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BÄCKLUND TRANSFORMATION TO SOLVE
THE GENERALIZED (3+1)-DIMENSIONAL

KP-YTSF EQUATION AND KINKY
PERIODIC-WAVE, WRONSKIAN AND

GRAMMIAN SOLUTIONS

Xing Lü1,2,† and Xuejiao He1

Abstract The Kadomtsev-Petviashvili equation is considered to be a ba-
sic model describing nonlinear dispersive wave in fluids, which is an integrable
equation with two spatial dimensions. The Yu-Toda-Sasa- Fukuyama equation
plays a crucial role in fluid dynamics, plasma physics and weakly dispersive me-
dia. In this paper, we investigate a generalized (3+1)-dimensional Kadomtsev-
Petviashvili-Yu-Toda-Sasa-Fukuyama equation, and multiple types of solu-
tions are derived. With symbolic computation, a class of kinky periodic-wave
solutions, determinant solutions and the bilinear Bäcklund transformation are
constructed. We obtain two types of determinant solutions, that is, Wron-
skian and Grammian solutions. By choosing the appropriate matrix elements
of determinants, many kinds of solutions are derived. In addition to the soli-
ton solutions, the complexiton solutions and rational solutions are given. As
illustrative examples, a few particular solutions are computed and plotted.

Keywords Kinky periodic-wave solutions, Bäcklund transformation, Wron-
skian solutions, Grammian solutions.
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1. Introduction
The research of nonlinear science has attracted more and more attention [13, 16,
29,30,37]. Soliton theory is an important branch of nonlinear science. Solitons are
considered to be an essential part of observing and understanding complex nonlinear
systems [5,10,17,19]. Soliton phenomena appear in many fields, such as shock wave
at sea [5], biological system [17], plasma physics [10], light propagation in optical
fiber [1,19], laser propagation [34], hydrodynamics [41]. These nonlinear phenomena
are often described with nonlinear evolution equations (NLEEs) [1, 4, 5, 10, 17, 19,
34,41].

Many mathematicians and physicists have conducted a significant amount of
research on solving the NLEEs [1,4,5,10,17,19,34,41]. However, a large number of
equations of practical value can not be solved accurately, nor a unified solution be
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given. NLEEs no longer satisfy the linear superposition principle, which makes the
research of the exact solution more complex and difficult.

The emergence of soliton theory promotes the development of solving NLEEs,
which leads to new solutions constantly [11,12,18,23,35,39,42,43]. For example, Hi-
rota method [11,12], inverse scattering method [18,35], Bell polynomial method [39],
Darboux transformation [23,42], and Bäcklund transformation (BT) [24,36,43] solve
a series of significant equations in physics. In addition, Wronskian and Grammian
techniques [2,38,44] are the effective approaches to construct N -soliton solutions to
NLEEs in Hirota bilinear form. The basic idea is to select the appropriate elements
and set up the determinant form of the solution, and then substituted into the bilin-
ear equation to deduce the restrictive conditions [2, 6, 20, 38, 44]. Finally, the proof
can be given by using the properties of determinant [12], Plücker relation [2,38] and
Jacobi identity [6, 20, 44]. Through simplifying the soliton equation into a simple
Maya chart [14], the properties of the solution are shown directly.

Recently, the N -soliton solutions are systematically studied for nonlocal inte-
grable equations. A kind of Riemann-Hilbert problems are used to express the
matrix spectral problems, and the soliton solutions to some physical equations are
obtained [25–27]. The main idea is to apply Sokhotski-Plemelj formula to transform
the relevant Riemann-Hilbert problems into Gelfand-Levitan-Marchenko type inte-
gral equations, and then solve the equations explicitly. This new formula provides
a new way to construct soliton solutions to nonlocal real reverse-space time inte-
gra equations. Moreover, the relationship between Riemann-Hilbert problem and
nonlocal equation is deeply studied [28, 31, 32]. The nonlocal integrable modified
Korteweg-de Vries (mKdV) equations are reduced by two groups of reduction of the
AKNS matrix spectral problems. One is local reduction, and the other is nonlocal
reduction. According to the distribution of eigenvalues, the soliton solutions are
constructed from the non reflectionless Riemann-Hilbert problems.

The Kadomtsev-Petviashvili I (KPI) equation [21] is given by

(ut + 6uux + uxxx)x + uyy = 0. (1.1)

In Ref. [45], lump solutions to the KPI equation with a self-consistent source are
constructed. A class of lump solutions to the KPI equation is obtained [33]. In
addition, the parameters of the lump solutions [33] are specially selected to include
the previous lump solutions obtained from the long wave limits of the soliton so-
lution. The Wronskian and Grammian determinant solutions have been given to
a variable-coefficient forced KP equation with inhomogeneous nonlinearity, disper-
sion, perturbed term and external force [44]. The N -soliton solutions to KPI can
be expressed in Wronskian and Grammian determinant [12]. The bilinear form of
KPI equation can be reduced to determinant identity [12]. Nevertheless, not all bi-
linear equations have the Wronskian and Grammian solutions, for example, B-type
Kadomtsev-Petviashvili (BKP) equation only has the Pfaffian type solutions [12].
Through the Cole-Hopf transformation

u = 2(lnf)x, (1.2)

the Hirota bilinear form of Eq. (1.1) is written as

(DxDt +D4
x +D2

y)f · f
=2(fxtf − fxft + fxxxxf − 4fxxxfx + 3f2xx + fyyf − f2y ) = 0, (1.3)
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where the binary operator D is defined by [21]

Dα
xD

β
yD

γ
t (f · g)

=
( ∂

∂x
− ∂

∂x′

)α( ∂

∂y
− ∂

∂y′

)β( ∂
∂t

− ∂

∂t′

)γ

f(x, y, t)g(x′, y′, t′)
∣∣∣
x′=x,y′=y,t′=t

.

The (3+1)-dimensional Yu-Toda-Sasa-Fukuyama (YTSF) equation [15, 46] is
studied

[Φ(w)wz − 4wt]x + 3wyy = 0, Φ(w) = ∂2x + 4w + 2wx∂
−1
x , (1.4)

where w is a real funtion of the scaled space coordinates x, y, z and the scaled time
coordinate t, and ∂−1

x =
∫
dx. The (3+1)-dimensional potential YTSF equation

plays a crucial role in the interfacial waves in a two-layer liquid or the elastic quasi-
plane waves in a lattice [3]. Two types of interaction solutions to the potential
YTSF equation have been shown by using Hirota bilinear method [3]. In Ref. [40],
a new solution to the potential YTSF equation has been constructed by means of
the sub-equation method based on variable coefficient Korteweg-de Vries (KdV)
equation. The symmetry of the potential YTSF equation has been obtained by
using the direct reduction method, and the corresponding reduction equation has
been obtained in Ref. [47]. Further, the (3+1)-dimensional potential YTSF equation
with w = ux have been introduced [9]

− 4uxt + uxxxz + 4uxuxz + 2uxxuz + 3uyy = 0. (1.5)

Eq. (1.5) can be transformed into [8]

