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Abstract The aim of the current paper is to study the existence of traveling
wave solutions for a vaccination epidemic model with bilinear incidence. The
existence result is determined by the basic reproduction number ℜ0. More
specifically, the system admits nontrivial traveling wave solutions when ℜ0 > 1
and c ≥ c∗, where c∗ is the critical wave speed. We also found that the traveling
wave solution is connecting two different equilibria by constructing Lyapunov
functional. Lastly, we give some biological explanations from the perspective
of epidemiology.
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1. Introduction
Vaccination is critical for the prevention and control of infectious diseases. Vacci-
nators can achieve immunity by having the immune system recognize foreign sub-
stances, antibodies are then screened and generated to produce antibodies against
the pathogen or similar pathogen, and then giving the injected individual a high
level of disease resistance. In [11], Liu et al. proposed the following system with
continuous vaccination strategy:

dS(t)

dt
= Λ− β1S(t)I(t)− αS(t)− µS(t),

dV (t)

dt
= αS(t)− β2V (t)I(t)− (δ + µ)V (t),

dI(t)

dt
= β1S(t)I(t) + β2V (t)I(t)− γI(x, t)− µI(t),

dR(t)

dt
= δV (t) + γI(t)− µR(t),

(1.1)
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where S(t), V (t), I(t) and R(t) are the densities of susceptible, vaccinated, infective
and removed individuals at time t, respectively. The parameters of model (1.1) are
biologically explained as in Table 1.

Table 1. Biological meaning of parameters in model (1.1).

Parameter Interpretation
Λ Recruitment rate
β1 Transmission rate between infectious and susceptible individuals
β2 Transmission rate between infectious and vaccinated individuals
α The vaccinated rate
µ Natural death rate
γ Recovery rate
δ Rate at which a vaccinating individual obtains immunity

In [11], the authors shown that the disease-free equilibrium for model (1.1) is
globally asymptotically stable if the basic reproduction number is less than one,
while if the number is greater than one, then a positive endemic equilibrium exists
which is globally asymptotically stable. Since then, the epidemic models with vac-
cination have attracted the attention of many scholars. Kuniya [8] extended the
study in [11] to a multi-group case, and then studied the global stability by using
the graph-theoretic approach and Lyapunov method. Considering the effect of age,
three vaccination epidemic models with age structure are proposed in [3, 14, 15],
and the global stabilities are studied. For more recent studies on the vaccination
epidemic models, we refer to [7, 13,16] and the references therein.

With the increasing trend of globalization and mobility of people, the spatial
structure of human density and location has a significant impact on the spread of
diseases. It is necessary to investigate the role of diffusion in the epidemic modeling.
Mathematically, Laplacian operator in the reaction-diffusion systems usually used
to study the diffusive infectious disease model, since it could describe the random
diffusion of each individual in the adjacent space. On the other hand, nonlocal oper-
ator could describe the long range diffusion on the whole habitat [10]. In the study
of local and nonlocal diffusive epidemic models, there is a solution called traveling
wave solution. Viewing from infectious diseases perspective, the existence of trav-
eling wave solutions for epidemic model implies that the disease can be invaded [9].
Up to now, there have been many studies on the traveling wave solutions for local
and nonlocal diffusive epidemic models (see, for example, [4, 6, 17–21, 25, 28]). By
considering both vaccination and spatial diffusion, Xu et al. [22] studied a local
diffusive SVIR model, where the global dynamics on bounded domain and traveling
wave solutions on unbounded domain for the model were studied. Meanwhile, the
problem of traveling wave solution for two different SVIR models with nonlocal
diffusion were investigated in [24,30].

Unlike local and nonlocal diffusive, there is another diffusion in infectious disease
modeling, which is discrete diffusion. In fact, epidemic model with discrete diffusion
can be regarded as lattice system, such system is better to describe the epidemic
model with patch structure [12]. Recently, Chen et al. [2] proposed a lattice SIR
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epidemic model:
dSn(t)

dt
= [Sn+1(t) + Sn−1(t)− 2Sn(t)] + µ− βSn(t)In(t)− µSn(t),

dIn(t)

dt
= d[In+1(t) + In−1(t)− 2In(t)] + βSn(t)In(t)− (γ + µ)In(t),

(1.2)

where n ∈ Z. Sn and In denote densities of susceptible and infectious individuals
at time t and niche n. β is the disease transmission rate. 1 (normalized) and
d denote the random migration parameters for each compartments. Chen et al.
shown that system (1.2) admits traveling wave solutions when <0 > 1 and c ≥ c∗.
More recently, the traveling wave solutions for (1.2) was proved to be converged
to the endemic equilibrium by Zhang et al [26]. Model (1.2) is an SIR model with
constant recruitment (i.e. the constant Λ), and the existence of traveling wave
solutions for the discrete diffusive epidemic model without constant recruitment
was studied in [5, 23, 27, 29]. However, to our best knowledge, there are only a
few studies focus on the problem of traveling wave solutions for discrete diffusive
epidemic models, especially for the model with constant recruitment.

Based on the above facts, in order to study the role of vaccination and patch
structure in the disease modeling, we consider a discrete diffusive vaccination epi-
demic model as follows

dSn(t)

dt
= d1[Sn+1 − 2Sn + Sn−1](t) + Λ− β1Sn(t)In(t)− (α+ µ)Sn(t),

dVn(t)

dt
= d2[Vn+1 − 2Vn + Vn−1](t) + αSn(t)− β2Vn(t)In(t)− (δ + µ)Vn(t),

dIn(t)

dt
= d3[In+1 − 2In + In−1](t) + (β1Sn(t) + β2Vn(t))In(t)− (γ + µ)In(t),

dRn(t)

dt
= d4[Rn+1 − 2Rn +Rn−1](t) + δVn(t) + γIn(t)− µRn(t),

(1.3)
where Sn, Vn, In and Rn denote susceptible, vaccinated, infectious and removed
individuals. di, (i = 1, 2, 3, 4) are the diffusive rates. The biological significance of
the parameters of (1.3) are the same as those in (1.1).

