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NEW OSCILLATION CRITERIA FOR A CLASS
OF HIGHER-ORDER NEUTRAL FUNCTIONAL

DYNAMIC EQUATIONS ON TIME SCALES∗

Xin Wu1,† and Taixiang Sun2

Abstract In this paper, we study the higher-order neutral functional dy-
namic equations of the form

Lny(t) + q(t)f(|y(θ(t))|βsgn(y(θ(t)))) = 0, t ∈ [t0,∞)T,

on an arbitrary time scale T with supT = ∞, where

L1y(t) = [y(t) + r(t)y(τ(t))]∆, Li+1y(t) = [pi(t)|Liy(t)|αisgn(Liy(t))]
∆,

αi, 1 ≤ i ≤ n − 1 and β are positive constants, pi, 1 ≤ i ≤ n − 1 and q are
rd-continuous functions from [t0,∞)T to [0,∞) and r ∈ Crd(T, [0, 1)). The
functions τ, θ ∈ Crd(T,T) satisfy τ(t) ≤ t and limt→∞ τ(t) = limt→∞ θ(t) =
∞. Criteria are established for the oscillation of solutions for both even and
odd order cases. The obtained results here generalize and improve some known
results for oscillation of the corresponding higher-order ordinary differential
equations [13], but the proof of these counterparts are quite different from
the literature. Finally, some interesting examples are given to illustrate the
versatility of our main results.

Keywords Oscillation, nonlinear dynamic equation, higher-order equation,
neutral functional dynamic equation, time scale.
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1. Introduction
In this paper, we establish some sufficient conditions for oscillation of the following
higher-order neutral functional dynamic equation

Lny(t) + q(t)f(|y(θ(t))|βsgn(y(θ(t)))) = 0, t ∈ [t0,∞)T, (1.1)

where T is a time scale with supT = ∞, t0 ∈ T is a constant, [t0,∞)T := [t0,∞)∩T
and

L1y(t) = [y(t) + r(t)y(τ(t))]∆,

†The corresponding author. Email: 3033@ecjtu.edu.cn(X. Wu)
1School of Sciences, East China JiaoTong University, Nanchang, 330013, China
2Guangxi (ASEAN) Research Center of Finance and Economics, Nanning,
530003, China

∗The authors were supported by the National Natural Science Foundation of
China (12161039,12261035), the Jiangxi Provincial Natural Science Founda-
tion (20202BABL211003) and the Science and Technology Project of Jiangxi
Education Department (GJJ180354).

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220051


Oscillation criteria for higher-order dynamic equations 735

Li+1y(t) = [pi(t)|Liy(t)|αisgn(Liy(t))]
∆, i = 1, 2, · · · , n− 1.

By a solution of (1.1), we mean a nontrivial real-valued function y ∈ C1
rd([Ty,∞)T)

with Ty ∈ [t0,∞)T, which has the property that Liy(t) ∈ C1
rd([Ty,∞)T) for 0 ≤ i ≤ n

and satisfies (1.1) on [Ty,∞)T, where C1
rd is the space of differentiable functions

whose derivative is rd-continuous. We exclude from our consideration those solu-
tions of (1.1) which vanish identically in some neighborhoods of infinity. A solution
y(t) of (1.1) is said to be oscillatory if it is neither eventually positive nor eventually
negative, otherwise it is called nonoscillatory. For more details on time scales, we
refer the reader to Bohner and Peterson [4].

Throughout this paper, we assume that the following conditions are satisfied.

(H1) q ∈ Crd([t0,∞)T, [0,∞)) and q ̸≡ 0 on [t1,∞)T for any t1 ∈ [t0,∞)T;

(H2) pi ∈ Crd([t0,∞)T, (0,∞)) satisfies
∫∞
t0

(
1

pi(s)

) 1
αi

∆s = ∞, 1 ≤ i ≤ n− 1;

(H3) r∈Crd([t0,∞)T, [0, 1)), τ, θ∈Crd(T,T), τ(t)≤ t and limt→∞ τ(t)=limt→∞ θ(t)=∞;
(H4) f ∈ C(R,R) satisfies f(u)/u ≥M for u ̸= 0, where M is a positive constant.

It is well known that a unification theory was proposed in [12] by Stephan Hilger,
which is called time-scale calculus. Since then, a great number of theoretical issues
concerning dynamic equations on time scales have received considerable attention.
Many researchers attempt to harmonize the oscillation theory for the continuous and
the discrete. The oscillation and nonoscillation of solutions of various equations have
been investigated extensively. We refer the reader to the excellent monograph [4],
the papers [1,2,6,8–11,18,20,21,24,29–31], and the references cited therein. Saker
and O’Regan [22] established some new oscillation criteria for the second-order
neutral functional dynamic equation

[p(t)([x(t) + r(t)x(τ(t))]∆)γ ]∆ + f(t, x(θ(t))) = 0, t ∈ [t0,∞)T (1.2)

by means of the generalized Riccati substitution. Deng et al. [5] further studied
the generalized Philos-type oscillation criteria of the second-order nonlinear neutral
delay dynamic equation

[r(t)|(x(t) + p(t)x(g(t)))∆|γ−1(x(t) + p(t)x(g(t)))∆]∆ + f(t, x(τ(t))) = 0, γ > 0
(1.3)

by employing the generalized Riccati technique and the integral averaging technique.
When r(t) = 0, θ(t) = t and T = R, the dynamic equation (1.1) is the half-linear
ordinary differential equation

Lnx(t) + q(t)f(|x(t)|βsgn(x(t))) = 0, t ≥ t0 > 0 (1.4)

with

L1x(t) = x′(t), Li+1x(t) = [pi(t)|Lix(t)|αisgn(Lix(t))]
′, i = 1, 2, · · · , n− 1.

Jaros [13] showed that (1.4)(n = 2k) is oscillatory under some suitable assumptions.
Picking up n = 2, Baculikova [3] considered the following noncanonical differential
equation with delay argument

(r(t)(y′(t))α)′ + p(t)yβ(τ(t)) = 0, t ∈ [t0,∞) (1.5)
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and established some sufficient conditions for oscillation of (1.5). Hassan [10] es-
tablished Kamenev-type oscillation criteria for the second-order nonlinear dynamic
equation

(r(t)(x∆(t))γ)∆ + f(t, x(g(t))) = 0, t ∈ [t0,∞)T. (1.6)

Erbe et al. [7] extended this result to the higher-order neutral delay dynamic equa-
tion

[x(t) + p(t)x(g(t))]∆
n

+ q(t)x(τ(t)) = 0, t ∈ [t0,∞)T. (1.7)

They proved that (1.7) is oscillatory if

lim sup
t→∞

1

hnk
(t, l)

∫ t

l

hnk
(t, σ(ξ))

(
Bk

1 (ξ)ψk(ξ)−
(ψ∆

k (ξ))2

4ψk(ξ)hk−1(β(ξ), s)

)
∆ξ = ∞

(1.8)
for all large enough l, s ∈ T with β(l) > s, where hk(t, s) is the generalized Taylor
monomials on time scales. For more works about the oscillation criteria for higher-
order nonlinear delay dynamic equations in other cases, we refer to [14–17, 19, 23,
25–28].

To the best of our knowledge, no equation such as Eq. (1.1) has been considered
for oscillation except the continuous case (1.4). The purpose of this work is to
obtain some new sufficient conditions of oscillation for Eq. (1.1), which improve and
unify some aforementioned oscillatory results on the topic. Compared with (1.2),
the investigation of the higher-order dynamic equation (1.1) is more complicated.
We should point out that the traditional methods such as the classical Riccati
technique [21, 26, 28] can not be effective for Eq. (1.1). Motivated by [10, 11, 22],
we will employ the generalized Riccati technique to study the oscillatory behavior
for (1.1). Additionally, the obtained Theorems 3.1,3.2,3.4,3.5 are established under
the assumptions (3.1) and (3.2), see also [25–27]. But at the end of Subsections 3.1
and 3.2, we obtain a strong result of oscillation of Eq. (1.1) without these technical
assumptions for the cases θ(t) > t and θ(t) ≤ t, respectively. So we believe that our
results are interesting and meaningful.

The outline of this paper is as follows. In Section 2, we give some basic properties
for quasi-∆-differential operators Li, i = 1, 2, · · · , n. In Section 3, firstly, we prove
some useful auxiliary lemmas and important estimates, which will be used in the
proof of our main results. Later, we prove the main results for the case θ(t) > t
in Section 3.1 and the main results for the case θ(t) ≤ t in Section 3.2. At last,
we present some examples to illustrate the applicability of the main results of this
paper.

2. Basic properties for quasi-∆-differential opera-
tors

In this section, we mainly show some basic properties for quasi-∆-differential op-
erators Li, i = 1, 2, · · · , n. For the convenience of discussion, we define L0y(t) =
y(t) + r(t)y(τ(t)).