(−4DxDt +D3
xDz + 3D2

y)f · f
=−4(fxtf−fxft)+(fxxxzf−3fxxzfx+3f2xzfxx−fxxxfz)+3(fyyf−f2y )=0, (1.6)

with the transformation u = 2(lnf)x.
In this paper, we will investigate the following generalized (3+1)-dimensional

Kadomtsev-Petviashvili-Yu-Toda-Sasa-Fukuyama (KP-YTSF) equation

uxt + c1uxxxz + 3c1(uxuz)x + c2uxxxx + 6c2uxuxx + c3uyy = 0, (1.7)

with ci ̸= 0 (i = 1, 2, 3) are arbitrary real parameters. Under the dependent variable
transformation

u = 2(lnf)x, (1.8)

the bilinear representation of Eq. (1.7) can be obtained

(DxDt + c1D
3
xDz + c2D

4
x + c3D

2
y)f · f

=(fxt + c1fxxxz + c2fxxxx + c3fyy)f − fxft − 3c1fxxzfx

+ 3c1fxzfxx − c1fxxxfz − 4c2fxxxfx + 3c2f
2
xx − c3f

2
y = 0, (1.9)

which is a combination version of the bilinear KP Eq. (1.3) and the bilinear potential
YTSF Eq. (1.6).

In this paper, we will study various types of solutions to Eq. (1.7) with dif-
ferent techniques, such as rational solutions, soliton solutions, kinky periodic-wave
solutions and complexiton solutions. In Sec.2, we will investigate the interaction
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between soliton solutions and periodic solutions. In Sec.3, based on the bilinear
form of Eq. (1.7), the Wronskian determinant solutions will be given and the soli-
ton solutions and complexiton solutions will be derived. In Sec.4, we will investigate
the Grammian solutions in a similar measure. In Sec.5, the bilinear BT will be con-
structed and a class of rational solutions will be derived from a particular solution.
Finally, the conclusions will be summarized in Sec.6.

2. Kinky periodic-wave solutions
In this section, we study the interaction solutions between soliton and periodic
waves to the generalized (3+1)-dimensional KP-YTSF Eq. (1.7). We assume the
solution f to Eq. (1.9) enjoys the form

f = e−ξ1 + δ1 sin (ξ2) + δ2e
ξ1 , (2.1)

where ξi = aix + biy +miz + dit (i = 1, 2), and ai, bi,mi, di, δi are all real param-
eters to be determined. With symbolic computation, we substitute Eq. (2.1) into
Eq. (1.9), a set of algebraic equations about ai, bi,mi, di and δi are obtained as

δ1δ2(a
4
1c2 + a31c1m1 − 6a21a

2
2c2 − 3a21a2c1m2 − 3a1a

2
2c1m1

+ a42c2 + a32c1m2 + b21c3 − b22c3 + a1d1 − a2d2) = 0,

δ1(a
4
1c2 + a31c1m1 − 6a21a

2
2c2 − 3a21a2c1m2 − 3a1a

2
2c1m1 + a42c2

+ a32c1m2 + b21c3 − b22c3 + a1d1 − a2d2) = 0,

δ1δ2(4a
3
1a2c2 + a31c1m2 + 3a21a2c1m1 − 4a1a

3
2c2 − 3a1a

2
2c1m2

− a32c1m1 + 2b1b2c3 + a1d2 + a2d1) = 0,

− δ1(4a
3
1a2c2 + a31c1m2 + 3a21a2c1m1 − 4a1a

3
2c2 − 3a1a

2
2c1m2

− a32c1m1 + 2b1b2c3 + a1d2 + a2d1) = 0,

4a42c2δ
2
1 + 4a32c1δ

2
1m2 + 16a41c2δ2 + 16a31c1δ2m1 − b22c3δ

2
1

− a2d2δ
2
1 + 4b21c3δ2 + 4a1d1δ2 = 0.

(2.2)

By solving the algebraic equations, the relations among these parameters ai, bi, mi,
di and δi can be derived, which are given in Appendix A. Taking the Case 3 in
Appendix A as an example, we can obtain the solution f to Eq. (1.9)

f =e−(b1y+m1z+
a3
2c1m1−2b1b2c3

a2
t) + δ1 sin (a2x+ b2y +

−b21c3 − a42c2 + b22c3 + a2d2
a32c1

t)

+
4b21δ

2
1 − 3b22δ

2
1 − 3

c3
a2d2δ

2
1

4b21
eb1y+m1z+

a3
2c1m1−2b1b2c3

a2
t (2.3)

where a2 ̸= 0, b1 ̸= 0, δ1 ̸= 0, and a2, b1, b2, d2,m1 and δ1 are free constants. The
kinky periodic-wave solution to the Eq. (1.7) can be directly derived via transfor-
mation (1.8) as

u =
2(−a1e−ξ1 + δ1 cos (ξ2) + δ2a1e

ξ1)

e−ξ1 + δ1 sin (ξ2) + δ2eξ1
. (2.4)

If δ2 > 0, then

u =
2(2a1

√
δ2 sinh (ξ1 − θ) + a2δ1 cos (ξ2)

2
√
δ2 cosh (ξ1 − θ) + δ1 sin (ξ2)

=
2a2δ1 cos (ξ2)

2
√
δ2 cosh (ξ1 − θ) + δ1 sin (ξ2)

,
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with
θ =

1

2
ln (δ2).

If δ2 < 0, then

u =
2(2a1

√
−δ2 cosh (ξ1 − θ) + a2δ1 cos (ξ2)

2
√
−δ2 sinh (ξ1 − θ) + δ1 sin (ξ2)

=
2a2δ1 cos (ξ2)

2
√
−δ2 sinh (ξ1 − θ) + δ1 sin (ξ2)

,

with
θ =

1

2
ln (−δ2).

By selecting appropriate parameters, the three-dimensional plot and contour
plot of the kinky periodic-wave solution are plotted in Fig. 1.

Figure 1. The kinky periodic-wave solution via Eq. (2.4) with c1 = − 1
4 , c2 = 0, c3 = − 3

4 , a2 = b1 =
b2 = d2 = 1, δ1 = 2, t = 1 and z = 1.

We get a class of kinky periodic-wave solutions which are different from those in
Refs. [7, 22]. The form of the solution f to Eq. (1.9) is different. The relationship
between the parameters obtained in Ref. [7] is a special case of this paper.

3. N-soliton solutions, complexiton solutions and
rational solutions in the Wronskian form

3.1. Wronskian solutions
We firstly construct the Wronskian determinant solutions to Eq. (1.9), as follows

W (ϕ1, ϕ2, · · · , ϕN ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ
(0)
1 ϕ

(1)
1 · · · ϕ(N−1)

1

ϕ
(0)
2 ϕ

(1)
2 · · · ϕ(N−1)

2

...
... . . . ...

ϕ
(0)
N ϕ

(1)
N · · · ϕ(N−1)

N

∣∣∣∣∣∣∣∣∣∣∣∣∣
= |N̂ − 1|, (3.1)

where ϕ(m)
i (i = 1, 2, · · · , N, m = 0, 1, · · · , N − 1) are defined by

ϕ
(m)
i =

∂mϕi
∂xm

. (3.2)
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The function ϕ′is satisfy the linear partial differential conditions:

ϕi,y = γϕi,xx, ϕi,z =
c3γ

2 − 3c2
3c1

ϕi,x, ϕi,t = −4c3γ
2

3
ϕi,xxx, (3.3)

where γ ̸= 0 is an arbitrary parameter.