The current paper devotes to study the existence of traveling wave solutions for
system (1.3) with bilinear incidence. In fact, there are very few studies on traveling
wave solutions for the epidemic model with bilinear incidence and the main difficulty
is the boundedness of traveling wave solutions [12]. On the other hand, introducing
the constant recruitment (i.e. Λ in model (1.3)) will bring much more complexity in
mathematical analysis than the system without constant recruitment. Moreover, it
is difficult to obtain the behaviour of traveling wave solutions at +∞ for such model
(see, for example, [2]). One motivation of this paper is to show the convergence of
traveling wave solutions for lattice epidemic model (1.3). To gain this purpose,
we will construct an appropriate Lyapunov functional for the wave form equations
corresponding to lattice dynamical system (1.3). To do this, we prove the persistence
of traveling wave solutions, which is crucial to guarantee the Lyapunov functional
has a lower bound. We should point out that, for different models, the construction
of Lyapunov functional is also different and requires technique. Biologically, since
the vaccination has an effect of decreasing the basic reproduction number in [11],
we want to study how vaccination affects the speed of traveling wave solution.
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The organization of this paper is as follows. In Section 2, we give some prelimi-
naries results. Section 3 devote to study the existence of traveling wave solutions for
system (1.3) by applying Schauder’s fixed point theorem. In Section 4, we show the
boundedness of traveling wave solutions. Furthermore, we show the convergence of
traveling wave solutions in Section 5. Finally, there is a brief discussion and some
explanations from the perspective of epidemiology will be given in Section 6.

2. Preliminaries
Firstly, the corresponding ordinary differential system for (1.3) is

dS(t)

dt
= Λ− β1S(t)I(t)− µ1S(t),

dV (t)

dt
= αS(t)− β2V (t)I(t)− µ2V (t),

dI(t)

dt
= β1S(t)I(t) + β2V (t)I(t)− µ3I(t),

(2.1)

where µ1 = α+ µ, µ2 = δ + µ, µ3 = γ + µ and R-equation is decoupled from other
equations. Clearly, system (2.1) has a disease-free equilibrium E0 = (S0, V0, 0) =(

Λ
µ1
, Λα
µ1µ2

, 0
)

. Define

<0 =
β1S0 + β2V0

µ3

as the basic reproduction number. The well known results for (2.1) is the following
lemma.

Lemma 2.1 ( [11, Theorem 2.1]). For system (2.1), if <0 < 1, E0 is globally
asymptotically stable; if <0 > 1, system (2.1) has a globally asymptotically stable
positive equilibrium E∗ = (S∗, V ∗, I∗) satisfies

Λ− β1S
∗I∗ − µ1S

∗ = 0,

αS∗ − β2V
∗I∗ − µ2V

∗ = 0,

β1S
∗I∗ + β2V

∗I∗ − µ3I
∗ = 0.

Now, we state our purpose of the current paper. Letting ς = n + ct in system
(1.3), where c is wave speed, we arrive at

cS′(ς) = d1J [S](ς) + Λ− µ1S(ς)− β1S(ς)I(ς),

cV ′(ς) = d2J [V ](ς) + αS(ς)− β2V (ς)I(ς)− µ2V (ς),

cI ′(ς) = d3J [I](ς) + β1S(ς)I(ς) + β2V (ς)I(ς)− µ3I(ς),

(2.2)

for all ς ∈ R, where J [(·)](ς) := (·)(ς + 1) − 2(·)(ς) + (·)(ς − 1). We want to find
traveling wave solutions satisfying:

lim
ς→−∞

(S(ς), V (ς), I(ς)) = (S0, V0, 0), (2.3)

and
lim

ς→+∞
(S(ς), V (ς), I(ς)) = (S∗, V ∗, I∗). (2.4)
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2.1. Eigenvalue problem
Linearizing the third equation of (2.2) at the E0 yields

cI ′(ς) = d3J [I](ς)− µ3I(ς) + (β1S0 + β2V0)I(ς).

Let I(ς) = eλς , we have

d3[e
λ + e−λ − 2]− cλ+ (β1S0 + β2V0)− µ3 = 0.

Denote
∆(λ, c) = d3[e

λ + e−λ − 2]− cλ+ (β1S0 + β2V0)− µ3.

By some calculations, for λ > 0 and c > 0, we have

∆(0, c) = (β1S0 + β2V0)− (µ+ γ), lim
c→+∞

∆(λ, c) = −∞,

∂∆(λ, c)

∂λ
= d3[e

λ − e−λ]− c,
∂∆(λ, c)

∂c
= −λ < 0,

∂2∆(λ, c)

∂λ2
= d3[e

λ + e−λ] > 0,
∂∆(λ, c)

∂λ

∣∣∣∣
(0,c)

= −c < 0.

Therefore, we arrive at the following lemma on the distribution for the roots of
∆(λ, c).

Lemma 2.2. Let <0 > 1. There exist c∗ > 0 and λ∗ > 0 such that

∂∆(λ, c)

∂λ

∣∣∣∣
(λ∗,c∗)

= 0 and ∆(λ∗, c∗) = 0.

Furthermore,

(i) ∆(λ, c) > 0 for all λ if 0 < c < c∗.
(ii) ∆(λ, c) = 0 has only one positive real root λ∗ if c = c∗.
(iii) ∆(λ, c) = 0 has two positive real roots λ1, λ2 with λ1 < λ∗ < λ2 if c > c∗.

Before giving the results on the existence of traveling wave solutions, we directly
proposed the following theorem of nonexistence of traveling wave solutions. Since
the proof are almost the same with those in [2, 26] by using Laplace transform, we
omit the details here.

Theorem 2.1. If <0 > 1 and 0 < c < c∗, then there is no nontrivial traveling wave
solution of system (1.3) satisfying the asymptotic boundary conditions (2.3)-(2.4).