Lemma 2.1. Let 1 ≤ i ≤ n− 1. Assume that there exists a T ∈ [t0,∞)T such that

Li+1y(t) ≤ 0 (or ≥ 0) on [T,∞)T, (2.1)
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and
Li+1y(t) ̸≡ 0 on [T̂ ,∞)T for any T̂ ∈ [T,∞)T. (2.2)

Further assume that Li−1y(t) > 0 (or < 0) on [T,∞)T. Then,

Liy(t) > 0 (or < 0) on [T,∞)T. (2.3)

Proof. Suppose that (2.1) and (2.2) are satisfied. We first consider the case
where Li+1y(t) ≤ 0 for t ∈ [T,∞)T. Let Li−1y(t) > 0 on [T,∞)T. We claim that
Liy(t) ≥ 0 for t ∈ [T,∞)T by a contradiction argument. If there exists a real number
t1 ∈ [T,∞)T such that Liy(t1) < 0, using the fact that pi(t)|Liy(t)|αisgn(Liy(t)) is
non-increasing on [T,∞)T, we obtain

pi(t)|Liy(t)|αisgn(Liy(t)) ≤ pi(t1)|Liy(t1)|αisgn(Liy(t1)) over [t1,∞)T.

Next, integrating Liy(t) = [pi−1(t)|Li−1y(t)|αi−1sgn(Li−1y(t))]
∆ from t1 to t, we

have

pi−1(t)|Li−1y(t)|αi−1sgn(Li−1y(t))

=pi−1(t1)|Li−1y(t1)|αi−1sgn(Li−1y(t1)) +

∫ t

t1

Liy(s)∆s

≤pi−1(t1)Li−1y(t1)
αi−1 + p

1
αi
i (t1)Liy(t1)

∫ t

t1

(
1

pi(s)

) 1
αi

∆s.

Owing to the assumption (H2) and Liy(t1) < 0, we derive that Li−1y(t) is eventually
negative. This is a contradiction to Li−1y(t) > 0 on [T,∞)T. Thus, we have
Liy(t) ≥ 0 on [T,∞)T.

If Liy(t1)=0 for some real number t1∈ [T,∞)T, then pi(t)|Liy(t)|αisgn(Liy(t))≡
0 for t ∈ [t1,∞)T since pi(t)|Liy(t)|αisgn(Liy(t)) is nonnegative and non-increasing
on [T,∞)T. Consequently, Li+1y(t) ≡ 0 for t ∈ [t1,∞)T. This contradicts the
assumption (2.2). Hence, Liy(t) > 0 on [T,∞)T. The cases where Li+1y(t) ≥ 0 and
Li−1y(t) < 0 on [T,∞)T can be processed in an analogously manner. This finishes
the proof of Lemma 2.1.

Lemma 2.2. Let 1 ≤ i ≤ n− 1. Assume that (2.1) and (2.2) are satisfied. Further
assume that there exists a T ∈ [t0,∞)T such that

Liy(t) < 0 (or > 0) on [T,∞)T. (2.4)

Then, there exists a T ∗ ∈ [T,∞)T such that for t ∈ [T ∗,∞)T,

Ljy(t) < 0 (or > 0), 0 ≤ j ≤ i− 1. (2.5)

Proof. We only consider the case Liy(t) > 0 for t ∈ [T,∞)T. If so, we deduce
that Li−1y(t) is increasing on [T,∞)T. Thus, we obtain that either Li−1y(t) < 0
on [T,∞)T or there is a T ∗ ∈ [T,∞)T such that Li−1y(t) > 0 on [T ∗,∞)T. If the
former holds, then Lemma 2.1 implies that Liy(t) < 0 on [T,∞)T, which contradicts
to (2.4). Therefore, Li−1y(t) > 0 on [T ∗,∞)T for some T ∗ ∈ [T,∞)T. Using the
same arguments as above, we also have

Ljy(t) > 0 for all large t, j = i− 2, i− 3, · · · , 0. (2.6)

The proof of this lemma is completed.
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Theorem 2.1. Assume that y(t) is a nonoscillatory solution of (1.1) on [t0,∞)T.
Then, there exists a T ∗ ∈ [t0,∞)T and an integer l ∈ [0, n − 1]Z with n + l is odd
such that

y(t)Ljy(t) > 0 on [T ∗,∞)T for j = 1, 2, · · · , l, (2.7)

and

(−1)n+jy(t)Ljy(t) < 0 on [T ∗,∞)T for j = l + 1, l + 2, · · · , n− 1. (2.8)

Proof. Without loss of generality, we may assume that y(t) is eventually positive.
Then, by (H1) − (H4), there is a T ∈ [t0,∞)T such that y(t) > 0, y(τ(t)) > 0 and
y(θ(t)) > 0 for all t ∈ [T,∞)T. By (1.1), we have

Lny(t) = −q(t)f(|y(θ(t))|βsgn(y(θ(t)))) ≤ −Mq(t)|y(θ(t))|βsgn(y(θ(t))) ≤ 0

on [T,∞)T, and Lny(t) ̸≡ 0 on [T̂ ,∞)T for any T̂ ∈ [T,∞)T. Noting that

Lny(t) = [pn−1(t)|Ln−1y(t)|αn−1sgn(Ln−1y(t))]
∆,

we infer that pn−1(t)|Ln−1y(t)|αn−1sgn(Ln−1y(t)) is non-increasing on [T,∞)T.
Thus, we have the following three possibilities:

(a1) pn−1(t)|Ln−1y(t)|αn−1sgn(Ln−1y(t)) > 0 for t ∈ [T,∞)T;
(a2) there exists a T ∗ ∈ (T,∞)T such that pn−1(t)|Ln−1y(t)|αn−1sgn(Ln−1y(t)) ≡

0 on [T ∗,∞)T;
(a3) there exists a T ∗ ∈ (T,∞)T such that pn−1(t)|Ln−1y(t)|αn−1sgn(Ln−1y(t)) <

0 on [T ∗,∞)T.

If the case (a3) occurs, then that is to say, Ln−1y(t) < 0 on [T ∗,∞)T. Lemma 2.2
implies that L0y(t) < 0 for all large t ∈ [T ∗,∞)T. One gets a contradiction, since
y(t) is eventually positive. Hence the case (a3) does not happen. Also, the case
(a2) is not possible since Lny(t) ̸≡ 0 on [T ∗,∞)T. Thus, the case (a1) holds.

In view of Ln−1y(t) = [pn−2(t)|Ln−2y(t)|αn−2sgn(Ln−2y(t))]
∆ and Ln−1y(t) >

0 on [T,∞)T, we infer that pn−2(t)|Ln−2y(t)|αn−2sgn(Ln−2y(t)) is increasing on
[T,∞)T and exactly one of the following is true:

(b1) there exists a T ∗ ∈ (T,∞)T such that Liy(t) > 0 on [T ∗,∞)T for all i =
1, 2, · · · , n− 2;

(b2) there exist a T ∗ ∈ [T,∞)T and an integer j ∈ {1, 2, · · · , n − 3} such that
Ljy(t) < 0 on [T ∗,∞)T.

If the case (b1) holds, then the conclusions of this lemma are obtained. If the case
(b2) holds, then there exists a smallest integerm ∈ {1, 2, · · · , n−3} withm+n is odd,
such that (−1)n+jLjy(t) < 0 on [T ∗,∞)T for m ≤ j ≤ n. Noting that Lmy(t) =
[pm−1(t)|Lm−1y(t)|αm−1sgn(Lm−1y(t))]

∆ > 0, we obtain that either Lm−1y(t) < 0
on [T ∗,∞)T or Lm−1y(t) > 0 on [T ∗∗,∞)T for some T ∗∗ ∈ [T ∗,∞)T. If Lm−1y(t) >
0 on [T ∗∗,∞)T holds, then it follows from Lemma 2.2 that Ljy(t) > 0 for j ∈
{1, 2, · · · ,m− 2}. If Lm−1y(t) < 0 on [T ∗,∞)T, then the same arguments as in the
proof Ln−1y(t) > 0 imply that Lm−2y(t) > 0 on [T ∗,∞)T. It is a contradiction to
the definition of m. We get the desired results and complete the proof.
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3. Main results
Lemma 3.1. Assume that either∫ ∞

t0

q(t)∆t = ∞ (3.1)

or ∫ ∞

t0

q(t)∆t <

∫ ∞

t0

ρ2(t)∆t = ∞, (3.2)

and (H1)− (H4) hold, where

ρ0(t) = q(t), ρk(t) =

[
1

pn−k(t)

∫ ∞

t

ρk−1(s)∆s

] 1
αn−k

, k = 1, 2, · · · , n− 1.

Let y(t) be a nonoscillatory solution of Eq. (1.1) on [t0,∞)T. Then there exists
a sufficiently large T ∗ ∈ [t0,∞)T, such that Lny(t) ≤ 0 for any t ∈ [T ∗,∞)T.
Moreover,

y(t)Ljy(t) > 0, t ∈ [T ∗,∞)T, j = 0, 1, · · · , n− 1 (3.3)
holds when n ∈ 2N, and either (3.3) holds or limt→∞ y(t) = 0 when n ∈ 2N+ 1.

Proof. Without loss of generality, we may assume that y(t) is eventually positive.
Then, by (H1) − (H4), there is a T ∈ [t0,∞)T such that y(t) > 0, y(τ(t)) > 0 and
y(θ(t)) > 0 for all t ∈ [T,∞)T and Theorem 2.1 holds.