Theorem 3.1. If ϕ′is satisfy the linear differential conditions in Eqs. (3.3), then
the Wronskian determinant fN = |N̂ − 1| defined by Eq. (3.1) is the solution to the
bilinear Eq. (1.9), and u = 2(lnfN )x leads to the solution to Eq. (1.7).

Proof. According to the properties of the determinant, the derivative of fN with
respect to the independent variables x, y, z, and t can be easily calculated as

fN,x = |N̂ − 2, N |,

fN,xx = |N̂ − 2, N + 1|+ |N̂ − 3, N − 1, N |,

fN,xxx = |N̂ − 2, N + 2|+ 2|N̂ − 3, N − 1, N + 1|+ |N̂ − 4, N − 2, N − 1, N |,

fN,xxxx = |N̂ − 2, N + 3|+ 3|N̂ − 3, N − 1, N + 2|+ 2|N̂ − 3, N,N + 1|

+ 3|N̂ − 4, N − 2, N − 1, N + 1|+ |N̂ − 5, N − 3, N − 2, N − 1, N |,

fN,y = γ(|N̂ − 2, N + 1| − |N̂ − 3, N − 1, N |),

fN,yy = γ2(|N̂ − 2, N + 3| − |N̂ − 3, N − 1, N + 2|+ 2|N̂ − 3, N,N + 1|

− |N̂ − 4, N − 2, N − 1, N + 1|+ |N̂ − 5, N − 3, N − 2, N − 1, N |),

fN,z =
c3γ

2 − 3c2
3c1

|N̂ − 2, N |,

fN,xz =
c3γ

2 − 3c2
3c1

(|N̂ − 2, N + 1|+ |N̂ − 3, N − 1, N |),

fN,xxz=
c3γ

2−3c2
3c1

(|N̂ − 2, N+2|+2|N̂−3, N−1, N+1|+|N̂−4, N−2, N−1, N |),

fN,xxxz=
c3γ

2−3c2
3c1

(|N̂−2, N+3|+3|N̂−3, N−1, N+2|+2|N̂−3, N,N+1|

+ 3|N̂ − 4, N − 2, N − 1, N + 1|+ |N̂ − 5, N − 3, N − 2, N − 1, N |),

fN,t = −4c3γ
2

3
(|N̂−2, N+2|−|N̂−3, N−1, N+1|+|N̂−4, N−2, N−1, N |),

fN,xt=−4c3γ
2

3
(|N̂−2, N+3|−|N̂−3, N,N+1|+|N̂−5, N−3, N−2, N−1, N |).

Substituting the derivatives of fN into Eq. (1.9), we have

(fxt + c1fxxxz + c2fxxxx + c3fyy)f = 4c3γ
2|N̂ − 3, N,N + 1||N̂ − 1|,

− fxft − 3c1fxxzfx + 3c1fxzfxx − c1fzfxxx − 4c2fxxxfx + 3c2f
2
xx − c3f

2
y

=4c3γ
2(−|N̂ − 2, N ||N̂ − 3, N − 1, N + 1|+ |N̂ − 2, N + 1||N̂ − 3, N − 1, N |)

(3.4)

and further get

(DxDt + c1D
3
xDz + c2D

4
x + c3D

2
y)f · f
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=4c3γ
2(|N̂ − 1||N̂ − 3, N,N + 1| − |N̂ − 2, N ||N̂ − 3, N − 1, N + 1|

+ |N̂ − 2, N + 1||N̂ − 3, N − 1, N |) = 0, (3.5)

which is exactly the Plücker relation of determinant [12], and the identity can be
represented by Maya chart in Fig. 2.

Figure 2. Maya chart of Eq. (3.5): the Plücker relation.

3.2. N-soliton solutions, complexiton solutions and rational
solutions

Based on the linear partial differential system in Eqs. (3.3), we can obtain the
N -soliton solutions to Eq. (1.7) in the form

u = 2[lnW (ϕ1, ϕ2, · · · , ϕN )]x, (3.6)

where ϕi = eξi + eζi , ξi = lix+ γl2i y+
c3γ

2−3c2
3c1

liz− 4c3γ
2

3 l3i t+ ξ0i , ζi = kix+ γk2i y+
c3γ

2−3c2
3c1

kiz − 4c3γ
2

3 k3i t+ ζ0i , and li, ki, ξ
0
i , ζ

0
i (i = 1, 2, · · · , N) are free parameters.

Taking N = 1 in Eq. (3.6), we can derive the one-soliton solution. First of all,
we have

f1 =W (ϕ1) = ϕ1 = eξ1 + eζ1 ,

and further substituting it into Eq. (3.6) to have

u = 2(lnf1)x = 2
l1e

ξ1 + k1e
ζ1

eξ1 + eζ1
= (l1 + k1) + (l1 − k1) tanh

ξ1 − ζ1
2

. (3.7)

Taking N = 2 in Eq. (3.6), we can obtain the two-soliton solution. Taking
ϕ1 = eξ1 + eζ1 and ϕ2 = eξ2 + eζ2 , we have

f2 =W (ϕ1, ϕ2) =

∣∣∣∣∣∣ϕ1 ϕ1,xϕ2 ϕ2,x

∣∣∣∣∣∣=(eξ1+eζ1)(l2e
ξ2+k2e

ζ2)− (l1e
ξ1 + k1e

ζ1)(eξ2 + eζ2)

= (k2 − k1)e
ζ1+ζ2

(
1 +

k2 − l1
k2 − k1

eξ1−ζ1 +
l2 − k1
k2 − k1

eξ2−ζ2 +
l2 − l1
k2 − k1

eξ1+ξ2−ζ1−ζ2
)
,

which leads to the two-soliton solution to Eq. (1.7) via u = 2(lnf2)x.
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Taking N = 3 in Eq. (3.6), we can obtain the three-soliton solution. Let ϕ1 =
eξ1 + eζ1 , ϕ2 = eξ2 + eζ2 and ϕ3 = eξ3 + eζ3 , then

f3=W (ϕ1, ϕ2, ϕ3) =

∣∣∣∣∣∣∣∣∣
ϕ1 ϕ1,x ϕ1,xx

ϕ2 ϕ2,x ϕ2,xx

ϕ3 ϕ3,x ϕ3,xx

∣∣∣∣∣∣∣∣∣
=(k1 − k2)(k3 − k2)(k1 − k3)e

ζ1+ζ2+ζ3
[
1 +

(k2 − l1)(k3 − l1)

(k1 − k2)(k1 − k3)
eξ1−ζ1

+
(k1 − l2)(k3 − l2)

(k1 − k2)(k3 − k2)
eξ2−ζ2 +

(l3 − k2)(k1 − l3)

(k3 − k2)(k1 − k3)
eξ3−ζ3

+
(l1−l2)(k3 − l2)(l1−k3)
(k1−k2)(k3−k2)(k1−k3)

eξ1+ξ2−ζ1−ζ2+
(l1−k2)(l3−k2)(l1−l3)
(k1−k2)(k3−k2)(k1−k3)

eξ1+ξ3−ζ1−ζ3

+
(k1 − l2)(l3 − l2)(k1 − l3)

(k1 − k2)(k3 − k2)(k1 − k3)
eξ2+ξ3−ζ2−ζ3

+
(l1 − l2)(l3 − l2)(l1 − l3)

(k1 − k2)(k3 − k2)(k1 − k3)
eξ1+ξ2+ξ3−ζ1−ζ2−ζ3

]
,

which gives rise to the three-soliton solution to Eq. (1.7) via u = 2(lnf3)x.
Fig.3 show three-dimensional plots and contour plots of the one-, two-, three-

and four-soliton solutions by selecting the appropriate parameters.