2.2. Sub- and super-solutions
Fix c > c∗ and <0 > 1, we will show the following lemma.

Lemma 2.3. For sufficiently small εi > 0 and sufficiently large Mi > 0 (i = 1, 2, 3),
we define the following six functions:

S+(ς) = S0,

V +(ς) = V0,

I+(ς) = eλ1ς ,


S−(ς) = max{S0(1−M1e

ε1ς), 0},

V −(ς) = max{V0(1−M2e
ε2ς), 0},

I−(ς) = max{eλ1ς(1−M3e
ε3ς), 0}.
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Then they satisfy
cS+′

(ς) ≥ d1J [S+] + Λ− µ1S
+ − β1S

+I−,

cV +′
(ς) ≥ d2J [V +] + αS+ − β2V

+I− − µ2V
+,

cI+
′
(ς) ≥ d3J [I+] + β1S

+I+ + β2V
+I+ − µ3I

+,

(2.5)

and
cS−′

(ς)≤d1J [S−]+Λ−µ1S
−−β1S−I+, ς 6= ε−1

1 lnM−1
1 := X1, (2.6a)

cV −′
(ς)≤d2J [V −]+αS−−β2V −I+−µ2V

−, ς 6= ε−1
2 lnM−1

2 := X2, (2.6b)
cI−

′
(ς)≤d3J [I−]+β1S

−I−+β2V
−I−−µ3I

−, ς 6= ε−1
3 lnM−1

3 := X3. (2.6c)

Proof. The proof of (2.5) are trivial, so we omit the details. Now, we focus on the
proof of inequalities (2.6). If ς > X1, then equation (2.6a) holds since S−(ς) = 0.
If ς < X1, then S−(ς) = S0(1−M1e

ε1ς) and

d1J [S−](ς) + Λ− µ1S
−(ς)− β1S

−(ς)I+(ς)− cS−′
(ς)

≥ eε1ςS0

[
−M1(d1e

ε1 + d1e
−ε1 − 2d1 − µ1 − cε1)− β1e

λ1ςe−ε1ς
]
.

Choosing 0 < ε1 < λ1 such that ε1M1 = 1. With the help of L’Hopital’s rule, we
can obtain that

lim
ε1→0+

M1(2− eε1 − e−ε1) = lim
ε1→0+

2− eε1 − e−ε1

ε1
= lim

ε1→0+
ε1(e

−ε1 − eε1) = 0.

Since ς < X1 and 0 < ε1 < λ1, we have

e(λ1−ε1)X1 ≤ ε1e
λ1−ε1

ε1 → 0 as ε1 → 0.

Hence, we can claim that (2.6a) holds for ε1 is small enough. Similarly, (2.6b) is
true for ς 6= ε−1

2 lnM−1
2 := X2.

Now, we focus on (2.6c), let M3 satisfy 1
ε3

lnM3 > max
{

1
ε1

lnM1,
1
ε2

lnM2

}
. If

ς > X3, then (2.6c) holds since I−(ς) = 0. If ς < X3, then I−(ς) = eλ1ς(1−M3e
ε3ς),

and (2.6c) is equivalent to

d3J [I−](ς) + β1S
−(ς)I−(ς) + β2V

−(ς)I−(ς)− µ3I
−(ς)− cI−

′
(ς)

≥ d3

[
eλ1(ς+1)

(
1−M3e

ε3(ς+1)
)
+ eλ1(ς−1)

(
1−M3e

ε3(ς−1)
)
− 2eλ1ς (1−M3e

ε3ς)
]

+ β1S0e
λ1ς (1−M1e

ε1ς) (1−M3e
ε3ς) + β2V0e

λ1ς (1−M2e
ε2ς) (1−M3e

ε3ς)

− µ3e
λ1ς (1−M3e

ε3ς)− cλ1e
λ1ς + c(λ1 + ε3)e

(λ1+ε3)ς

≥ eλ1ς∆(λ1, c)− e(λ1+ε3)ςM3∆(λ1 + ε3, c)− β1S0M1e
(λ1+ε1)ς − β2V0M2e

(λ1+ε2)ς .

Using the definition of ∆(λ, c) and noticing that ∆(λ1 + ε3, c) < 0, then it suffices
to show that

−M3∆(λ1 + ε3, c) ≥ β1S0M1e
(ε1−ε3)ς + β2V0M2e

(ε2−ε3)ς ,

which holds for M3 is large enough.
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3. Existence of traveling wave solutions
Let X > X > 0, where X := max{−X1,−X2,−X3}. Define

ΓX :=


(ϕ, φ, ψ) ∈ C([−X,X],R3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

S−(ς) ≤ ϕ(ς) ≤ S+(ς), V −(ς) ≤ φ(ς) ≤ V +(ς),

I−(ς) ≤ ψ(ς) ≤ I+(ς) for all ς ∈ [−X,X],

ϕ(−X) = S−(−X), φ(−X) = V −(−X),

ψ(−X) = I−(−X).


.

For any (ϕ, φ, ψ) ∈ C([−X,X],R3), define

ϕ̂(ς) =


ϕ(X), for ς > X,

ϕ(ς), for ς ∈ [−X,X],

S−(ς), for ς < −X,

φ̂(ς) =


φ(X), for ς > X,

φ(ς), for ς ∈ [−X,X],

V −(ς), for ς < −X,

and

ψ̂(ς) =


ψ(X), for ς > X,

ψ(ς), for ς ∈ [−X,X],

I−(ς), for ς < −X.

For (ϕ, φ, ψ) ∈ ΓX , let
d1ϕ̂(ς + 1) + d1ϕ̂(ς − 1) + Λ + ρ1ϕ(ς)− β1ϕ(ς)ψ(ς) := H1(ψ,φ, ψ),

d2φ̂(ς + 1) + d2φ̂(ς − 1) + αϕ(ς) + ρ2φ− β2φ(ς)ψ(ς) := H2(ψ,φ, ψ),

d3ψ̂(ς + 1) + d3ψ̂(ς − 1) + β1ϕ(ς)ψ(ς) + β2φ(ς)ψ(ς) := H3(ψ,φ, ψ).