When n ∈ 2N, l must be an odd integer and L1y(t) = [L0y(t)]
∆ > 0 on [T,∞)T.

Consequently,

lim
t→∞

L0y(t) exists and is positive, or lim
t→∞

L0y(t) = ∞. (3.4)

We claim that l = n − 1 by a contradiction argument. Assume not, then
Ln−1y(t) > 0, Ln−2y(t) < 0 and Ln−3y(t) > 0 on [T,∞)T. In view of L0y(t) =
y(t) + r(t)y(τ(t)) and (3.4), we derive that there exists a T ∗ ∈ [T,∞)T such that
y(θ(t)) ≥ c on [T ∗,∞)T for some constant c > 0. From (1.1), we have

Lny(t) = −q(t)f(|y(θ(t))|βsgn(y(θ(t)))) ≤ −Mcβq(t) on [T ∗,∞)T.

If (3.1) holds, then integrating the above inequality from T ∗ to t, we obtain that
for t ∈ [T ∗,∞)T,

0 < pn−1(t)Ln−1y(t)
αn−1 ≤ pn−1(T

∗)Ln−1y(T
∗)αn−1 −Mcβ

∫ t

T∗
q(s)∆s,

which is a contradiction to assumption (3.1). Thus, l = n− 1 and (3.3) hold.
If (3.2) holds, then integrating Lny(t) = [pn−1(t)|Ln−1y(t)|αn−1sgn(Ln−1y(t))]

∆

over [t,∞)T, we get that for t ∈ [T ∗,∞)T,

−pn−1(t)Ln−1y(t)
αn−1 ≤ −Mcβ

∫ ∞

t

q(s)∆s.

Next, integrating Ln−1y(t) = [pn−2(t)|Ln−2y(t)|αn−2sgn(Ln−2y(t))]
∆ from t to τ ,

t ∈ [T ∗,∞)T, and using the above inequality, we have

−pn−2(τ)[−Ln−2y(τ)]
αn−2 + pn−2(t)[−Ln−2y(t)]

αn−2 ≥ (cM1/β)
β

αn−1

∫ τ

t

ρ1(s)∆s,
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and so

−[pn−3(t)Ln−3y(t)
αn−3 ]∆ = −Ln−2y(t) ≥ (cM1/β)

β
αn−1αn−2 ρ2(t).

Finally, integrating the last inequality on [T ∗,∞)T, we obtain

∞ > pn−3(T
∗)Ln−3y(T

∗)αn−3 ≥ (cM1/β)
β

αn−1αn−2

∫ ∞

T∗
ρ2(t)∆t,

which contradicts (3.2). Hence l = n− 1 and (3.3) hold.
When n ∈ 2N + 1, we infer from Theorem 2.1 that l is an even integer. Thus,

L1y(t) > 0 or L1y(t) < 0, which means that limt→∞ L0y(t) ≥ 0. We claim that
limt→∞ L0y(t) ̸= 0 implies that l = n− 1. By a similar argument as above, we get
a contradiction to (3.1) or (3.2). Thus, limt→∞ L0y(t) = 0. Noting that 0 < y(t) ≤
L0y(t), we find limt→∞ y(t) = 0. This ends the proof.

Lemma 3.2. Assume that either (3.1) or (3.2) holds. Let y(t) be a nonoscillatory
solution of Eq. (1.1) which satisfies (3.3) on [T,∞)T. Then, there exists a sequence
{Ti}ni=1 ⊆ (T,∞)T with Tj+1 ∈ (Tj ,∞)T, j = 1, 2, · · · , n− 1 such that

pj(t)Ljy(t)
αj

Rn−j−1(t, Tn−j−1)
is non-increasing on [Tn−j−1,∞)T for 0 ≤ j ≤ n− 2, (3.5)

and for any t ∈ [Tn−j−1,∞)T,

pj(t)Ljy(t)
αj ≥

[
pj+1(t)Lj+1y(t)

αj+1

Rn−j−2(t, Tn−j−2)

] 1
αj+1

Rn−j−1(t, Tn−j−1), j = 0, 1, · · · , n− 2,

(3.6)
where p0(t) := 1 and

R0(t, T0) = 1, Ri+1(t, Ti+1) =

∫ t

Ti+1

[
Ri(s, Ti)

pn−i−1(s)

] 1
αn−i−1

∆s, i = 0, 1, · · · , n− 2.

(3.7)

Proof. Without loss of generality, we may assume that y(t) is eventually positive.
Then, by (H1) − (H4), there is a T ∈ [t0,∞)T such that y(t) > 0, y(τ(t)) > 0 and
y(θ(t)) > 0 for all t ∈ [T,∞)T. Then, it follows from (3.3) that for t ∈ [T1,∞)T
with T1 ∈ (T,∞)T,

pn−2(t)Ln−2y(t)
αn−2 ≥

∫ t

T1

[pn−1(s)Ln−1y(s)
αn−1 ]

1
αn−1

p
1

αn−1

n−1 (s)

∆s

≥ p
1

αn−1

n−1 (t)Ln−1y(t)R1(t, T1).

This means that[
pn−2(t)Ln−2y(t)

αn−2

R1(t, T1)

]∆
=
p

1
αn−1

n−1 (t)Ln−1y(t)R1(t, T1)− pn−2(t)Ln−2y(t)
αn−2

p
1

αn−1

n−1 (t)R1(t, T1)R1(σ(t), T1)

≤ 0,

and pn−2(t)Ln−2y(t)
αn−2/R1(t, T1) is non-increasing on [T1,∞)T. Then, for t ∈

[T2,∞)T ⊆ (T1,∞)T,

pn−3(t)Ln−3y(t)
αn−3 ≥

∫ t

T2

[
pn−2(s)Ln−2y(s)

αn−2

R1(s, T1)

] 1
αn−2 R

1
αn−2

1 (s, T1)

p
1

αn−2

n−2 (s)

∆s
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≥
p

1
αn−2

n−2 (t)Ln−2y(t)

R
1

αn−2

1 (t, T1)

R2(t, T2),

which indicates that[
pn−3(t)Ln−3y(t)

αn−3

R2(t, T2)

]∆

=
p

1
αn−2

n−2 (t)Ln−2y(t)R2(t, T2)− pn−3(t)Ln−3y(t)
αn−3R

1
αn−2

1 (t, T1)

p
1

αn−2

n−2 (t)R2(t, T2)R2(σ(t), T2)

≤ 0,

and pn−3(t)Ln−3y(t)
αn−3/R2(t, T2) is non-increasing on [T2,∞)T. Repeating the

above process, we conclude that for t ∈ [Tn−1,∞)T ⊆ (Tn−2,∞)T,

L0y(t) ≥
∫ t

Tn−1

[
p1(s)L1y(s)

α1

Rn−2(s, Tn−2)

] 1
α1 R

1
α1
n−2(s, Tn−2)

p
1

α1
1 (s)

∆s

≥ p
1

α1
1 (t)L1y(t)

R
1

α1
n−2(t, Tn−2)

Rn−1(t, Tn−1),

which implies that

[
L0y(t)

Rn−1(t, Tn−1)

]∆
=
p

1
α1
1 (t)L1y(t)Rn−1(t, Tn−1)− L0y(t)R

1
α1
n−2(t, Tn−2)

p
1

αn−2

n−2 (t)R2(t, T2)R2(σ(t), T2)

≤ 0,

and L0y(t)/Rn−1(t, Tn−1) is non-increasing on [Tn−1,∞)T. The proof is completed.

Lemma 3.3. Assume that either (3.1) or (3.2) holds. Let y(t) be a nonoscillatory
solution of Eq. (1.1) which satisfies (3.3) on [t0,∞)T. Then, there exists a constant
T ∈ [t0,∞)T such that

Lny(t) +Mq(t)[1− r(θ(t))]βL0y(θ(t))
β ≤ 0, for t ∈ [T,∞)T. (3.8)

Proof. Without loss of generality, we may assume that y(t) is eventually positive.
Then, by (H1) − (H4), there is a T ∈ [t0,∞)T such that y(t) > 0, y(τ(t)) > 0 and
y(θ(t)) > 0 for all t ∈ [T,∞)T. In view of τ(t) ≤ t and y(t) ≤ L0y(t), we derive
from (3.3) that

L0y(t) = y(t) + r(t)y(τ(t)) ≤ y(t) + r(t)L0y(τ(t)) ≤ y(t) + r(t)L0y(t) on [T,∞)T,

which indicates y(t) ≥ [1−r(t)]L0y(t) for t ∈ [T,∞)T. By choosing T large enough,
we have, for t ∈ [T,∞)T,

y(θ(t)) ≥ [1− r(θ(t))]L0y(θ(t)). (3.9)

As a consequence, (3.8) holds and the proof of this lemma is thereby complete with
(1.1).
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3.1. The case when θ(t) > t

In this subsection, we establish some sufficient oscillation conditions for (1.1) when
θ(t) > t. To formulate and prove our results, we use the following notations. Given
Tn−1 ∈ (T1,∞)T ⊆ (t0,∞)T sufficiently large. For any t ∈ [Tn−1,∞)T, we define