(a) (b)

(c) (d)
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(e) (f)

(g) (h)

Figure 3. Soliton solutions to Eq. (1.7) with c1 = −1, c2 = 1, c3 = 2, z = 1, t = 1 and γ = 1 (a) one-
soliton solution via Eq. (3.7): l1 = 2, k1 = 3, ξ01 = ζ0

1 = 0; (b) two-soliton solution: l1 = 1, l2 = −1.2,
k1 = 1.5, k2 = −1.8, ξ01 = ξ02 = ζ0

1 = ζ0
2 = 0; (c) three-soliton solution: l1 = 1, l2 = −1.2, l3 = 0.2, k1 =

1.6, k2 = −1.8, k3 = 0.6, ξ01 = ξ02 = ξ03 = ζ0
1 = ζ0

2 = ζ0
3 = 0; (d) four-soliton solution: l1 = 1, l2 = 0.4,

l3 = 1.8, l4 = −1, k1 = 1.5, k2 = −0.2, k3 = 2, k4 = −1.5, ξ01 = ξ02 = ξ03 = ξ04 = ζ0
1 = ζ0

2 = ζ0
3 = ζ0

4 = 0,
and (e), (f), (g), (h) are the corresponding contour plots.

In addition to the soliton solutions, we will construct some new type of solutions.
In terms to the following expressions

li = α1i + β1iI, ki = α2i + β2iI, (3.8)

where α1i, α2i, β1i, β2i are arbitrary real constants and I =
√
−1 is an imaginary

unit, ξi and ζi can be rewritten as

ξi = ξ̂1i + ξ̂2iI, ζi = ζ̂1i + ζ̂2iI, (3.9)

where

ξ̂1i = α1ix+ γ(α2
1i − β2

1i)y +
c3γ

2 − 3c2
3c1

α1iz −
4c3γ

2

3
(α3

1i − 3α1iβ
2
1i)t,

ξ̂2i = β1ix+ 2γα1iβ1iy +
c3γ

2 − 3c2
3c1

β1iz −
4c3γ

2

3
(3α2

1iβ1i − β3
1i)t,

ζ̂1i = α2ix+ γ(α2
2i − β2

2i)y +
c3γ

2 − 3c2
3c1

α2iz −
4c3γ

2

3
(α3

2i − 3α2iβ
2
2i)t,

ζ̂2i = β2ix+ 2γα2iβ2iy +
c3γ

2 − 3c2
3c1

β2iz −
4c3γ

2

3
(3α2

2iβ2i − β3
2i)t.



Generalized (3+1)-D KP-YTSF equation 767

Therefore, ϕi is sorted out as follows

ϕi = e
ˆξ1i(cos ξ̂2i + I sin ξ̂2i) + e

ˆζ1i(cos ζ̂2i + I sin ζ̂2i), (3.10)

which satisfies the linear partial differential conditions. If we take α1i = α2i, β1i =
−β2i, then ζi = ξ∗i and ξ∗i represents the conjugate complex number of ξi. So
Eq. (3.10) can be reduced to

ϕi = 2e
ˆξ1i cos ξ̂2i, (3.11)

which results in the complexiton solution to Eq. (1.7) via u = 2[lnW (ϕ1, ϕ2, · · · , ϕN )]x.
When N = 1 in Eq. (3.6), the complexiton solution to Eq. (1.7) is given by

u = 2(lnf1)x = 2α11 − 2β11 tan ˆξ21, (3.12)

f1 =W (ϕ1) = 2e
ˆξ11 cos ˆξ21.

In addition, whenN = 2 in Eq. (3.6), we take ϕ1 = 2e
ˆξ11 cos ˆξ21, ϕ2 = 2e

ˆξ12 cos ˆξ22,
then we get the solution to Eq. (1.9)

f2 =W (ϕ1, ϕ2) =

∣∣∣∣∣∣ϕ1 ϕ1,xϕ2 ϕ2,x

∣∣∣∣∣∣
= 2e

ˆξ11 cos ˆξ21 · [2e
ˆξ11(α11 cos ˆξ21 − β11 sin ˆξ21)]

− 2e
ˆξ12 cos ˆξ22 · [2e

ˆξ12(α12 cos ˆξ22 − β12 sin ˆξ22)]

= −4[(α11 − α12) cos ˆξ21 cos ˆξ22 + β12 cos ˆξ21 sin ˆξ22 − β11 cos ˆξ22 sin ˆξ21]e
ˆξ11+ ˆξ12 ,

which generates the complexiton solution to Eq. (1.7) via u = 2(lnf2)x.
Fig. 4 show the three-dimensional plot of the complexiton solution to Eq. (1.7)

by taking some special values of parameters.
Moreover, a kind of rational solutions to Eq. (1.7) can be given based on the

Wronskian form. We introduce a new type solution to the linear partial differential
system (3.3) as follows

ϕj =

j∑
s=1

[ s3 ]∑
l=0

[ s−3l
2 ]∑

n=0

γn
(
− 4c3γ

2

3

)l(
x+

(
c3γ

2−3c2
3c1

)
z
)s−3l−2n

yntl

n!l! (s− 3l − 2n)!
ms

(j = 1, 2, · · · , N), (3.13)

where [ s3 ] represents the largest integer that does not exceed the real number s
3 and

ms is an arbitrary constant. In particular, if ms = 0 (s = 1, 2, · · · , j − 1),mj = 1,
Eq. (3.13) is reduced as

ϕj =

[ j3 ]∑
l=0

[ j−3l
2 ]∑

n=0

γn
(
− 4c3γ

2

3

)l(
x+

(
c3γ

2−3c2
3c1

)
z
)j−3l−2n

yntl

n!l! (j − 3l − 2n)!
. (3.14)

According to the above formula, we can calculate ϕ′js as follows

ϕ1 = x+
c3γ

2 − 3c2
3c1

z,
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(a) (b)

(c) (d)

Figure 4. The complexiton solution to Eq. (1.7) with c1 = 1, c2 = 2, c3 = 3, t = 1, z = 1 and γ = 1
(a)N = 1 via Eq. (3.12): α11 = 2, β11 = 1;(b)N = 2: α11 = 2, α12 = 1, β11 = 1, β12 = 2, and (c), (d)
are the corresponding contour plots.