Consider the following truncated initial problem:

cS′(ς) + (2d1 + µ1 + ρ1)S(ς) = H1(ψ,φ, ψ),

cV ′(ς) + (2d2 + µ2 + ρ2)V (ς) = H2(ψ,φ, ψ),

cI ′(ς) + (2d3 + µ3)I(ς) = H3(ψ,φ, ψ),

(S, V, I)(−X) = (S−, V −, I−)(−X),

(3.1)

where ρ1 is large enough such that ρ1ϕ−β1ϕψ is nondecreasing on ϕ and ρ2 is large
enough such that ρ2φ − β2φψ is nondecreasing on φ. Clearly, system (3.1) has a
unique solution (SX(ς), VX(ς), IX(ς)) ∈ C([−X,X],R3). Define

A = (A1,A2,A3) : ΓX → C
(
[−X,X],R3

)
by

SX(ς) = A1(ϕ, φ, ψ)(ς), VX(ς) = A2(ϕ, φ, ψ)(ς) and IX(ς) = A3(ϕ, φ, ψ)(ς).
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Lemma 3.1. The operator A maps ΓX into itself and it is completely continuous.

Proof. Firstly, we show that A maps ΓX into ΓX . If ς ∈ (X1, X), then S−(ς) = 0
and it is a sun-solution of the first equation of (3.1). If ς ∈ (−X,X1), then S−(ς) =
S0(1−M1e

ε1ς). Using the definition of constant ρ1 and Lemma 2.3, we have

cS−′
+ (2d1 + µ1 + ρ1)S

− − d1(ϕ̂(ς + 1) + ϕ̂(ς − 1))− Λ− ρ1ϕ+ β1ϕψ

≤cS−′ − d1J [S−](ς)− Λ + µ1S
− + βS−I+

≤0,

which implies that S−(ς) = S0(1 −M1e
ε1ς) is a sub-solution to the first equation

of (3.1). Thus S−(ς) ≤ SX(ς) for any ς ∈ [−X,X]. On the other hand,

cS+′
+ (2d1 + µ1 + ρ1)S

+ − d1(ϕ̂(ς + 1) + ϕ̂(ς − 1))− Λ− ρ1ϕ− β1ϕψ

≥β1S0I
−

≥0,

thus S+(ς) = S0 is a super-solution to the first equation of (3.1), which gives us
SX(ς) ≤ S0 for any ς ∈ [−X,X]. With some similar arguments as above, we can
obtain that

V −(ς) ≤ VX(ς) ≤ V +(ς) and I−(ς) ≤ IX(ς) ≤ I+(ς) for all ς ∈ [−X,X],

this means that A maps ΓX into itself.
Next, we focus on the second part of Lemma 3.1. For i = 1, 2, suppose that

(ϕi(ς), φi(ς), ψi(ς)) ∈ ΓX with

SX,i(ς) = A1(ϕi(ς), φi(ς), ψi(ς)), VX,i(ς) = A2(ϕi(ς), φi(ς), ψi(ς)),

and
IX,i(ς) = A3(ϕi(ς), φi(ς), ψi(ς)).

Direct calculation yields

SX(ς) = S−(−X)e−
2d1+µ1+ρ1

c (ς+X) +
1

c

∫ ς

−X

e
2d1+µ1+ρ1

c (τ−ς)H1(ϕ, φ, ψ)(τ)dτ,

VX(ς) = V −(−X)e−
2d2+µ2+ρ2

c (ς+X) +
1

c

∫ ς

−X

e
2d2+µ2+ρ2

c (τ−ς)H2(ϕ, φ, ψ)(τ)dτ

and

IX(ς) = I−(−X)e−
2d3+µ3

c (ς+X) +
1

c

∫ ς

−X

e
2d3+µ3

c (τ−ς)H3(ϕ, φ, ψ)(τ)dτ.

For i = 1, 2 and any (ϕi, φi, ψi) ∈ ΓX , we have

|ϕ1(ς)ψ1(ς)− ϕ2(ς)ψ2(ς)|
≤ |ϕ1(ς)ψ1(ς)− ϕ1(ς)ψ2(ς)|+ |ϕ1(ς)ψ2(ς)− ϕ2(ς)ψ2(ς)|
≤ S0 max

ς∈[−X,X]
|ψ1(ς)− ψ2(ς)|+ eλ1X max

ς∈[−X,X]
|ϕ1(ς)− ϕ2(ς)|.
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Hence,

c(S′
X,1(ς)− S′

X,2(ς)) + (2d1 + µ1)(SX,1(ς)− SX,2(ς))

≤ β1S0 max
ς∈[−X,X]

|ψ1(ς)− ψ2(ς)|+
(
2d1 + β1e

λ1X
)

max
ς∈[−X,X]

|ϕ1(ς)− ϕ2(ς)|.

Using the explicit solutions (SX(ς), VX(ς), IX(ς)), similar arguments to VX and IX ,
we know that the operator A is continuous. Moreover, S′

X , V ′
X and I ′X are bounded

by (3.1). Thus, the operator A is completely continuous.
By using Schauder’s fixed point theorem, there exists (SX , VX , IX) ∈ ΓX such

that
(SX(ς), VX(ς), IX(ς)) = A(SX , VX , IX)(ς)

for ς ∈ [−X,X]. Next, we give some prior estimates for (SX , VX , IX). Define

C1,1([−X,X]) = {υ ∈ C1([−X,X]) | υ, υ′are Lipschitz continuous}

with

‖υ‖C1,1([−X,X]) = max
x∈[−X,X]

|υ|+ max
x∈[−X,X]

|υ′|+ sup
x,y∈[−X,X]

x ̸=y

|υ′(x)− υ′(y)|
|x− y|

.

Lemma 3.2. There exists constant C(X ) > 0 such that

‖SX‖C1,1([−X ,X ]) ≤ C(X ), ‖VX‖C1,1([−X ,X ]) ≤ C(X ) and ‖IX‖C1,1([−X ,X ]) ≤ C(X )

for any X < X.

Proof. Since (SX , VX , IX) is the fixed point of A, one has
cS′

X(ς) = d1ŜX(ς + 1) + d1ŜX(ς − 1)− (2d1 + µ1)SX(ς) + Λ− β1SX(ς)IX(ς),

cV ′
X(ς) = d2V̂X(ς+1)+d2V̂X(ς−1)−(2d2+µ2)VX(ς)+αSX(ς)−β2VX(ς)IX(ς),

cI ′X(ς) = d3ÎX(ς+1)+d3ÎX(ς−1)−(2d3+µ3)IX(ς)+(β1SX(ς)+β2VX(ς))IX(ς),

(3.2)
where

ŜX(ς) =


SX(X), for ς > X,

SX(ς), for ς ∈ [−X,X],

S−(ς), for ς < −X,

V̂X(ς) =


VX(X), for ς > X,

VX(ς), for ς ∈ [−X,X],

V −(ς), for ς < −X,

and

ÎX(ς) =


IX(X), for ς > X,

IX(ς), for ς ∈ [−X,X],

I−(ς), for ς < −X.