β(t, T1) =


[

R1(t,T1)
R1(σ(t),T1)

]αn−1

, αn−1 ≥ 1,

R1(t,T1)
R1(σ(t),T1)

, 0 < αn−1 < 1,
γ(t, T1) =

αn−1δ(t)β(t, T1)

p
1

αn−1

n−1 (t)δ
1+ 1

αn−1 (σ(t))

,

(3.10)

η(t, T1, Tn−1) = [1− r(θ(t))]
∏n−1

i=1 αi
R

∏n−1
i=1 αi

n−1 (t, Tn−1)

R
αn−1

1 (σ(t), T1)
, [g(t)]+ = max{g(t), 0},

(3.11)

and for any given function ϕ(t) > −1/pn−1(t)R
αn−1

1 (t, T1) such that pn−1(t)ϕ(t) is
a ∆-differentiable function and a positive ∆-differentiable function δ(t), we assume

C(t, T1) =
δ∆(t)

δ(σ(t))
+ (1 + αn−1)(pn−1ϕ)

1
αn−1 (σ(t))

β(t, T1)δ(t)

δ(σ(t))p
1

αn−1

n−1 (t)

,

and

Ψ(t, T1, Tn−1) =δ(t)

[
Mq(t)η(t, T1, Tn−1) +

β(t, T1)

p
1

αn−1

n−1 (t)

(pn−1ϕ)
1+ 1

αn−1 (σ(t))

− [pn−1(t)ϕ(t)]
∆

]
.

Now, we state and prove the first oscillation theorem in this subsection.

Theorem 3.1. Let β =
∏n−1

i=1 αi. Assume that either (3.1) or (3.2) is satisfied.
Furthermore, suppose that there exist a function ϕ(t) satisfying ϕ(t) = 0 for 0 <
αn−1 < 1 and a positive ∆-differentiable function δ(t) such that for a sufficiently
large T ∗ ∈ [Tn−1,∞)T,

lim sup
t→∞

∫ t

T∗

[
Ψ(s, T1, Tn−1)−

α
αn−1

n−1

(1+αn−1)1+αn−1

([C(s, T1)]+)
1+αn−1

[γ(s, T1)]αn−1

]
∆s>A(T ∗, T1),

(3.12)
where A(t, T1) = δ(t) [1/R1(t, T1)

αn−1 + pn−1(t)ϕ(t)]. Then,

(i) every solution y(t) of Eq. (1.1) is oscillatory when n ∈ 2N;
(ii) every solution y(t) of Eq. (1.1) is either oscillatory or limt→∞ y(t) = 0 when

n ∈ 2N+ 1.

Proof. Assume by way of contradiction that Eq. (1.1) has a nonoscillatory so-
lution y(t) on [t0,∞)T. Without loss of generality, we may assume that y(t) is
eventually positive. Then, there is a sufficiently large T ∈ [t0,∞)T such that for
t ∈ [T,∞)T, y(t) > 0, y(τ(t)) > 0, y(θ(t)) > 0, and Lemmas 3.1-3.3 hold.

When n ∈ 2N, by Lemma 3.1, (3.3) holds. Define a generalized Riccati substi-
tution:

w(t) = δ(t)

[
pn−1(t)Ln−1y(t)

αn−1

(pn−2(t)Ln−2y(t)αn−2)αn−1
+ pn−1(t)ϕ(t)

]
. (3.13)
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By the product rule, the sum rule and the quotient rule, we find

w∆(t)=
δ∆(t)

δ(σ(t))
w(σ(t))+δ(t)

[
pn−1(t)Ln−1y(t)

αn−1

(pn−2(t)Ln−2y(t)αn−2)αn−1

]∆
+δ(t) [pn−1(t)ϕ(t)]

∆

=
δ∆(t)

δ(σ(t))
w(σ(t))+δ(t) [pn−1(t)ϕ(t)]

∆
+δ(t)

Lny(t)

(pn−2(σ(t))Ln−2y(σ(t))αn−2)αn−1

− δ(t)
pn−1(t)Ln−1y(t)

αn−1 [(pn−2(t)Ln−2y(t)
αn−2)αn−1 ]∆

(pn−2(t)Ln−2y(t)αn−2)αn−1(pn−2(σ(t))Ln−2y(σ(t))αn−2)αn−1

=
δ∆(t)

δ(σ(t))
w(σ(t)) + δ(t) [pn−1(t)ϕ(t)]

∆
+ Λ1 − Λ2. (3.14)

By Lemma 3.3, we have for t ∈ [T,∞)T,

Λ1 ≤−Mq(t)δ(t)[1− r(θ(t))]
∏n−1

i=1 αi

[
L0y(θ(t))

L0y(σ(t))

]∏n−1
i=1 αi

× L0y(σ(t))
∏n−1

i=1 αi

(pn−2(σ(t))Ln−2y(σ(t))αn−2)αn−1
.

Because L0y(t)/Rn−1(t, Tn−1) is non-increasing on [Tn−1,∞)T, where Tn−1 is given
in Lemma 3.2, we have

L0y(t)

L0y(σ(t))
≥ Rn−1(t, Tn−1)

Rn−1(σ(t), Tn−1)
on [Tn−1,∞)T. (3.15)

As a consequence, for all t ∈ [Tn−1,∞)T,[
L0y(θ(t))

L0y(σ(t))

]∏n−1
i=1 αi

=

[
L0y(θ(t))

L0y(t)

L0y(t)

L0y(σ(t))

]∏n−1
i=1 αi

≥
[

Rn−1(t, Tn−1)

Rn−1(σ(t), Tn−1)

]∏n−1
i=1 αi

,

(3.16)
since L1y(t) = [L0y(t)]

∆ > 0 on [T,∞)T. Using the induction method, we conclude
from Lemma 3.2 that

L0y(t)

Rn−1(t, Tn−1)
≥

[
p1(t)L1y(t)

α1

Rn−2(t, Tn−2)

] 1
α1

≥ · · · ≥
[
pn−2(t)Ln−2y(t)

αn−2

R1(t, T1)

]∏n−2
i=1

1
αi

(3.17)
on [Tn−1,∞)T. It then follows from (3.16) and (3.17) that for all t ∈ [Tn−1,∞)T,

Λ1 ≤−Mq(t)δ(t)[1− r(θ(t))]
∏n−1

i=1 αi

[
Rn−1(t, Tn−1)

Rn−1(σ(t), Tn−1)

]∏n−1
i=1 αi

×

{
Rn−1(σ(t), Tn−1)

[
pn−2(σ(t))Ln−2y(σ(t))

αn−2

R1(σ(t),T1)

]∏n−2
i=1

1
αi

}∏n−1
i=1 αi

(pn−2(σ(t))Ln−2y(σ(t))αn−2)αn−1

=−Mq(t)δ(t)[1− r(θ(t))]
∏n−1

i=1 αi
R

∏n−1
i=1 αi

n−1 (t, Tn−1)

R
αn−1

1 (σ(t), T1)
. (3.18)

By the Potzsche chain rule, Lemma 3.1 and Lemma 3.2, we have

[(pn−2(t)Ln−2y(t)
αn−2)αn−1 ]∆

(pn−2(σ(t))Ln−2y(σ(t))αn−2)αn−1
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≥ αn−1Ln−1y(t) [pn−2(t)Ln−2y(t)
αn−2 ]

αn−1

pn−2(t)Ln−2y(t)αn−2 [pn−2(σ(t))Ln−2y(σ(t))αn−2 ]
αn−1

≥ αn−1Ln−1y(t)

pn−2(t)Ln−2y(t)αn−2

[
R1(t, T1)

Rσ
1 (t, T1)

]αn−1

, αn−1 ≥ 1,

and
[(pn−2(t)Ln−2y(t)

αn−2)αn−1 ]∆

(pn−2(σ(t))Ln−2y(σ(t))αn−2)αn−1

≥ αn−1Ln−1y(t)

pn−2(σ(t))Ln−2y(σ(t))αn−2

≥ αn−1Ln−1y(t)

pn−2(t)Ln−2y(t)αn−2

[
R1(t, T1)

Rσ
1 (t, T1)

]
, 0 < αn−1 < 1.

Noting that Lny(t) ≤ 0 and Ln−1y(t) > 0, combining with the definition of β(t, T1)
and w(t), we deduce that

Λ2 ≥ αn−1δ(t)β(t, T1) [pn−1(t)Ln−1y(t)
αn−1 ]

1+ 1
αn−1

p
1

αn−1

n−1 (t)(pn−2(t)Ln−2y(t)αn−2)αn−1+1

≥ αn−1δ(t)β(t, T1) [pn−1(σ(t))Ln−1y(σ(t))
αn−1 ]

1+ 1
αn−1

p
1

αn−1

n−1 (t)(pn−2(σ(t))Ln−2y(σ(t))αn−2)αn−1+1

≥ αn−1δ(t)β(t, T1)

p
1

αn−1

n−1 (t)

[
w(σ(t))

δ(σ(t))
− pn−1(σ(t))ϕ(σ(t))

]1+ 1
αn−1

.