ϕ2 =

(
x+ c3γ

2−3c2
3c1

z
)2

2!
+ γy, (3.15)

ϕ3 =

(
x+ c3γ

2−3c2
3c1

z
)3

3!
+ γ

(
x+

c3γ
2 − 3c2
3c1

z

)
y − 4c3γ

2

3
t,

ϕ4 =

(
x+ c3γ

2−3c2
3c1

z
)4

4!
+
γ
(
x+ c3γ

2−3c2
3c1

z
)2

y

2!
+
γ2y2

2!
− 4c3γ

2

3

(
x+

c3γ
2−3c2
3c1

z

)
t,

...

Based on the polynomial solutions to Eq. (1.9), we can construct the rational solu-
tions to Eq. (1.7).

For N = 1 in Eq. (3.6), the polynomial solutions to Eq. (1.9) are presented

f1 =W (ϕ1) = ϕ1 = x+
c3γ

2 − 3c2
3c1

z.

Therefore, the rational solutions to Eq. (1.7) can be derived as

u = 2(lnf1)x =
2

x+ c3γ2−3c2
3c1

z
.
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For N = 2 in Eq. (3.6), the polynomial solutions to Eq. (1.9) are given

f2 =W (ϕ1, ϕ2) =

∣∣∣∣∣∣∣
x+ c3γ

2−3c2
3c1

z 1(
x+

c3γ2−3c2
3c1

z

)2

2! + γy x+ c3γ
2−3c2
3c1

z

∣∣∣∣∣∣∣
=

(
x+ c3γ

2−3c2
3c1

z
)2

2
− γy,

which leads to the rational solutions to Eq. (1.7) as

u = 2(lnf2)x = 4
x+ c3γ

2−3c2
3c1

z(
x+ c3γ2−3c2

3c1
z
)2

− 2γy
. (3.16)

For N = 3 in Eq. (3.6), the polynomial solutions to Eq. (1.9) are shown

f3 =W (ϕ1, ϕ2, ϕ3)

=

∣∣∣∣∣∣∣∣∣∣∣∣

x+ c3γ
2−3c2
3c1

z 1 0(
x+

c3γ2−3c2
3c1

z

)2

2! + γy x+ c3γ
2−3c2
3c1

z 1(
x+

c3γ2−3c2
3c1

z

)3

3! + γ
(
x+ c3γ

2−3c2
3c1

z
)
y − 4c3γ

2

3 t

(
x+

c3γ2−3c2
3c1

z

)2

2! + γy x+ c3γ
2−3c2
3c1

z

∣∣∣∣∣∣∣∣∣∣∣∣
=

(
x+ c3γ

2−3c2
3c1

z
)3

3!
− γ

(
x+

c3γ
2 − 3c2
3c1

z

)
y − 4c3γ

2

3
t,

which gives rise to the rational solutions to Eq. (1.7) as

u = 2(lnf3)x = 6

(
x+ c3γ

2−3c2
3c1

z
)2

− 2γy(
x+ c3γ2−3c2

3c1
z
)3

− 6γ
(
x+ c3γ2−3c2

3c1
z
)
y − 8c3γ2t

. (3.17)

From the above process, we can see that if we choose different special forms for
the unknown element ϕi in the determinant, which satisfies the linear differential
conditions in Eqs. (3.3), different types of exact solutions to Eq. (1.7) can be derived.

4. N-soliton solutions and complexiton solutions in
the Grammian form

4.1. Grammian solutions
In this part, we consider another form solutions to Eq. (1.9) by using Grammian
determinant to express f as follows

fN = det(aij)1≤i,j≤N , aij = cij +

∫ x

ϕiψj dx, (4.1)
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where cij is constant, and ϕ′is and ψ′
js are the functions of the scaled space coordi-

nates x, y, z and the time coordinate t satisfying the following conditions:

ϕi,y = γϕi,xx, ϕi,z =
c3γ

2 − 3c2
3c1

ϕi,x, ϕi,t = −4c3γ
2

3
ϕi,xxx,

ψi,y = −γψi,xx, ψi,z =
c3γ

2 − 3c2
3c1

ψi,x, ψi,t = −4c3γ
2

3
ψi,xxx. (4.2)

In fact, the coefficients in this partial differential system are the same as those in
the above conditions (3.3).

In order to prove that fN satisfies Eq. (1.9) more simply, Pfaffian of theN -soliton
is introduced

(1, 2, · · · , 2N), (4.3)
and its expansion with the first character ”1” as the datum element is

(1, 2, · · · , 2N) =(1, 2)(3, 4, · · · , 2N)− (1, 3)(2, 4, · · · , 2N)

+ (1, 4)(2, 3, · · · , 2N)− · · ·+ (1, 2N)(2, 3, · · · , 2N − 1)

=

2n∑
j=2

(−1)j(1, j)(2, 3, · · · , ĵ, · · · , 2N),

where ĵ means to remove the character j and the 1-order Pfaffian (i, j) is called
an element of Pfaffian, satisfying (i, j) = −(j, i). By making use of Pfaffian, the
N -order Grammian determinant fN can be rewritten as

fN = (1, 2, · · · , N,N∗, · · · , 2∗, 1∗) = (•), (4.4)

where (i, j∗) = aij and (i, j) = (i∗, j∗) = 0. To express the derivatives of the entries
(i, j∗) with Pfaffian, we define

(dn, i
∗) =

∂n

∂xn
ϕi, (d∗n, j) =

∂n

∂xn
ψj , (dm, d

∗
n) = (d∗m, j

∗) = (dn, i) = 0, (4.5)

where m,n = 0, 1, 2, 3, 4.

Theorem 4.1. If ϕ′is and ψ′
js satisfy the linear differential conditions in Eqs. (4.2),

then the Grammian determinant fN = det(aij)1≤i,j≤N defined by Eq. (4.4) solves
the bilinear Eq. (1.9), and u = 2(lnfN )x leads to the solution to Eq. (1.7).

Proof. According to the definition of Pfaffian entries (i, j∗) = aij and the lin-
ear partial differential conditions in Eqs. (4.2), the derivatives of aij can be easily
computed

∂

∂x
aij = ϕiψj = (d0, d

∗
0, i, j

∗),

∂

∂y
aij =

∫ x

ϕi,yψj + ϕiψj,y dx

= γ(ϕi,xψj − ϕiψj,x) = γ[(d0, d
∗
1, i, j

∗)− (d1, d
∗
0, i, j

∗)],

∂

∂z
aij =

∫ x

ϕi,zψj + ϕiψj,z dx

=
c3γ

2 − 3c2
3c1

ϕiψj =
c3γ

2 − 3c2
3c1

(d0, d
∗
0, i, j

∗),
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∂

∂t
aij =

∫ x

ϕi,tψj + ϕiψj,t dx = −4c3γ
2

3
(ϕi,xxψj − ϕi,xψj,x + ϕiψj,xx)

= −4c3γ
2

3
[(d0, d

∗
2, i, j

∗)− (d1, d
∗
1, i, j

∗) + (d2, d
∗
0, i, j

∗)].