Since 0 ≤ SX(ς) ≤ S0, 0 ≤ VX(ς) ≤ V0 and 0 ≤ IX(ς) ≤ eλ1X for all ς ∈ [−X ,X ],
it follows from (3.2) that

|S′
X(ς)| ≤ 4d1 + µ1

c
S0 +

Λ

c
+
β1S0

c
eλ1X ,
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|V ′
X(ς)| ≤ 4d2 + µ2

c
V0 +

αS0

c
+
β2V0
c

eλ1X ,

and
|I ′X(ς)| ≤ 4d3 + µ3 + (β1S0 + β2V0)

c
eλ1X .

Hence,

‖SX‖C1([−X ,X ]) ≤ C1(X ), ‖VX‖C1([−X ,X ]) ≤ C1(X ) and ‖IX‖C1([−X ,X ]) ≤ C1(X ),

for some constant C1(X ) > 0. It follows from the proof of Lemma 2.4 in [23] that
|ŜX(ς +1)− ŜX(η+1)| ≤ C1(X )|ς − η| and |ŜX(ς − 1)− ŜX(η− 1)| ≤ C1(X )|ς − η|
for all ς, η ∈ [−X ,X ]. Furthermore

|β1SX(ς)IX(ς)− β1SX(η)IX(η)|
≤ |β1SX(ς)IX(ς)− β1SX(ς)IX(η)|+ |β1SX(ς)IX(η)− β1SX(η)IX(η)|
≤ β1C1(X ) (|SX(ς)− SX(η)|+ |IX(ς)− IX(η)|)

for all ς, η ∈ [−X ,X ]. Thus, ‖SX‖C1,1([−X ,X ]) ≤ C(X ) for some constant C(X ) > 0.
Similarly,

‖VX‖C1,1([−X ,X ]) ≤ C(X ) and ‖IX‖C1,1([−X ,X ]) ≤ C(X ).

for any X < X.
Choosing {Xn}+∞

n=1 be an increasing sequence such that Xn > max{X,X} and
Xn → +∞ as n → +∞ for all n ∈ N, where X is from Lemma 3.2. Denote
(Sn, Vn, In) ∈ ΓXn

be the solution of system (3.1). For any N ∈ N, with the help
of Lemma 3.2 and following from the standard arguments in [26], we know that
the sequences (Sn, Vn, In), (S′

n, V
′
n, I

′
n) and (S′′

n, V
′′
n , I

′′
n) are uniformly bounded in

[−Xn, Xn] for n ≥ N . By the Arzela-Ascoli theorem, we can use a diagonal process
to extract a subsequence, denoted by {Snk

}k∈N, {Vnk
}k∈N and {Ink

}k∈N such that

Snk
→ S, Vnk

→ V, Ink
→ I, S′

nk
→ S′, V ′

nk
→ V ′ and I ′nk

→ I ′ as k → +∞

uniformly in any compact subinterval of R, for some functions S, V and I in C1(R).
Thus, (S, V, I) is solution for system (2.2) with

S− ≤ S(ς) ≤ S+, V − ≤ V (ς) ≤ V +, I− ≤ I(ς) ≤ I+, ∀ς ∈ R.

Up to know, we only obtain the existence of traveling wave solutions, the bounded-
ness of this solution will be proved in the following section.

4. Boundedness of traveling wave solutions
Lemma 4.1. The functions S(ς), V (ς) and I(ς) satisfy

0 < S(ς) < S0, 0 < V (ς) < V0 and I(ς) > 0 in R.

Proof. Firstly, to show S(ς) > 0. If there exists some ς0 such that S(ς0) = 0, then
d1J [S](ς0) ≥ 0 and S′(ς0) = 0. Due to (2.2), we have

0 = d1J [S](ς0) + Λ > 0,
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which is a contradiction. Similarly, we have V (ς) > 0 in R.
Next, if there is ς1 such that I(ς1) = 0 and I(ς) > 0 for ς < ς1. From the third

equation of (2.2), we have

I(ς1 + 1) + I(ς1 − 1) = 0.

Consequently, I(ς1+1) = I(ς1−1) = 0 since I(ς) ≥ 0 in R, which is a contradiction.
Lastly, we show that S(ς) < S0, if there exists ς2 such that S(ς2) = S0, one has

that
0 = d1J [S](ς2)− β1S(ς2)I(ς2) < 0.

This contradiction leads to S(ς) < S0. Similarly, we have V (ς) < V0 for all ς ∈ R.

Now, we show the following four claims.
Claim I. The functions I(ς±1)

I(ς) is bounded in R.
To show this claim, we denote κ := (2d3 + µ3)/c and U(ς) := eκςI(ς), one has

that
cU ′(ς) = eκςcI ′(ς) + (µ3 + 2d3)I(ς) > 0.

From the monotonicity of U(ς), we have

I(ς − 1)

I(ς)
< eκ, ∀ς ∈ R.

Direct calculation yields

[eκςI(ς)]
′
=

1

c
eκς [d3I(ς + 1) + d3I(ς − 1) + (β1S(ς) + β2V (ς))I(ς)]

>
d3
c
eκςI(ς + 1). (4.1)

Integrating (4.1) over [ς, ς + 1] and using the monotonicity of eκς , one has

eκ(ς+1)I(ς + 1) > eκςI(ς) +
d3
c

∫ ς+1

ς

eκsI(s+ 1)ds

> eκςI(ς) +
d3
c

∫ ς+1

ς

eκ(ς+1)I(ς + 1)e−κds

= e−κeκ(ς+1)

[
I(ς) +

d3
c
I(ς + 1)

]
.

