(b− a)α−1

]
|g2(u1)− g2(u2)|

≤β

b∑
s=a+2

max
t∈Nb

a

[G(t, s)] |f(s, u1)− f(s, u2)|+ b′ ∥u1 − u2∥

+ c′ ∥u1 − u2∥
≤βΛa′ ∥u1 − u2∥+ b′ ∥u1 − u2∥+ c′ ∥u1 − u2∥
≤(βΛa′ + b′ + c′) ∥u1 − u2∥ .

Thus, using (5.1) Tβ , is a contraction on Rb−a+1. Hence, by Theorem 5.1, the result
follows. The proof is complete.

Example 5.1. Suppose α = 1.1, a = 0, b = 10, f(t, u) = βsin(u)
15+t with β = 1,

g1(u) =
∑b

s=a u(s)

20 and g2(u) =
∑b

s=a u(s)

10 . Then, (1.1) becomes
−(∇1.1

ρ(0)u)(t) =
β sin(u)

15 + t
, t ∈ N10

2 ,

u(0) =

b∑
s=a

u(s)

20
, u(10) =

b∑
s=a

u(s)

10
.

(5.2)

Clearly, f(t, u), g1(u) and g2(u) are Lipschitz with respect to u with Lipschitz
constants α1 = 1

15 , β1 = 1
20 and β2 = 1

10 , respectively. Then,

Λ =
( (b− a)(α− 1) + 1

α

)α−1( (b− a− 1)

αΓ(α+ 1)

)
= 8.05,

and
(α1βΛ + β1 + β2) = 0.6866 < 1.

Thus, by Theorem 5.2, the boundary value problem (5.2) has a unique solution.
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Example 5.2. Let α = 1.5, a = 1 and b = 11. Then consider the following BVP{
−
(
∇1.5

ρ(1)u
)
(t) = β(t+ 2)e−u, t ∈ N11

3 ,

u(1) = u(11) = 0.
(5.3)

We have h(t) = t+2 and g(u) = e−u for u ∈ R+. Take L = 100. Also, we have G ≊
1.718, H = 13, h = 3, lim

u→0+

g(u)
u = lim

u→0+

e−u

u = ∞ and, lim
u→+∞

g(u)
u = lim

u→+∞
e−u

u =

0. Then, H(b− a− 1) = 13× 9 = 117 and h(b− a− 1)L = 3× 9× 100 = 2700. We
see that H(b − a − 1) < h(b − a − 1)L. Therefore, all the conditions of Theorem
4.2 are satisfied. Thus, the boundary value problem (5.3) has at least one positive
solution for each β ∈ [0.00021, 0.00497].

Example 5.3. Suppose α = 1.5, a = 0, b = 6, f(t, u) = 1
20u(t)

(
1 + 4−λ

λ(1+u2(t))

)
where λ is given by (4.4), g1(u) = 1

11u(1) −
1
23u(4) and g2(u) = 1

9u(5) −
1
10u(2).

Then, (1.1) becomes
−(∇1.5

ρ(0)u)(t) =
βu(t)

20

(
1 +

4− λ

λ(1 + u2(t))

)
, t ∈ N6

2,

u(0) = 1
11u(1)−

1

23
u(4), u(6) =

1

9
u(5)− 1

10u(2).

(5.4)

Here h(t) = 1 and g(t) = 1
20u(t)

(
1 + 4−λ

λ(1+u2(t))

)
. Take L = 100. We see that

conditions (F1) - (F3) are satisfied, and there exists a number r3 > 0 such that
g1(u), g2(u) ≥ r3

3λ
, whenever 0 ≤ u ≤ r3. Also, there exists a number r2 > 0 such

that g1(u), g2(u) ≤ r2
3 , whenever r2 ≤ u ≤ r2

λ
. By calculations, we obtain that

H = 1, h = 1, G = 1.2988 and λ = 0.1191. We observe that H(b − a − 1) <
h(b−a− 1)L. Thus, by Theorem 4.2 the boundary value problem (5.4) has at least
one positive solution for β ∈ [0.0015, 0.1540].
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