Through using the properties of the Pfaffian, the derivatives of the fN with respect
to independent variables x, y, z and t can be not difficult to calculated as

fN,x = (d0, d
∗
0, •),

fN,xx = (d1, d
∗
0, •) + (d0, d

∗
1, •),

fN,xxx = (d2, d
∗
0, •) + 2(d1, d

∗
1, •) + (d0, d

∗
2, •),

fN,xxxx = (d3, d
∗
0, •) + 3(d2, d

∗
1, •) + 3(d1, d

∗
2, •) + (d0, d

∗
3, •) + 2(d0, d

∗
0, d1, d

∗
1, •),

fN,y = γ[(d0, d
∗
1, •)− (d1, d

∗
0, •)],

fN,yy = γ2[−(d2, d
∗
1, •) + (d0, d

∗
3, •) + (d3, d

∗
0, •)− (d1, d

∗
2, •)] + 2(d0, d

∗
0, d1, d

∗
1, •),

fN,z =
c3γ

2 − 3c2
3c1

(d0, d
∗
0, •),

fN,xz =
c3γ

2 − 3c2
3c1

[(d1, d
∗
0, •) + (d0, d

∗
1, •)],

fN,xxz =
c3γ

2 − 3c2
3c1

[(d2, d
∗
0, •) + 2(d1, d

∗
1, •) + (d0, d

∗
2, •)],

fN,xxxz=
c3γ

2−3c2
3c1

[(d3, d
∗
0, •)+3(d2, d

∗
1, •)+3(d1, d

∗
2, •)+(d0, d

∗
3, •)

+ 2(d0, d
∗
0, d1, d

∗
1, •)],

fN,t = −4c3γ
2

3
[(d0, d

∗
2, •)− (d1, d

∗
1, •) + (d2, d

∗
0, •)],

fN,xt = −4c3γ
2

3
[(d0, d

∗
3, •) + (d3, d

∗
0, •)− (d0, d

∗
0, d1, d

∗
1, •)]. (4.6)

Substituting the above results into Eq. (1.9), we have

(fxt + c1fxxxz + c2fxxxx + c3fyy)f = 4c3γ
2(d0, d

∗
0, d1, d

∗
1, •)(•),

− fxft − 3c1fxxzfx + 3c1fxzfxx − c1fzfxxx − 4c2fxxxfx + 3c2f
2
xx − c3f

2
y

=4c3γ
2[−(d0, d

∗
0, •)(d1, d∗1, •) + (d0, d

∗
1, •)(d1, d∗0, •)]

and further derive

(DxDt + c1D
3
xDz + c2D

4
x + c3D

2
y)f · f

=4c3γ
2[(d0, d

∗
0, d1, d

∗
1, •)(•)− (d0, d

∗
0, •)(d1, d∗1, •) + (d0, d

∗
1, •)(d1, d∗0, •)] = 0, (4.7)

which is exactly the Jacobi identity of determinant [12], and the identity can be
represented by Maya chart in Fig. 5.

The Jacobi identity is a special case of Pfaffian identity [12]. Because the number
of indexes with ∗ and without ∗ in the two Pfaffian (d0, d1, •), (d∗0, d∗1, •) is not equal,
the two Pfaffian are all zero.

4.2. N-soliton solutions and complexiton solutions
If we select the appropriate elements in the determinant and satisfy the linear
partial differential conditions, we can get different forms of solutions to Eq. (1.9).
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Figure 5. Maya chart of Eq. (4.7): the Jacobi identity.

In particular, the linear partial differential system in Eqs. (4.2) have the following
form of solution

ϕi = eξi , ψi = eζi ,

ξi = lix+ γl2i y +
c3γ

2 − 3c2
3c1

liz −
4c3γ

2

3
l3i t+ ξ0i ,

ζi = kix− γk2i y +
c3γ

2 − 3c2
3c1

kiz −
4c3γ

2

3
k3i t+ ζ0i , (4.8)

where li, ki, ξ0i and ζ0i (i = 1, 2, · · · , N) are arbitrary parameters.
When N = 1 in Eq. (4.4), the one-soliton solution to Eq. (1.7) can be given.

Taking c11 = 1, ϕ1 = eξ1 and ψ1 = eζ1 , we have

f1 = (1, 1∗) = 1 +
1

l1 + k1
eξ1+ζ1 , (4.9)

which leads to the one-soliton solution to Eq. (1.7) as

u=2(lnf1)x=
2eξ1+ζ1

1+ 1
l1+k1

eξ1+ζ1
=(l1+k1)+(l1+k1) tanh[

1

2
(ξ1+ζ1+ln

1

l1+k1
)]. (4.10)

When N = 2 in Eq. (4.4), the two-soliton solution to Eq. (1.7) can be given.
Taking c11 = c22 = 1, c12 = c21 = 0, ϕj = eξj , ψj = eζj (j = 1, 2), we have

f2 = (1, 2, 2∗, 1∗) =

∣∣∣∣∣∣ 1 +
1

l1+k1
eξ1+ζ1 1

l1+k2
eξ1+ζ2

1
l2+k1

eξ2+ζ1 1 + 1
l2+k2

eξ2+ζ2

∣∣∣∣∣∣
= 1 +

1

l1 + k1
eξ1+ζ1 +

1

l2 + k2
eξ2+ζ2

+
(l1 − l2)(k1 − k2)

(l1 + k1)(l2 + k2)(l1 + k2)(l1 + k2)
eξ1+ζ1+ξ2+ζ2 ,

(4.11)

which results in the two-soliton solution to Eq. (1.7) via u = 2(lnf2)x.
When N = 3 in Eq. (4.4), the three-soliton solution to Eq. (1.7) can be given.

Taking c11 = c22 = c33 = 1, the rest of cij = 0(i, j = 1, 2, 3), and ϕj = eξj , ψj =
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eζj (j = 1, 2, 3), we have

f3 = (1, 2, 3, 3∗, 2∗, 1∗) =

∣∣∣∣∣∣∣∣∣
1 + 1

l1+k1
eξ1+ζ1 1

l1+k2
eξ1+ζ2 1

l1+k3
eξ1+ζ3

1
l2+k1

eξ2+ζ1 1 + 1
l2+k2

eξ2+ζ2 1
l2+k3

eξ2+ζ3

1
l3+k1

eξ3+ζ1 + 1
l3+k2

eξ3+ζ2 1 + 1
l3+k3

eξ3+ζ3

∣∣∣∣∣∣∣∣∣
= 1+eη1+eη2+eη3+b12e

η1+η2 + b13e
η1+η3 + b23e

η2+η3 + b12b13b23e
η1+η2+η3 ,

where

η1 = ξ1 + ζ1 + δ1, η2 = ξ2 + ζ2 + δ2, η3 = ξ3 + ζ3 + δ3, eδi =
1

li + ki
,

and

b12 =
(l1 − l2)(k1 − k2)

(l1 + k2)(l2 + k1)
, b13 =

(l1 − l3)(k1 − k3)

(l1 + k3)(l3 + k1)
, b23 =

(l2 − l3)(k2 − k3)

(l2 + k3)(l3 + k2)
,

which gives rise to the three-soliton solution to Eq. (1.7) via u = 2(lnf3)x.
Similarly, we can derive the four-soliton solution to Eq. (1.7). In order to il-

lustrate the soliton solutions more vividly, the one-, two-, three- and four-soliton
solutions and the contours are plotted in Fig. 6 by choosing the appropriate pa-
rameters. As an example, if c1 = − 1

4 , c2 = 0, c3 = − 3
4 , Eq. (1.9) is reduced to the

(3+1)-dimensional YTSF (1.6).