Hence,

[eκςI(ς)]
′
>

(
d3
c

)2

e−2κeκ(ς+1)I(ς + 1). (4.2)

Integrating (4.2) from ς − 1
2 to ς yields

I
(
ς + 1

2

)
I(ς)

< 2

(
c

d3

)2

e
3
2κ, ∀ς ∈ R.

Similarly, integrating (4.2) over [ς, ς + 1
2 ], we have

I(ς + 1)

I
(
ς + 1

2

) < 2

(
c

d3

)2

e
3
2κ, ∀ς ∈ R.
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Thus
I(ς + 1)

I(ς)
=
I
(
ς + 1

2

)
I(ς)

I(ς + 1)

I
(
ς + 1

2

) < 4

(
c

d3

)4

e3κ, ∀ς ∈ R.

Claim II. I′(ς)
I(ς) is bounded in R.

This claim is true because Claim I and the third equation of (2.2).
Choose a sequence {ck, Sk, Vk, Ik} of the traveling wave solutions for (1.3) in a

compact subinterval of (0,∞), we have the following claim.
Claim III. For a sequence {ςk}, we have S(ςk) → 0 and V (ςk) → 0 as k → +∞

provided that I(ςk) → +∞ as k → +∞.
By way of contradiction, let ςk be a subsequence of {ςk}k∈N with Ik(ςk) → +∞

and Sk(ςk) ≥ ε as k → +∞ in R for all k ∈ N. Let c̃ > 0 be the lower bound of
{ck} and we have

S′
k(ς) ≤

2S0 + Λ

c̃
:= δ0 in R.

We further denote δ = ε
δ0

, one has that

Sk(ς) ≥
ε

2
, ∀ς ∈ [ςk − δ, ςk] and ∀k ∈ N.

Thanks to Claim II, there exists some C0 > 0 such that

Ik(ςk)

Ik(ς)
= exp

{∫ ςk

ς

I ′k(σ)

Ik(σ)
dσ

}
≤ eC0δ, ∀ς ∈ [ςk − δ, ςk]

for all k ∈ N. Thus
min

ς∈[ςk−δ, ςk]
Ik(ς) ≥ e−C0δIk(ςk),

which give us
min

ς∈[ςk−δ,ςk]
Ik(ς) → +∞ as k → +∞.

Recalling the first equation of (2.2), we have

max
ς∈[ςk−δ,ςk]

S′
k(ς) ≤ δ0 −

β1ε

2
min

ς∈[ςk−δ,ςk]
Ik(ς) → −∞ as k → +∞.

Then,
S′
k(ς) ≤ −2S0

δ
, ∀k ≥ K and ς ∈ [ςk − δ, ςk],

for some K > 0. Thus, we have Sk(ςk) ≤ −S0, ∀k ≥ K, which is a contradiction
with S′

k(ς) ≤ δ0 and Sk(ς) ≥ ϵ
2 for ς ∈ [ςk − δ, ςk], k ∈ N. Similarly, we can show

that Vk(ςk) → 0 as k → +∞.
Claim IV. If lim sup

ς→+∞
I(ς) = +∞, then lim

ς→+∞
I(ς) = +∞.

With a similar arguments in [2, Lemma 3.4], we know that Claim IV is true.
We are now in position to show the boundedness of I(ς) by using Claim I-IV.

Lemma 4.2. I(ς) is bounded in R.

Proof. Suppose that lim sup
ς→+∞

I(ς) = +∞, then it follows from Claim III and Claim

IV that lim
ς→+∞

(S(ς), V (ς)) = (0, 0). Denote θ(ς) = I′(ς)
I(ς) , we have

cθ(ς) = d3e
∫ ς+1
ς

θ(s)ds + d3e
∫ ς−1
ς

θ(s)ds − (2d3 + µ3) + β1S(ς) + β2V (ς).
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By using [1, Lemma 3.4], the finite limit of θ(ς) at +∞ exists and denoted by κ,
which is satisfying

Υ(κ, c) := d3
(
eκ + e−κ − 2

)
− cκ− µ3 = 0.

Clearly, Υ(κ, c) = 0 has a unique positive real root κ0. From Lemma 2.2, we have

d3
(
eλ2 + e−λ2 − 2

)
− cλ2 − µ3 < 0,

Recall the definition of λ1 and λ2, we have λ2 < κ0. Since lim
ς→+∞

θ(ς) = κ0, then
there exists ς̃ such that

I(ς) ≥ Ce

(
λ2 + κ0

2

)
ς for all ς ≥ ς̃ ,

with some constant C, which contradicts with I(ς) ≤ eλ1ς in R and λ1 < κ0.
Since I(ς) is bounded in R, we can assume that I(ς) < C for some constant

C > 0. Then it is easy to verify that S0 := Λ
µ1+β1C

and V 0 := αS0

µ2+β2C
are sub-

solutions for the first and second equations of (2.4), which means that S(ς) > S0

and V (ς) > V 0 in R. The following lemma is to show that I(ς) cannot approach 0.

Lemma 4.3. There holds lim inf
ς→+∞

I(ς) > 0.

Proof. The proof of this lemma is similar with that in [2]. We only need to show
that if I(ς) ≤ ε0 for ε0 > 0 is small enough, then I ′(ς) > 0 for all ς ∈ R. If
not, we assume that there is no such ε0. Then there exist a sequence of speed
ck ∈ (a, b), where a and b are two positive constants with a < b, a sequence of
solutions {(Sk, Vk, Ik)} with speed ck and 0 < Sk < S0, 0 < Vk < V0, Ik > 0 in R,
and a sequence of real number ςk such that Ik(ςk) → 0 as k → +∞ and I ′k(ςk) ≤ 0
for all k ∈ N. Up to a shift of the origin, one can assume without loss of generality
that ςk = 0 for all k ∈ N. With some similar arguments in [2, Lemma 3.8], we know
that S∞ = S0 and V∞ = V0.

Let πk(ς) := Ik(ς)
Ik(0)

for k ∈ N and ς ∈ R, we have

π′
k(ς) =

I ′k(ς)

Ik(0)
=
I ′k(ς)

Ik(ς)
πk(ς).