Define E > 0 and F > 0 by E := w(σ(t))/δ(σ(t)) and F := pn−1(σ(t))ϕ(σ(t)) and
using the inequality

E1+ 1
γ − (E − F )1+

1
γ ≤ F

1
γ

[(
1 +

1

γ

)
E − 1

γ
F

]
, γ ≥ 1,

we find, for αn−1 ≥ 1,

Λ2 ≥αn−1δ(t)β(t, T1)

p
1

αn−1

n−1 (t)

{[
w(σ(t))

δ(σ(t))

]1+ 1
αn−1

+
1

αn−1
(pn−1ϕ)

1+ 1
αn−1 (σ(t))

− (1 +
1

αn−1
)
(pn−1ϕ)

1
αn−1 (σ(t))

δ(σ(t))
w(σ(t))

}
. (3.19)

Plugging (3.18) and (3.19) into (3.14) and using the definition of Ψ(t, T1, Tn−1),
C(t, T1) and γ(t, T1), we obtain

w∆(t) ≤−Ψ(t, T1, Tn−1) + C(t, T1)w(σ(t))− γ(t, T1)w
1+ 1

αn−1 (σ(t))

≤−Ψ(t, T1, Tn−1) + [C(t, T1)]+w(σ(t))− γ(t, T1)w
1+ 1

αn−1 (σ(t)). (3.20)

For 0 < αn−1 < 1 and ϕ(t) = 0, it is obvious that (3.20) also holds. Applying the
inequality

Bw −Aw1+ 1
γ ≤ γγ

(1 + γ)1+γ

B1+γ

Aγ
, A,B > 0, (3.21)
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to the inequality (3.20), we have

w∆(t) ≤ −Ψ(t, T1, Tn−1) +
α
αn−1

n−1

(1 + αn−1)1+αn−1

([C(t, T1)]+)
1+αn−1

[γ(t, T1)]αn−1
. (3.22)

Integrating (3.22) with respect to t from T ∗ to t, where t ∈ (T ∗,∞)T with T ∗ ∈
(max{T, Tn−1},∞)T, we get∫ t

T∗

[
Ψ(s, T1, Tn−1)−

α
αn−1

n−1

(1 + αn−1)1+αn−1

([C(s, T1)]+)
1+αn−1

[γ(s, T1)]αn−1

]
∆s

≤w(T ∗)− w(t) ≤ δ(T ∗)

[
1

(R1(T ∗, T1))αn−1
+ pn−1(T

∗)ϕ(T ∗)

]
,

which contradicts (3.12). Thus, every solution y(t) of (1.1) is oscillatory.
When n ∈ 2N+1, we infer from Lemma 3.1 that (3.3) holds or limt→∞ y(t) = 0.

If (3.3) holds, similarly, then we see that Eq. (1.1) is oscillatory. Thus, we omit the
details. The proof of this theorem is completed.

In what follows, we will use the function class X to study oscillation of (1.1). We
say that a function Ξ := Ξ(t, s, ℓ) belongs to the function class X , denoted by Ξ ∈ X ,
if Ξ ∈ Crd(Γ,R), where Γ := {(t, s, ℓ) : ∞ > t ≥ s ≥ ℓ ≥ t0, t, s, ℓ ∈ [t0,∞)T}, which
satisfies Ξ(t, t, ℓ) = 0, Ξ(t, ℓ, ℓ) = 0 and Ξ(t, s, ℓ) ̸= 0 for t > s > ℓ, and has the
partial derivative Ξ∆s on Γ such that Ξ∆s is ∆-integrable with respect to s in Γ.
We define the operator B[·; ℓ, t] by

B[g; ℓ, t] :=
∫ t

ℓ

Ξ2(t, s, ℓ)g(s)∆s for t ≥ s ≥ ℓ ≥ t0 and g ∈ Crd([t0,∞)T,R), (3.23)

and the function ξ(t, s, ℓ) is defined by

Ξ∆s(t, s, ℓ) = ξ(t, s, ℓ)Ξ(t, s, ℓ). (3.24)

It is not difficult to verify that B[·; ℓ, t] is a linear operator and satisfies

B[g∆; ℓ, t] = −B[gσ(2ξ + µξ2); ℓ, t] for g ∈ C1
rd([t0,∞)T,R). (3.25)

Theorem 3.2. Let β =
∏n−1

i=1 αi. Assume that either (3.1) or (3.2) is satisfied.
Furthermore, suppose that for each T ∈ [t0,∞)T, there exists a function Ξ ∈ X such
that

lim sup
t→∞

B
[
Ψ(s, T1, Tn−1)−

α
αn−1

n−1 ([2ξ(s)+µ(s)ξ2(s)+C(s, T1)]+)
1+αn−1

(1+αn−1)αn−1γαn−1(s, T1)
;T, t

]
>0,

(3.26)
where the operator B is defined by (3.23) and the function ξ is defined by (3.24).
Then,

(i) every solution y(t) of Eq. (1.1) is oscillatory when n ∈ 2N;
(ii) every solution y(t) of Eq. (1.1) is either oscillatory or limt→∞ y(t) = 0 when

n ∈ 2N+ 1.

Proof. On the contrary, assume that Eq. (1.1) has a nonoscillatory solution y(t)
on [t0,∞)T. Without loss of generality, we may assume that y(t) is eventually
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positive. Then, there is a sufficiently large T ∈ [t0,∞)T such that for t ∈ [T,∞)T,
y(t) > 0, y(τ(t)) > 0, y(θ(t)) > 0, and Lemmas 3.1-3.3 hold.

When n ∈ 2N, we proceed as in the proof of Theorem 3.1 to obtain (3.20). It
then follows that

Ψ(s, T1, Tn−1) ≤ −w∆(s) + C(s, T1)w(σ(s))− γ(s, T1)w
1+ 1

αn−1 (σ(s))

for all s ∈ [max{T, Tn−1},∞)T. Applying the operator B[·;T ∗, t], where t ∈ [T ∗,∞)T
with T ∗ ∈ (max{T, Tn−1},∞)T, and utilizing the property (3.25), we have

B[Ψ(s, T1, Tn−1);T
∗, t]

≤B
[
−w∆(s) + C(s, T1)w(σ(s))− γ(s, T1)w

1+ 1
αn−1 (σ(s));T ∗, t

]
≤B

[
(2ξ(s) + µ(s)ξ2(s) + C(s, T1))w(σ(s))− γ(s, T1)w

1+ 1
αn−1 (σ(s));T ∗, t

]
≤B

[
[2ξ(s) + µ(s)ξ2(s) + C(s, T1)]+w(σ(s))− γ(s, T1)w

1+ 1
αn−1 (σ(s));T ∗, t

]
.

It then follows from (3.21) that

B[Ψ(s, T1, Tn−1);T
∗, t] ≤ B

[
α
αn−1

n−1 ([2ξ(s) + µ(s)ξ2(s) + C(s, T1)]+)
1+αn−1

(1 + αn−1)1+αn−1γαn−1(s, T1)
;T ∗, t

]
.

Taking the super limit in the above inequality, we obtain that

lim sup
t→∞

B
[
Ψ(s, T1, Tn−1)−

α
αn−1

n−1 ([2ξ(s)+µ(s)ξ2(s)+C(s, T1)]+)
1+αn−1

(1+αn−1)1+αn−1γαn−1(s, T1)
;T ∗, t

]
≤0.

This is a contradiction to (3.26). Therefore, every solution y(t) of (1.1) is oscillatory.
When n ∈ 2N+1, we derive from Lemma 3.1 that (3.3) holds or limt→∞ y(t) = 0.

If (3.3) holds, similar to the proof of the case (i), then we can show that Eq. (1.1)
is oscillatory and hence omit its proof. The proof is thereby complete.

If we choose Ξ(t, s, ℓ) = φ(s)(t − s)(s − ℓ), where φ(s) ∈ C1
rd([t0,∞)T, (0,∞)),

then obviously, Ξ ∈ X and

ξ(t, s, ℓ) =
φ∆(s)

φ(s)
+

φσ(s)(t− σ(s))

φ(s)(t− s)(s− ℓ)
− φσ(s)

φ(s)(t− s)
. (3.27)

For an application of Theorem 3.2, we obtain the following corollary.

Corollary 3.1. Let β =
∏n−1

i=1 αi. Assume that either (3.1) or (3.2) is satis-
fied. Furthermore, suppose that for each T ∈ [t0,∞)T, there exists a function
φ ∈ C1

rd([t0,∞)T, (0,∞)) such that

lim sup
t→∞

∫ t

T

φ2(s)(t− s)2(s− T )2

[
Ψ(s, T1, Tn−1)

−
α
αn−1

n−1 ([2ξ(s) + µ(s)ξ2(s) + C(s, T1)]+)
1+αn−1

(1 + αn−1)αn−1γαn−1(s, T1)

]
∆s > 0,

where the function ξ is defined by (3.27). Then,

(i) every solution y(t) of Eq. (1.1) is oscillatory when n ∈ 2N;
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(ii) every solution y(t) of Eq. (1.1) is either oscillatory or limt→∞ y(t) = 0 when
n ∈ 2N+ 1.

Remark 3.1. Theorem 3.2 is in a form with a high degree of generality. When
T = R, we can see that Xu and Meng [29, Theorem 2.1] is a special case of Theorem
3.2.