5. Bilinear BT and rational solutions
5.1. Bilinear BT
BT is an effective tool to solve the exact solution to the NLEEs [24, 36, 43]. It
establishes the relationship between the solution to one NLEE and another known
NLEE or the relationship between two different solutions to the same NLEE, and
then derives the new solution from the known solution. Here we construct the
bilinear BT between one solution f and another solution f ′ to the bilinear KP-
YTSF Eq. (1.9). Fist of all, we consider

P :=[(DxDt + c1D
3
xDz + c2D

4
x + c3D

2
y)f

′ · f ′]f2

− f ′2[(DxDt + c1D
3
xDz + c2D

4
x + c3D

2
y)f · f ]. (5.1)

It can be observed from the above equation that if P = 0, then f satisfies Eq. (1.9)
if and only if f ′ satisfies Eq. (1.9). By means of the bilinear operation identities, a
series of bilinear equation of the interaction between the variables f and f ′ can be
derived from P = 0.

Based on the exchange formula, the following bilinear operation identities are
obtain

(D2
yf

′ · f ′)f2 − (D2
yf · f)f ′2 = 2Dy(Dyf

′ · f) · ff ′,
(DxDtf

′ · f ′)f2 − (DxDtf · f)f ′2 = 2Dx(Dtf
′ · f) · ff ′,

Dy(D
2
xf

′ · f) · ff ′ = Dx[(DxDyf
′ · f) · ff ′ + (Dyf

′ · f) · (Dxf
′ · f)],
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(a) one-soliton solution via Eq. (4.10): l1 = 2,
k1 = 1, ξ01 = ζ0

1 = 0
(b) two-soliton solution: l1 =2, l2 =3, k1 =1,
k2=2, ξ01 =ξ02 =ζ0

1 =ζ0
2 =0

(c) three-soliton solution: l1 =2, l2 =3, l3 =4,
k1 =1, k2 =2, k3 =3, ξ01 = ξ02 = ξ03 = ζ0

1 = ζ0
2 =

ζ0
3 = 0

(d) four-soliton solution: l1 = 1, l2 = 2, l3 =
0.5, l4 = 1.6, k1 = 2, k2 = 3, k3 = 1.5, k4 =
2.6, ξ01 = ξ02 = ξ03 = ξ04 = ζ0

1 = ζ0
2 = ζ0

3 = ζ0
4 =

0

(e) the corresponding contour plots (f) the corresponding contour plots

(g) the corresponding contour plots (h) the corresponding contour plots

Figure 6. Soliton solutions to Eq. (1.7) with z = 1, t = 1 and γ = 1.
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(D4
xf

′ · f ′)f2 − (D4
xf · f)f ′2 = 2Dx(D

3
xf

′ · f) · ff ′ − 6Dx(D
2
xf

′ · f) · (Dxf
′ · f),

2(D3
xDzf

′ · f ′)f2 − 2(D3
xDyf · f)f ′2

=3Dx(D
2
xDzf

′ · f) · ff ′ − 6Dx(DxDzf
′ · f) · (Dxf

′ · f)
− 3Dx(D

2
xf

′ · f) · (Dzf
′ · f) +Dz(D

3
xf

′ · f) · ff ′ − 3Dz(D
2
xf

′ · f) · (Dxf
′ · f).

(5.2)

The above five identities are substituted into Eq. (5.1), which can also be rewritten
as

2P=4Dx(Dtf
′ ·f)·ff ′+3c1Dx(D

2
xDzf

′ ·f)·ff ′−6c1Dx(DxDzf
′ · f)·(Dxf

′ · f)
−3c1Dx(D

2
xf

′ ·f)·(Dzf
′ ·f)+c1Dz(D

3
xf

′ ·f)·ff ′−3c1Dz(D
2
xf

′ · f)·(Dxf
′ · f)

+4c2Dx(D
3
xf

′ ·f)·ff ′−12c2Dx(D
2
xf

′ ·f)·(Dxf
′ · f)+4c3Dy(Dyf

′ ·f)·ff ′

+4c3Dx[(DxDyf
′ ·f)·ff ′+(Dyf

′ ·f)·(Dxf
′ · f)]− 4c3Dy(D

2
xf

′ ·f)·ff ′

=Dx[(4Dt+3c1D
2
xDz+4c2D

3
x+4c3DxDy+4c3λ1Dy+c1λ2Dz+λ3)f

′ · f ] · ff ′

− 2Dx[(3c1DxDz + 6c2D
2
x − 2c3Dy + λ4Dx)f

′ · f ] · (Dxf
′ · f)

+ 4c3Dy[(Dy −D2
x − λ1Dx + c1λ5Dz + λ6)f

′ · f ] · ff ′

− 3c1Dx[(D
2
x + λ7 + λ8Dz)f

′ · f ] · (Dzf
′ · f)

− 3c1Dz[(D
2
x − λ7 + λ9Dx)f

′ · f ] · (Dxf
′ · f)

+ c1Dz[(D
3
x − λ2Dx − 4c3λ5Dy + λ10)f

′ · f ] · ff ′, (5.3)

where λi(i = 1, 2, · · · , 10) are all arbitrary parameters. At present, the bilinear BT
for Eq. (1.9) is constructed as follows

B1f
′ · f =(4Dt+3c1D

2
xDz+4c2D

3
x+4c3DxDy+4c3λ1Dy+c1λ2Dz+λ3)f

′ ·f=0,

B2f
′ · f = (3c1DxDz + 6c2D

2
x − 2c3Dy + λ4Dx)f

′ · f = 0,

B3f
′ · f = (Dy −D2

x − λ1Dx + c1λ5Dz + λ6)f
′ · f = 0,

B4f
′ · f = (D2

x + λ7 + λ8Dz)f
′ · f = 0,

B5f
′ · f = (D2

x − λ7 + λ9Dx)f
′ · f = 0,

B6f
′ · f = (D3

x − λ2Dx − 4c3λ5Dy + λ10)f
′ · f = 0,

(5.4)
which is composed of six bilinear equations about f and f ′ and includes ten arbitrary
parameters. In the above calculation, the parameters λi(i = 3, 4, 6, 8, 9, 10) are
equal to 0 via Dγf · f = 0 and the parameters λj(j = 1, 2, 5, 7) are equal to 0 via
Dx(Dyf

′ · f) · ff ′ = Dy(Dxf
′ · f) · ff ′.