From Claim II, we have that the sequence {I ′k/Ik} is bounded in R, then πk and π′
k

are locally bounded in R. Recall the third equation in (2.2) and note that Sk and
Vk are bounded in C1

loc(R), which means that π′′
k is locally bounded. Due to Arzela-

Ascoli Theorem, up to extraction of a subsequence, πk converge to a nonnegative
function π∞ in C1

loc(R), which is satisfy

c∞π
′
∞(ς) = d3J [π∞](ς) + (β1S0 + β2V0)π∞(ς)− µ3π∞(ς)

in R. One can have π∞(ς) > 0 in R. Indeed, if there is a ς0 such that π∞(ς0) = 0,
then π′

∞(ς0) = 0 and

0 = d3(π∞(ς0 + 1) + π∞(ς0 − 1)).

Thus π∞(ς0 + 1) = π∞(ς0 − 1) = 0, it follows that π∞(ς0 + τ) = 0 for all τ ∈ Z.
Recall that c∞π′

∞(ς) ≥ −(µ3 + 2d3)π∞(ς), then the map ς 7→ π∞(ς)e
(µ3+2d3)ς

c∞ is
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nondecreasing. Since it vanishes at ς0 + τ for all m ∈ Z, one can conclude that
π∞ = 0 in R, which is a contradiction with π∞(0) = 1.

Denote P (ς) := π′
∞(ς)

π∞(ς) , one has that

c∞P (ς) = d3e
∫ ς+1
ς

P (s)dsdy + d3e
∫ ς−1
ς

P (s)dsdy − 2d3 + β1S0 + β2V0 − µ3. (4.3)

Using [1, Lemma 3.4], P (ς) has finite limits ω± and satisfy

c∞ω± = d3
(
eω± + e−ω± − 2

)
+ β1S0 + β2V0 − µ3.

By Lemma 2.2, we know that ω± > 0 and π′
∞(±∞) are positive. Moreover, one

can have that π′
∞(ς) > 0 for all ς ∈ R. In fact, if there exists some ς∗ such that

P (ς∗) = infR P (ς), then P (ς∗) = 0. Differentiating (4.3) yields

c∞P
′(ς) = d3(P (ς + 1)− P (ς))

π∞(ς + 1)

π∞(ς)
+ d3(P (ς − 1)− P (ς))

π∞(ς − 1)

π∞(ς)
.

It follows that
P (ς∗) = P (ς∗ + 1) = P (ς∗ − 1).

Hence P (ς∗) = P (ς∗ + κ) for all κ ∈ Z. Then,

inf
R
P (ς) ≥ min{P (+∞), P (−∞)} > 0.

Furthermore,

0 < π′
∞(0) = lim

k→+∞
π′
k(0) = lim

k→+∞

I ′k(0)

Ik(0)
.

Thus, I ′k(0) > 0, which contradicts with the fact that I ′k(0) ≤ 0.

5. Convergence of the traveling wave solutions
In this section, we show the convergence of traveling wave solutions.

Theorem 5.1. If <0 > 1, then for each c > c∗, system (1.3) has a traveling wave
solution (S(ς), V (ς), I(ς)) satisfying conditions (2.3) and (2.4).

Proof. In what following, we use (S, V, I) short for (S(ς), V (ς), I(ς)). Define the
following four functionals

W1(ς) = cS∗g

(
S

S∗

)
+ cV ∗g

(
V

V ∗

)
+ cI∗g

(
I

I∗

)
,

W2(ς) =

∫ 1

0

g

(
S(ς − σ)

S∗

)
dσ −

∫ 0

−1

g

(
S(ς − σ)

S∗

)
dσ,

W3(ς) =

∫ 1

0

g

(
V (ς − σ)

V ∗

)
dσ −

∫ 0

−1

g

(
V (ς − σ)

V ∗

)
dσ,

and

W4(ς) =

∫ 1

0

g

(
I(ς − σ)

I∗

)
dσ −

∫ 0

−1

g

(
I(ς − σ)

I∗

)
dσ,
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where g(x) = x− 1− lnx. The derivative of W1(ς) is calculated as follows

dW1(ς)

dς
=

(
1− S∗

S

)
d1J [S](ς)+

(
1− V ∗

V

)
d2J [V ](ς)+

(
1− I∗

I

)
d3J [I](ς) + Σ(ς),

where

Σ(ς) =

(
1− S∗

S

)
(Λ− µ1S − β1SI) +

(
1− V ∗

V

)
(αS − β2V I − µ2V )

+

(
1− I∗

I

)
((β1S + β2V )I − µ3I) .

Since (S∗, V ∗, I∗) is the endemic equilibrium of system (1.3) and µ1 = µ + α, one
has

Σ(ς) = µS∗
(
2− S∗

S
− S

S∗

)
+ µ2V

∗
(
3− S∗

S
− V

V ∗ − SV ∗

S∗V

)
− β1S

∗I∗
[
g

(
S∗

S

)
+ g

(
S

S∗

)]
− β2V

∗I∗
[
g

(
S∗

S

)
+ g

(
SV ∗

S∗V

)
+ g

(
V

V ∗

)]
.

Using the fact that µ2V
∗ = αS∗ − β2V

∗I∗ and

g

(
S∗

S

)
+ g

(
SV ∗

S∗V

)
+ g

(
V

V ∗

)
=
S∗

S
+
SV ∗

S∗V
+

V

V ∗ − 3,

we have

Σ(ς) = µS∗
(
2− S∗

S
− S

S∗

)
+ αS∗

(
3− S∗

S
− V

V ∗ − SV ∗

S∗V

)
− β1S

∗I∗
[
g

(
S∗

S

)
+ g

(
S

S∗

)]
.

Furthermore,

dW2(ς)

dς
=

d

dς

[∫ 1

0

g

(
S(ς − σ)

S∗

)
dσ −

∫ 0

−1

g

(
S(ς − σ)

S∗

)
dσ

]
=

∫ 1

0

d

dς
g

(
S(ς − σ)

S∗

)
dσ −

∫ 0

−1

d

dς
g

(
S(ς − σ)

S∗

)
dσ

=−
∫ 1

0

d

dσ
g

(
S(ς − σ)

S∗

)
dσ +

∫ 0

−1

d

dσ
g

(
S(ς − σ)

S∗

)
dσ

=2g

(
S

S∗

)
− g

(
S(ς − 1)

S∗

)
− g

(
S(ς + 1)

S∗

)
.