If the assumptions (3.1) and (3.2) do not hold, we give the following more general
theorem.

Theorem 3.3. Assume that (H1)− (H4) hold and β = Πn−1
i=1 αi.

(i) Suppose that n ∈ 2N and for each odd integer l ∈ {1, 3, · · · , n} and a suffi-
ciently large T ∈ [t0,∞)T, there holds

lim sup
t→∞

M
Πn−1

i=l+1
1
αiH

∏l
i=1 αi

l (t, T )

∫ ∞

t

χn−l−1(s)∆s > 1, (3.28)

where

χ0(t) = q(t)[1− r(θ(t))]Π
n−1
i=1 αi ,

χk(t) =

[∫∞
t
χk−1(s)∆s

pn−k(t)

] 1
αn−k

, k = 1, 2, · · · , n− l − 1, (3.29)

and

H1(t, T )=

∫ t

T

pl(s)
− 1

αl ∆s, Hj(t, T )=

∫ t

T

[
Hj−1(s, T )

pl−j+1(s)

] 1
αl−j+1

∆s, j=2, · · · , l.

(3.30)
Then, every solution y(t) of Eq. (1.1) is oscillatory;

(ii) Suppose that n ∈ 2N+ 1, ∫ ∞

t0

ρn−1(s)∆s = ∞, (3.31)

and for each even integer l ∈ {2, 4, · · · , n}, (3.28) holds, where ρi(t) are defined
as in Lemma 3.1. Then, every solution y(t) of Eq. (1.1) is either oscillatory
or limt→∞ y(t) = 0.

Proof. Suppose that Eq.(1.1) has a nonoscillatory solution y(t) on [t0,∞)T. With-
out loss of generality, we may assume that y(t) is eventually positive. Then, by
(H1)− (H4), there is a T ∈ [t0,∞)T such that y(t) > 0, y(τ(t)) > 0 and y(θ(t)) > 0
for all t ∈ [T,∞)T. Moreover, by Theorem 2.1, we have for t ∈ [T,∞)T, Ljy(t) > 0,
j = 1, 2, · · · , l, and (−1)n+jy(t)Ljy(t) < 0 for j = l + 1, l + 2, · · · , n.

When n ∈ 2N, since Lny(t) = [pn−1(t)Ln−1y(t)
αn−1 ]∆ ≤ 0 and Ln−1y(t) > 0,

then
lim
t→∞

pn−1(t)Ln−1y(t)
αn−1 = ζ ≥ 0.

Integrating both sides of (3.8) from t to ∞, we have

ζ − pn−1(t)Ln−1y(t)
αn−1 +M

∫ ∞

t

q(s)[1− r(θ(s))]
∏n−1

i=1 αiL0y(θ(s))
∏n−1

i=1 αi∆s ≤ 0.

(3.32)
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Since n+l is odd, we know that l must be an odd integer and L1y(t) = [L0y(t)]
∆ > 0

for t ∈ [T,∞)T. It then follows from (3.32) that

pn−1(t)Ln−1y(t)
αn−1 ≥ML0y(t)

∏n−1
i=1 αi

∫ ∞

t

q(s)[1− r(θ(s))]
∏n−1

i=1 αi∆s, (3.33)

which implies that

Ln−1y(t) ≥ L0y(t)
Πn−2

i=1 αi

[
M

pn−1(t)

∫ ∞

t

q(s)[(1− r(θ(s)))]Π
n−1
i=1 αi∆s

] 1
αn−1

.

Next, integrating Ln−1y(t) = [−pn−2(t)|Ln−2y(t)|αn−2 ]∆ over [t,∞)T, where t ∈
[T,∞)T, we obtain

pn−2(t)|Ln−2y(t)|αn−2

≥M
1

αn−1 L0y(t)
Πn−2

i=1 αi

∫ ∞

t

[∫∞
s
q(u)[(1− r(θ(u)))]Π

n−1
i=1 αi∆u

pn−1(s)

] 1
αn−1

∆s.

Thus, we have that for t ∈ [T,∞)T,

− Ln−2y(t)

≥L0y(t)
Πn−3

i=1 αi

M
1

αn−1

pn−2(t)

∫ ∞

t

[∫∞
s
q(u)[(1− r(θ(u)))]Π

n−1
i=1 αi∆u

pn−1(s)

] 1
αn−1

∆s


1

αn−2

.

Using the definition of χi(t), we continue in this fashion to get

pl(t)Lly(t)
αl ≥M

Πn−1
i=l+1

1
αi L0y(t)

Πl
i=1αi

∫ ∞

t

χn−l−1(s)∆s (3.34)

on [T,∞)T. Noting that Ll+1y(t) = [pl(t)Lly(t)
αl ]∆ < 0, we derive that pl(t)Lly(t)

αl

is decreasing on [T,∞)T. Consequently,

pl−1(t)Ll−1y(t)
αl−1 ≥

∫ t

T

[pl(s)Lly(s)
αl ]

1
αl pl(s)

− 1
αl ∆s

≥ [pl(t)Lly(t)
αl ]

1
αl

∫ t

T

pl(s)
− 1

αl ∆s.

Furthermore, we have

pl−2(t)Ll−2y(t)
αl−2 ≥

∫ t

T

[pl−1(s)Ll−1y(s)
αl−1 ]

1
αl−1 pl−1(s)

− 1
αl−1 ∆s

≥
∫ t

T

[pl(s)Lly(s)
αl ]

1
αlαl−1H

1
αl−1

1 (s, T )pl−1(s)
− 1

αl−1 ∆s

≥ [pl(t)Lly(t)
αl ]

1
αlαl−1H2(t, T ).

Continuing in this way, we obtain

L0y(t) ≥ L0y(t)− L0y(T ) ≥ [pl(t)Lly(t)
αl ]

Πl
i=1

1
αiHl(t, T ), t ∈ [T,∞)T. (3.35)
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Plugging (3.35) into (3.34) gives

M
Πn−1

i=l+1
1
αiH

∏l
i=1 αi

l (t, T )

∫ ∞

t

χn−l−1(s)∆s ≤ 1, t ∈ [T,∞)T.

Taking the limsup on both sides of the above inequality as t → ∞, we obtain a
contradiction to (3.28). Therefore, every solution y(t) of (1.1) is oscillatory.

Now we consider the case n ∈ 2N+ 1. First, we assume l = 0. Then, L1y(t) =
[L0y(t)]

∆ < 0. Consequently, limt→∞ L0y(t) = ν ≥ 0. When limt→∞ L0y(t) = ν >
0, it follows from 0 ≤ r(t) < 1 and limt→∞ θ(t) = ∞ that there exists T ∗∗ ∈ [T,∞)T
such that y(θ(t)) ≥ µ̂ for some µ̂ ∈ [0, ν) on [T ∗∗,∞)T. Proceeding as in the proof
of Lemma 3.1, we obtain

−pn−1(t)Ln−1y(t)
αn−1 ≤ −Mµ̂β

∫ ∞

t

q(s)∆s.

Integrating Ln−1y(t) = [pn−2(t)|Ln−2y(t)|αn−2sgn(Ln−3y(t))]
∆ over [t,∞)T, we in-

fer that for t ∈ [T ∗∗,∞)T,

pn−2(t)[−Ln−2y(t)]
αn−1 ≥

(
µ̂M

1
β

) β
αn−1

∫ ∞

t

ρ1(s)∆s.

Continuing in the fashion, we have

|Liy(t)| ≥
(
µ̂M

1
β

)∏n−1
k=i

β
αk

∫ ∞

t

ρn−i(s)∆s, i = 1, 2, · · · , n− 3,

and so
L1y(t) ≤ −

(
µ̂M

1
β

)∏n−1
i=1

β
αi

∫ ∞

t

ρn−2(s)∆s on [T ∗∗,∞)T.

Integrating the above inequality from T ∗∗ to t ∈ [T ∗∗,∞)T, we have

L0y(t)− L0y(T
∗∗) ≤ −

(
µ̂M)

1
β

)∏n−1
i=1

β
αi

∫ t

T∗∗
ρn−1(s)∆s,

which yields limt→∞ L0y(t) = −∞ by (3.31). This is clearly impossible since y(t) ≤
L0y(t) and y(t) > 0 on [T,∞)T. From the above discussion, we conclude that
limt→∞ y(t) = 0 if l = 0.

If l ≥ 2, then L1y(t) = [L0y(t)]
∆ > 0. As in the proof of the case n ∈ 2N, we

deduce that every solution y(t) of (1.1) is oscillatory and the proof of this theorem
is thereby complete.

If l = n− 1, then we have the following result.