5.2. Rational solutions
If a simple function f = 1 is taken into the bilinear BT of Eq. (1.9), then Eq. (5.4)
can be reduced to a linear partial differential system

4f ′t + 3c1f
′
xxz + 4c2f

′
xxx + 4c3f

′
xy + 4c3λ1f

′
y + c1λ2f

′
z + λ3f

′ = 0,

3c1f
′
xz + 6c2f

′
xx − 2c3f

′
y + λ4f

′
x = 0,

f ′y − f ′xx − λ1f
′
x + c1λ5f

′
z + λ6f

′ = 0,

f ′xx + λ7f
′ + λ8f

′
z = 0, f ′xx − λ7f

′ + λ9f
′
x = 0,

f ′xxx − λ2f
′
x − 4c3λ5f

′
y + λ10f

′ = 0,

(5.5)
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which makes it easier to get a new solution f ′.
Next, we take into account of a class of rational solutions to Eq. (1.9), so let f

be a first-order polynomial function

f ′ = a1x+ a2y + a3z − a4t, (5.6)

where a1, a2, a3, a4 are all arbitrary constants. By substituting f ′ into Eq. (5.5) and
taking λ3 = λ6 = λ7 = λ10 = 0 in Eq. (5.5), we get

a2 = −a3c1λ5 + a1λ1, a4 =
(−a3c1λ5 + a1λ1)

2c3
a1

, (5.7)

λ2 = −4(−a3c1λ5 + a1λ1)c3λ5
a1

, λ4 =
2(−a3c1λ5 + a1λ1)c3

a1
, (5.8)

and
λ8 = 0, λ9 = 0. (5.9)

Hence, the first-order polynomial solution to Eq. (1.9) is derived

f ′ = a1x+ (−a3c1λ5 + a1λ1)y + a3z −
(−a3c1λ5 + a1λ1)

2c3
a1

t. (5.10)

Based on the dependent variable transformation (1.8), the following rational solu-
tion to Eq. (1.7) is given

u = 2(lnf ′)x =
2a1
f ′
, (5.11)

where a1, a3, λ1, λ5 are arbitrary constants. By selecting a1 = 1.8, a3 = 4, λ1 = 2
and λ5 = 1.5, this rational solution and the contour are plotted in Fig. 7.

Figure 7. Plot of the rational solution and the contour via Eq. (5.11) with c1 = 1, c2 = −2, z = 1 and
t = 3.

6. Conclusions
In this paper, we have used four methods to investigate exact solutions to Eq. (1.7),
and obtained different types of solutions, such as rational solutions, soliton solutions,
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kinky periodic-wave solutions and complexiton solutions. Fist of all, we have inves-
tigated the interaction between soliton and periodic solution, and a class of kinky
periodic-wave solutions has been obtained. Based on the bilinear form of Eq. (1.7),
the Wronskian determinant solutions have been given. With symbolic computa-
tion, the soliton solutions, complexiton solutions and rational solutions have been
derived. We have also investigated the Grammian solutions to Eq. (1.9) in a similar
measure. By selecting appropriate parameters, we have plotted three-dimensional
plot of a few particular solutions and corresponding contour maps with Maple. The
results show that determinant technique is an important means to solve NLEEs.
Furthermore, the bilinear BT of Eq. (1.9) has been constructed, which consists of
six bilinear equations and ten free parameters. Based on the bilinear BT, a class
of rational solutions have been derived from a particular solution. It is proved that
we can get new solutions from some known solutions to Eq. (1.9) according to BT.
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Appendix A
Using Maple, we get three groups of solutions about the relations among parameters
ai, bi,mi, di and δi .
Case 1

d1 =
1

2a1(a22δ
2
1+6a21δ2+2a22δ2)(a

2
1+a

2
2)
(a61a

2
2c2δ

2
1+7a41a

4
2c2δ

2
1+3a21a

6
2c2δ

2
1−3a82c2δ

2
1

+32a61a
2
2c2δ2+32a41a

4
2c2δ2−a41b22c3δ21+2a31a2b1b2c3δ

2
1−3a21a

2
2b

2
1c3δ

2
1

+ 3a21a
2
2b

2
2c3δ

2
1 − 6a1a

3
2b1b2c3δ

2
1 + a42b

2
1c3δ

2
1 − 12a41b

2
1c3δ2 + 16a41b

2
2c3δ2

− 32a31a2b1b2c3δ2 − 4a41b
2
1c3δ2),

d2 =
1

a22δ
2
1+6a21δ2+2a22δ2

(−4a52c2δ
2
1+6a41a2c2δ2−12a21a

3
2c2δ2−2a52c2δ2 + a2b

2
2c3δ

2
1

+ 12a1b1b2c3δ2 − 6a2b
2
1c3δ2 + 2a2b

2
2c3δ2),

m1 =
−1

2a1c1(a22δ
2
1 + 6a21δ2 + 2a22δ2)(a

2
1 + a22)

(3a41a
2
2c2δ

2
1 + 6a21a

4
2c2δ

2
1 + 3a62c2δ

2
1

+ 12a61c2δ2 + 24a41a
2
2c2δ2 + 12a21a

4
2c2δ2 − a21b

2
2c3δ

2
1 + 2a1a2b1b2c3δ

2
1

− a22b
2
1c3δ

2
1 + 4a21b

2
2c3δ2 − 8a1a2b1b2c3δ2 + 4a22b

2
1c3δ2),

m2 = 0,



778 X. Lü & X J. He

with
a1 ̸= 0, a2 ̸= 0, a22δ

2
1 + 6a21δ2 + 2a22δ2 ̸= 0,

where a1, a2, b1, b2, δ1 and δ2 are free constants.
Case 2

d1 =
1

2a1a22(a
2
1 + a22)

2
(a81a

2
2c2 + a81a2c1m2 + 4a61a

4
2c2 + 4a61a

3
2c1m2 + 6a41a

6
2c2

+ 6a41a
5
2c1m2+4a21a

8
2c2+4a21a

7
2c1m2+a

10
2 c2+a

9
2c1m2 − a61b

2
2c1 + 2a51a2b1b2c3

− 3a41a
2
2b

2
1c3 + 6a41a

2
2b

2
2c3 − 12a31a

3
2b1b2c3 + 2a21a

4
2b

2
1c3 − a21a

4
2b

2
2c3

+ 2a1a
5
2b1b2c3 − 3a62b

2
1c3),

d2 =
−c3(a41b22 − 2a21a

2
2b

2
2 + 8a1a

3
2b1b2 − 4a42b

2
1 + a42b

2
2)

a2(a21 + a22)
2

,

m1 =
−1

2a1a22c1(a
2
1 + a22)

2
(3a61a

2
2c2 + a61a2c1m2 + 5a41a

4
2c2 + 4a41a

3
2c1m2 + a21a

6
2c2

− a21a
5
2c1m2 − a82c2 − a72c1m2 − a41b

2
2c3 + 2a31a2b1b2c3 − a21a

2
2b

2
1c3

+ 3a21a
2
2b

2
2c3 − 6a1a

3
2b1b2c3 + 3a42b

2
1c3),

δ2 =
2a42δ

2
1

3a41 − 6a21a
2
2 − a42

,

with
a1 ̸= 0, a2 ̸= 0, 3a41 − 6a21a

2
2 − a42 ̸= 0,

where a1, a2, b1, b2,m2 and δ1 are free constants.
Case 3

a1 = 0, d1 =
a32c1m1 − 2b1b2c3

a2
,

m2 =
−b21c3 − a42c2 + b22c3 + a2d2

a32c1
, δ2 =

4b21δ
2
1 − 3b22δ

2
1 − 3

c3
a2d2δ

2
1

4b21
,

with
a2 ̸= 0, b1 ̸= 0, δ1 ̸= 0,

where a2, b1, b2, d2,m1 and δ1 are free constants.
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