Similarly,

dW3(ς)

dς
= 2g

(
V

V ∗

)
− g

(
V (ς − 1)

V ∗

)
− g

(
V (ς + 1)

V ∗

)
,

and
dW4(ς)

dς
= 2g

(
I

I∗

)
− g

(
I(ς − 1)

I∗

)
− g

(
I(ς + 1)

I∗

)
.
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Now, we define a Lyapunov functional as
V(ς) =W1(ς) + d1S

∗W2(ς) + d2V
∗W3(ς) + d3I

∗W4(ς),

and
dV(ς)
dς

=µS∗
(
2− S∗

S
− S

S∗

)
+ µ2V

∗
(
3− S∗

S
− V

V ∗ − SV ∗

S∗V

)
− β1S

∗I∗
[
g

(
S∗

S

)
+g

(
S

S∗

)]
−β2V ∗I∗

[
g

(
S∗

S

)
+g

(
SV ∗

S∗V

)
+g

(
V

V ∗

)]
− d2S

∗
[
g

(
S(ς−1)

S

)
+g

(
S(ς+1)

S

)]
−d2V ∗

[
g

(
V (ς−1)

V

)
+g

(
V (ς+1)

V

)]
− d3I

∗
[
g

(
I(ς − 1)

I

)
+ g

(
I(ς + 1)

I

)]
.

Recall that g(x) ≥ 0 for all x ≥ 0, then the map ς 7→ V(ς) is non-increasing.
Choosing {ςk}k≥0 as an increasing sequence with ςk > 0 and ςk → +∞ as k → +∞.
Let
{Sk(ς) = S(ς + ςk)}k≥0, {Vk(ς) = V (ς + ςk)}k≥0 and {Ik(ς) = I(ς + ςk)}k≥0.

Since S, V and I have bounded derivatives, then the sequences of functions {Sk(ς)},
{Vk(ς)} and {Ik(ς)} converge in C∞

loc(R) as k → +∞ by Arzela-Ascoli theorem, up
to extraction of a subsequence, we assume that the sequences {Sk(ς)}, {Vk(ς)} and
{Ik(ς)} convergence to some nonnegative C∞ functions S∞, V∞ and I∞. Since
limς→−∞ I(ς) = 0, so we need to consider the process of approaching negative
infinity for W4(ς) if it is bounded from below. Thanks to Lemma (4.3), we can
obtain that W4(ς) is bounded from below and V(S, V, I)(ς) is bounded from below,
then there exists constant M0 and some large k such that

M0 ≤ V(Sk, Vk, Ik)(ς) = V(S, V, I)(ς + ςk) ≤ V(S, V, I)(ς).
Hence, there exists some δ ∈ R such that lim

k→+∞
V(Sk, Vk, Ik)(ς) = δ, ∀ς ∈ R. Using

Lebegue dominated convergence theorem, one has that
lim

k→+∞
V(Sk, Vk, Ik)(ς) = V(S∞, V∞, I∞)(ς), ς ∈ R.

Thus, V(S∞, V∞, I∞)(ς) = δ. Recall that dV
dς = 0 if and only if S ≡ S∗, V ≡ V ∗

and I ≡ I∗, it follows that (S∞, V∞, I∞) ≡ (S∗, V ∗, I∗).
At the last part of this section, we explain the existence of traveling wave so-

lutions under c = c∗ by an approximation technique used in [2, Section 4]. To use
the methods in [2], we need to verify Lemma 4.1 and Lemma 4.2 in [2]. In fact,
these two lemmas are still true for our model, because it only need to focus on the
In-equation in (2.2). As we can see, the In-equation in our paper still meets the
inequality proposed on line 3 of [2, Page 2350]. Then other parts of the proofs for
critical traveling wave solutions in [2] are still work for our model. Hence, we finish
this section with the following remark.

Remark 5.1. For the case c = c∗, we can obtain the existence of traveling wave
solutions by using a similar approximation technique used in [2, Section 4]. The
traveling wave solutions for c = c∗ also satisfy (2.3) and (2.4) since the Lyapunov
functional is independent of c.
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6. Discussion
In this paper, we proposed a discrete diffusive vaccination epidemic model (i.e.,
system (1.3)). Employing Schauder’s fixed point theorem and Lyapunov functional,
we obtain the existence of nontrivial positive traveling wave solutions, which is
connecting two different equilibrium. Our research examines the conditions (i.e.
basic reproduction number) under which an infectious disease can spread, even this
disease has a vaccine.

Now we finish this section with some explanations from the perspective of epi-
demiology. Assume that (λ̂, ĉ) is a root of ∆(λ, c) = 0, by some calculations, we
obtain

dĉ

dδ
< 0,

dĉ

dd3
> 0,

dĉ

dβ1
> 0,

dĉ

dβ2
> 0 and

dĉ

d<0
> 0.

here we have used the fact that

∆(λ, c) = d3[e
λ + e−λ − 2]− cλ+ (β1S0 + β2V0)− µ3,

where V0 = Λα
µ1µ2

and µ2 = δ + µ. Mathematically, ĉ is a decreasing on δ, while ĉ
is an increasing function on d3, β1 and β2. From the biological point of view, this
indicates the following three scenarios:

I. The more successful the vaccination, the slower the disease spreads;
II. The faster the infected individuals move, the faster the disease spreads;
III. The more effective the infections are, the faster the disease spreads.

Accordingly, a good understanding of the movement of the infected individuals
and the vaccination rate of susceptible individuals could be important in disease
control strategy. In fact, as in the ordinary differential equation case in [11], the
basic reproduction number <0 is decreasing on δ, while <0 is increasing on β1
and β2. Compared with [11], our study proposes a new explanation, which is to
control the movement of the infected individuals. Another important thing is the
effectiveness of vaccination δ is important than the vaccination rate α, which explain
the importance of complete vaccination.
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