Corollary 3.2. Let β =
∏n−1

i=1 αi. Assume that (H1)− (H4) hold and either (3.1)
or (3.2) is satisfied. If

lim sup
t→∞

MR
∏n−1

i=1 αi

n−1 (t, Tn−1)

∫ ∞

t

q(s)[1− r(θ(s))]
∏n−1

i=1 αi∆s > 1 (3.36)

for sufficiently large Tn−1 ∈ [T0,∞)T. Then,

(i) every solution y(t) of Eq. (1.1) is oscillatory when n ∈ 2N;
(ii) every solution y(t) of Eq. (1.1) is either oscillatory or limt→∞ y(t) = 0 when

n ∈ 2N+ 1.
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3.2. The case when θ(t) ≤ t

In this subsection, we establish some sufficient oscillation conditions for (1.1) when
θ(t) ≤ t. We first introduce the following notations. Given Tn−1 > T1 > t0
sufficiently large. For any t ∈ [Tn−1,∞)T, we define

η̃(t, T1, Tn−1) = [1− r(θ(t))]
∏n−1

i=1 αi
R

∏n−1
i=1 αi

n−1 (θ(t), Tn−1)

R
αn−1

1 (σ(t), T1)
, (3.37)

and for any given function ϕ(t) > −1/pn−1(t)R
αn−1

1 (t, T1) such that pn−1(t)ϕ(t)
is a ∆-differentiable function and a positive ∆-differentiable function δ(t), and we
assume

Ψ̃(t, T1, Tn−1) =δ(t)

[
Mq(t)η̃(t, T1, Tn−1) +

β(t, T1)

p
1

αn−1

n−1 (t)

(pn−1ϕ)
1+ 1

αn−1 (σ(t))

− [pn−1(t)ϕ(t)]
∆

]
.

Now, we state and prove the parallel oscillation theorems in this subsection.

Theorem 3.4. Let β =
∏n−1

i=1 αi and θ∆(t) > 0 on [t0,∞)T. Assume that either
(3.1) or (3.2) is satisfied. Furthermore, assume that there exist a function ϕ(t)
satisfying ϕ(t) = 0 for 0 < αn−1 < 1 and a positive ∆-differentiable function δ(t)
such that for a sufficiently large T ∗ ∈ [Tn−1,∞)T,

lim sup
t→∞

∫ t

T∗

[
Ψ̃(s, T1, Tn−1)−

α
αn−1

n−1

(1 + αn−1)1+αn−1

([C(s, T1)]+)
1+αn−1

[γ(s, T1)]αn−1

]
∆s

>A(T ∗, T1),

(3.38)

where A(t, T1) = δ(t) [1/R1(t, T1)
αn−1 + pn−1(t)ϕ(t)]. Then,

(i) every solution y(t) of Eq. (1.1) is oscillatory when n ∈ 2N;
(ii) every solution y(t) of Eq. (1.1) is either oscillatory or limt→∞ y(t) = 0 when

n ∈ 2N+ 1.

Proof. Assume by way of contradiction that Eq. (1.1) has a nonoscillatory so-
lution y(t) on [t0,∞)T. Without loss of generality, we may assume that y(t) is
eventually positive. Then, there is a sufficiently large T ∈ [t0,∞)T such that for
t ∈ [T,∞)T, y(t) > 0, y(τ(t)) > 0, y(θ(t)) > 0, and Lemmas 3.1-3.3 hold.

When n ∈ 2N, by Lemma 3.1, (3.3) holds. Define the function w(t) by (3.13).
In view of (3.17) and

[
L0y(θ(t))

L0y(σ(t))

]∏n−1
i=1 αi

≥
[
Rn−1(θ(t), Tn−1)

Rn−1(σ(t), Tn−1)

]∏n−1
i=1 αi

, (3.39)

we find

Λ1 ≤ −Mq(t)δ(t)[1− r(θ(t))]
∏n−1

i=1 αi
R

∏n−1
i=1 αi

n−1 (θ(t), Tn−1)

R
αn−1

1 (σ(t), T1)
. (3.40)
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Substituting (3.19) and (3.40) into (3.14) and using the definition of Ψ̃(t, T1, Tn−1),
C(t, T1) and γ(t, T1), we infer that

w∆(t) ≤ −Ψ̃(t, T1, Tn−1) + C(t, T1)w(σ(t))− γ(t, T1)w
1+ 1

αn−1 (σ(t)). (3.41)

For 0 < αn−1 < 1 and ϕ(t) = 0, obviously, (3.41) also holds. Proceeding as in the
proof of Theorem 3.1, we have∫ t

T∗

[
Ψ̃(s, T1, Tn−1)−

α
αn−1

n−1

(1 + αn−1)1+αn−1

([C(s, T1)]+)
1+αn−1

[γ(s, T1)]αn−1

]
∆s

≤w(T ∗)− w(t) ≤ δ(T ∗)

[
1

(R1(T ∗, T1))αn−1
+ pn−1(T

∗)ϕ(T ∗)

]
,

which contradicts the assumption (3.38). Therefore, every solution y(t) of (1.1) is
oscillatory.

When n ∈ 2N+1, we deduce from Lemma 3.1 that (3.3) holds or limt→∞ y(t) =
0. If (3.3) holds, then as shown in the proof of the case when n is even, we see that
Eq. (1.1) is oscillatory. This ends the proof of this theorem.

Theorem 3.5. Let β =
∏n−1

i=1 αi and θ∆(t) > 0 on [t0,∞)T. Assume that either
(3.1) or (3.2) is satisfied. Furthermore, assume that for each T ∈ [t0,∞)T, there
exists a function Ξ ∈ X such that

lim sup
t→∞

B
[
Ψ̃(s, T1, Tn−1)−

α
αn−1

n−1 ([2ξ(s) + µ(s)ξ2(s) + C(s, T1)]+)
1+αn−1

(1+αn−1)αn−1γαn−1(s, T1)
;T, t

]
>0,

(3.42)
where the operator B and the function ξ are defined as in (3.23) and (3.24). Then,

(i) every solution y(t) of Eq. (1.1) is oscillatory when n ∈ 2N;
(ii) every solution y(t) of Eq. (1.1) is either oscillatory or limt→∞ y(t) = 0 when

n ∈ 2N+ 1.

Proof. Based on (3.41), the proof is similar to Theorem 3.2 and hence is omitted.

Corollary 3.3. Let β =
∏n−1

i=1 αi and θ∆(t) > 0 for t ∈ [t0,∞)T. Assume that
either (3.1) or (3.2) is satisfied. Furthermore, assume that for each T ∈ [t0,∞)T,
there exists a function φ ∈ C1

rd([t0,∞)T, (0,∞)) such that

lim sup
t→∞

∫ t

T

φ2(s)(t− s)2(s− T )2

[
Ψ̃(s, T1, Tn−1)

−
α
αn−1

n−1 ([2ξ(s) + µ(s)ξ2(s) + C(s, T1)]+)
1+αn−1

(1 + αn−1)αn−1γαn−1(s, T1)

]
∆s > 0,

where the function ξ is given by (3.27). Then,

(i) every solution y(t) of Eq. (1.1) is oscillatory when n ∈ 2N;
(ii) every solution y(t) of Eq. (1.1) is either oscillatory or limt→∞ y(t) = 0 when

n ∈ 2N+ 1.

Theorem 3.6. Let θ∆(t) > 0 and β = Πn−1
i=1 αi.
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(i) Suppose that n ∈ 2N and for each odd integer l ∈ {1, 3, · · · , n} and a suffi-
ciently large T ∈ [t0,∞)T, there holds

lim sup
t→∞

M
Πn−1

i=l+1
1
αiH

∏l
i=1 αi

l (θ(t), T )

∫ ∞

t

χn−l−1(s)∆s > 1, (3.43)

where χi(t)(i = 0, · · · , n − l − 1) and Hi(t, T )(i = 1, · · · , l) are defined as in
(3.29) and (3.30). Then, every solution y(t) of Eq. (1.1) is oscillatory;

(ii) Suppose that n ∈ 2N + 1, (3.31) and (3.43) hold for each even integer l ∈
{2, 4, · · · , n}, where ρi(t)(i = 1, · · · , n) are defined as in Lemma 3.1. Then,
every solution y(t) of Eq. (1.1) is either oscillatory or limt→∞ y(t) = 0.

Proof. Suppose that Eq.(1.1) has a nonoscillatory solution y(t) on [t0,∞)T. With-
out loss of generality, we may assume that y(t) is eventually positive. Then, by
(H1)− (H4), there is a T ∈ [t0,∞)T such that y(t) > 0, y(τ(t)) > 0 and y(θ(t)) > 0
for all t ∈ [T,∞)T. Moreover, by Theorem 2.1, we have for t ∈ [T,∞)T, Ljy(t) > 0,
j = 1, 2, · · · , l, and (−1)n+jy(t)Ljy(t) < 0 for j = l + 1, l + 2, · · · , n.

When n ∈ 2N, l must be an odd integer and L1y(t) = [L0y(t)]
∆ > 0 for t ∈

[T,∞)T. Thus, (3.32) holds. Then, it follows from θ∆(t) > 0 that

pn−1(t)Ln−1y(t)
αn−1 ≥ML0y(θ(t))

Πn−1
i=1 αi

∫ ∞

t

q(s)[(1− r(θ(s)))]Π
n−1
i=1 αi∆s.

Proceeding as in the proof of (3.34), we have

pl(θ(t))Lly(θ(t))
αl ≥M

Πn−1
i=l+1

1
αi L0y(θ(t))

Πl
i=1αi

∫ ∞

t

χn−l−1(s)∆s. (3.44)

On the other hand, (3.35) leads to

L0y(θ(t)) ≥ [pl(θ(t))Lly(θ(t))
αl ]

Πl
i=1

1
αiHl(θ(t), T ), t ∈ [T,∞)T. (3.45)

Substituting (3.45) into (3.44) gives

M
Πn−1

i=l+1
1
αiH

∏l
i=1 αi

l (θ(t), T )

∫ ∞

t

χn−l−1(s)∆s ≤ 1.

This contradicts (3.43). Therefore, every solution y(t) of (1.1) is oscillatory.
When n ∈ 2N+ 1, proceeding as in the proof of Theorem 3.3, we can conclude

that limt→∞ y(t) = 0 if l = 0. Similar to the proof of the case when n ∈ 2N, we can
infer that every solution y(t) of (1.1) is oscillatory. Hence, the proof of this theorem
is completed.

Corollary 3.4. Let β =
∏n−1

i=1 αi and θ∆(t) > 0 for t ∈ [t0,∞)T. Assume that
(H1)− (H4) hold and either (3.1) or (3.2) is satisfied. If

lim sup
t→∞

MR
∏n−1

i=1 αi

n−1 (θ(t), Tn−1)

∫ ∞

t

q(s)[1− r(θ(s))]
∏n−1

i=1 αi∆s > 1, (3.46)

for a sufficiently large Tn−1 ∈ [T0,∞)T, then,

(i) every solution y(t) of Eq. (1.1) is oscillatory when n ∈ 2N;
(ii) every solution y(t) of Eq. (1.1) is either oscillatory or limt→∞ y(t) = 0 when

n ∈ 2N+ 1.
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4. Examples
Example 4.1. Let h,M be positive constants, αn−1 ≥ 1, and the time scale
T = hZ. Consider the dynamic equation

Lny(t) + q(t)f(|y(θ(t))|βsgn(y(θ(t)))) = 0, t ∈ [2h,∞)T, (4.1)

where pn−1(t) = 1, pi(t) = t, αi = 1(1 ≤ i ≤ n − 2), τ(t) = θ(t) = t − h and
q(t) = 1

tσ(t) .

It is clear that conditions (H2) and (3.2) hold, since∫ ∞

t0

(
1

pn−1(s)

) 1
αn−1

∆s =

∫ ∞

t0

∆s = ∞,∫ ∞

t0

(
1

pi(s)

) 1
αi

∆s =

∫ ∞

t0

1

s
∆s = ∞, 1 ≤ i ≤ n− 2

from [4, Theorem 1.75] and∫ ∞

t0

ρ2(t)∆t =

∫ ∞

t0

1

s

{∫ ∞

s

[∫ ∞

u

1

vσ(v)
∆v

] 1
αn−1

∆u

}
∆s

≥
∫ t∗

t0

1

s
∆s

∫ ∞

t∗

1

u1/αn−1
∆u = ∞

for some constant t∗ ∈ [t0,∞)T. Note that

t

2
< R1(t, T1) =

∫ t

T1

[
R0(s, T0)

pn−1(s)

] 1
αn−1

∆s = t− T1 < t

for t > T2 := 2T1 = 22T0, then

t

22
<

1

2

∫ t

T2

∆s < R2(t, T2) =

∫ t

T2

[
R1(s, T0)

pn−2(s)

] 1
αn−2

∆s

=

∫ t

T2

R1(s, T1)

s
∆s <

∫ t

T2

∆s < t

for t > T3 := 23T0. By using the induction method, we can derive that

t

2n−1
< Rn−1(t, Tn−1) < t, for t > Tn := 2nT0.

Picking up δ(t) = 1+ 1
t and ϕ(t) = 0 in Theorem 3.4, then we have δ∆(t) = − 1

tσ(t) <

0 and [C(t, T1)]+ = max{− t+h
(t+h+1)tσ(t) , 0} = 0. Furthermore, pick r(t) = 1

2 −
1
t and

choose T ∗ = max{Tn + h, T + 3h}, then for t > T ∗,

1

2nαn−1+1
≤ 1

2nαn−1

(t− h)αn−1

(t+ h)αn−1
≤ η̃(t, T1, Tn−1)

≤
(
1

2
+

1

h

)αn−1 [2(t− h)]αn−1

(t+ h)αn−1
<

(
1 +

2

h

)αn−1

,
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M

2nαn−1+1

1

tσ(t)
≤ Ψ̃(t, T1, Tn−1) =

(
1 +

1

t

)
M

1

tσ(t)
η̃(t, T1, Tn−1)

≤ 2M

(
1 +

2

h

)αn−1 1

tσ(t)
.

Consequently, for M > 2(n+1)αn−1+2/(T ∗)αn−1−1, we conclude that

∞ >2

(
1 +

2

h

)αn−1 M

T ∗

>2M

(
1 +

2

h

)αn−1

lim sup
t→∞

∫ t

T∗

1

sσ(s)
∆s

> lim sup
t→∞

∫ t

T∗

[
Ψ̃(s, T1, Tn−1)−

α
αn−1

n−1

(1 + αn−1)1+αn−1

([C(s, T1)]+)
1+αn−1

[γ(s, T1)]αn−1

]
∆s

>
M

2nαn−1+1
lim sup
t→∞

∫ t

T∗

1

sσ(s)
∆s

=
M

2nαn−1+1T ∗ >
2αn−1+1

(T ∗)αn−1
> δ(T ∗)

[
1

R
αn−1

1 (T ∗, T1)
+ pn−1(T

∗)ϕ(T ∗)

]
.

By Theorem 3.4, every solution y(t) of Eq. (4.1) is oscillatory when n ∈ 2N,
and every solution y(t) of Eq. (4.1) is either oscillatory or limt→∞ y(t) = 0 when
n ∈ 2N+ 1.

Example 4.2. Let T = qZ, M > 0, q > 1, αi(1 ≤ i ≤ n−1) be constants, αn−1 ≥ 2,
and M(q − 1)q(n−2)αn−1/2 > qαn−1/2 − 1. Consider the delay q-difference equation

Lny(t) + q(t)f(|y(θ(t))|βsgn(y(θ(t)))) = 0, t ∈ qZ, t ≥ q, (4.2)

where αi = 1(1 ≤ i ≤ n− 2), τ(t) ≤ t and θ(t) = qt. Here,

q(t) = t−1−αn−1
2 , pn−1(t) = t

αn−1
2 and pi(t) = t, i = 1, 2, · · · , n− 2.

The conditions (H2) and (3.2) hold, since

∫ ∞

t0

(
1

pn−1(s)

) 1
αn−1

∆s =

∫ ∞

t0

1

s
1
2

∆s = ∞,∫ ∞

t0

(
1

pi(s)

) 1
αi

∆s =

∫ ∞

t0

1

s
∆s = ∞, 1 ≤ i ≤ n− 2

from [4, Theorem 1.75] and

∫ ∞

t0

ρ2(t)∆t =

∫ ∞

t0

1

s

{∫ ∞

s

[
1

u
αn−1

2

∫ ∞

u

1

v1+
αn−1

2

∆v

] 1
αn−1

∆u

}
∆s

≥

[
q − 1

q
αn−1

2 − 1

] 1
αn−1

∫ t∗

t0

1

s
∆s

∫ ∞

t∗

1

u
∆u = ∞

for some constant t∗ ∈ [t0,∞)T.
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Note that

√
q
√
t < R1(t, T1) =

∫ t

T1

[
R0(s, T0)

pn−1(s)

] 1
αn−1

∆s

=

∫ t

T1

1

s
1
2

∆s = (
√
q + 1)(

√
t−

√
T1) < (

√
q + 1)

√
t,

for t > T2 := (
√
q + 1)2T1, then

q
√
t <

√
q

∫ t

T2

1

s
1
2

∆s < R2(t, T2) =

∫ t

T2

R1(s, T1)

s
∆s

< (
√
q + 1)

∫ t

T2

1

s
1
2

∆s < (
√
q + 1)2

√
t

for t > T3 := (
√
q + 1)4T1. By using the induction method, we can derive that

(
√
q)n−1

√
t < Rn−1(t, Tn−1) < (

√
q + 1)n−1

√
t,

for t > Tn := (
√
q + 1)2(n−1)T1 = (

√
q + 1)2nT1.

Pick up r(t) = 1− 1
q −

1
t . Thus, for M > (qαn−1/2−1)/(q−1)q(n−2)αn−1/2, we have

lim sup
t→∞

MR
∏n−1

i=1 αi

n−1 (t, Tn−1)

∫ ∞

t

q(s)[1− r(θ(s))]
∏n−1

i=1 αi∆s

≥Mq
(n−1)αn−1

2

2αn−1
lim sup
t→∞

t
αn−1

2

∫ ∞

t

1

s1+
αn−1

2

∆s

≥M(q − 1)q
(n−2)αn−1

2

q
αn−1

2 − 1

>1.

By Corollary 3.2, every solution y(t) of Eq. (4.2) is oscillatory when n ∈ 2N,
and every solution y(t) of Eq. (4.2) is either oscillatory or limt→∞ y(t) = 0 when
n ∈ 2N+ 1.
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