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DYNAMICS OF A DENGUE FEVER MODEL
WITH UNREPORTED CASES AND

ASYMPTOMATIC INFECTED CLASSES IN
SINGAPORE, 2020∗

Xin-You Meng1,† and Chong-Yang Yin1

Abstract This study is devoted to consider a novel model of dengue fever
with unreported cases and asymptomatic infected classes, where infected hu-
mans is admitted to general and intensive hospitals for treatment. First, the
basic reproduction number is calculated by using the next generation matrix
method. The disease-free equilibrium is locally asymptotically stable when the
basic reproduction number is less than one, but forward bifurcation occurs at
the disease-free equilibrium when the basic reproduction number equals one.
Then, the endemic equilibrium is consistent persistence when the basic repro-
duction number is more than one. Next, the existence of the optimal control
pair is analyzed, and the mathematical expression of the optimal control is
given by using Pontriagin’s maximum principle. Finally, based on the dengue
fever data in Singapore during the 15-52 weeks of 2020, the best fitting pa-
rameters of the model are determined by using Markov Chain Monte Carlo
algorithm. The basic reproduction number is 1.6015 (95%CI: (1.5425-1.6675)).
Numerical simulation and sensitivity analysis of several parameters are carried
out. It is suggested that patients with dengue fever should report and receive
treatment in time, which is of great significance for prevention and control of
dengue fever.

Keywords Dengue fever, stability, bifurcation, optimal control, unreported
case.
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1. Introduction
Dengue fever, one of the most serious mosquito-borne diseases, is spread by the
dengue virus, a flavivirus, mainly through the bite of infected Aedes(i.e., Aedes
aegypti and Aedes albopictus) [8, 12, 19, 34]. The dengue virus is endemic in at
least 80 countries around the world, with approximately 10 to 20 thousands death
reported each year and the number of cases has increased 30-fold in the past 50 years,
threatening 2.5 billion people [31, 38]. Among many mosquito-borne diseases, it

†The corresponding author. Email address:xymeng@lut.edu.cn(X. Meng)
1School of Science, Lanzhou University of Technology, Lanzhou, Gansu 730050,
China

∗This work is supported by the National Natural Science Foundation of China
(Nos. 12161054, 11661050 and 11861044), the National Natural Science Foun-
dation of Gansu Province (No. 20JR10RA156), and the HongLiu First-class
Disciplines Development Program of Lanzhou University of Technology.

http://www.jaac-online.com
http://dx.doi.org/10.11948/20220111


A dengue fever model with unreported in Singapore 783

ranks only behind malaria in morbidity and mortality, with more than 100 million
people diagnosed with both each year [11, 18, 22, 28]. Once bitten by a dengue-
carrying mosquito, a person can become infected with the virus, which can cause
symptoms ranging from mild muscle pain and headache to severe hemorrhagic fever
and even shock. Similarly, mosquitoes can catch the virus by biting a person who
carries the virus [38].

Dengue virus are serotyped five, but cross-immunity among them is low. That is,
once someone is infected with one serotype recovers, he (or she) will easily infect with
another serotype [43,50]. An individual infected with one serotype has an immunity
period of about six months before being re-infected with a different serotype [44].
The epidemiological relationship between human and mosquito-borne transmission
is as follows. The female Aedes mosquitoes infect with the dengue virus after eating
and biting the blood of an infected individual [7, 29]. After a period of about
3 to 14 days, mosquitoes become infectious [5, 27]. Infected mosquitoes have no
immunity and can transmit the virus during their life cycle [31,42,43]. Similarly, one
susceptible person becomes infectious after being bitten by an infectious mosquito
[5, 27, 42]. Mosquitoes go from being infected to being contagious. This period is
called the external incubation period (EIP). In turn, the population goes from being
infected to being infectious. Such period is known as the internal incubation period
(IIP) [5]. The virus can range from classic dengue to secondary dengue, which can
lead to dengue haemorrhagic fever or dengue shock syndrome [8, 30]. Symptoms
appear between 3 and 7 days, which roughly equivalent to the infection period the
period of infection.

In recent decades, many models of dengue fever have been studied to ana-
lyze and predict the development trend and transmission dynamics of dengue fever
[2, 14, 25, 26, 32, 36, 41, 42, 45, 49]. Xue et al. [42] developed a mathematical model
considering optimal control, and showed the optimal conditions for controlling the
spread of the disease by numerical simulations. Zheng et al. [49] used a delayed
differential equation model to analyze the control effect of the release of infected
Wolbachia males on dengue fever, and obtained two critical thresholds for the re-
lease of infected Wolbachia males. Their results suggest that even when vaccine
efficacy is relatively low, age-specific vaccination may be cost-effective as long as
the cost of vaccination is low enough. Cai et al. [2] showed a dengue fever model
with bilinear incidence rate and standard incidence rate, and presented a represen-
tation of the basic reproduction number. Zhang and Lui [45] considered released
Wolbachia infected Aedes aegypti mosquitoes to control mosquito populations and
prevent the spread of dengue fever. Shim [32] developed a dengue model with age
structure and vaccination to study dengue dynamics and vaccine cost-effectiveness
in the Philippines. Magal and Webb [23] analyzed the relationship between reported
and unreported cases, and showed that the proportion of unreported cases was very
high, which is of great significance for taking measures to control the epidemic.
Musa et al. [27] established a deterministic model finding a consistent fitting re-
sults and equivalent goodness-of-fit when asymptomatic infection was considered.
Jing et al. [16] established a non-autonomous influenza model with meteorological
factors and unreported cases, and showed that unreported cases accounted for a
very high proportion of infected people, and improving the reporting rate of dis-
eases by public health departments could help control the spread of diseases. Jing
et al. [17] also studied the influence model with ozone concentration in air, pulse
vaccination on influenza and unreported cases, and obtained that increasing the
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vaccine coverage rate and appropriately increasing ozone concentration could effec-
tively prevent the spread of influenza, and controlling the number of unreported
cases also plays a very important role. In order to demonstrate that the effect
of unreported cases, Huo et al. [15] also considered unreported cases in the out-
break in periodic influenza model. However, according to the actual situation, the
asymptomatic infected should also become the asymptomatic infected (infectious)
through the incubation period, rather than directly becoming the asymptomatic
infected from the susceptible.

The purpose of this paper is to extend the known models in order to describe the
individuals who are asymptomatic, and the unreported cases who are in the stage of
infection. Our model includes both mosquito and human populations. Taking into
account the characteristics of dengue fever disease, some of the patients with the
first infection will recover by themselves and enter the compartment of infections(I),
some of the patients with mild symptoms will be treated and recovered in the general
hospital(Hm), and a few of the patients with serious re-infection will enter the severe
hospital(Hs) for treatment and recover. The hospital warehouses can be converted
to each other.

The rest work of this paper is as follows. In Section 2, a dengue fever model
with unreported cases and asymptomatic infection classes is established. In Section
3, the basic number of regenerations is calculated, the stability of the disease-free
equilibrium and forward bifurcation are given. The existence of the endemicity
equilibrium and consistent persistence of disease are given, and sensitivity analysis
are showed in Section 4. In Section 5, Pontryagin’s Maximum optimal control
strategy is investigated. One case and the corresponding numerical results are
obtained in Section 6. A brief discussion is included in the last part.

2. Model Formulation

First, we show a compartmental model based on the susceptible-exposed-infected-
recovered (SEIR) structure incorporating the demographic process (i.e.,births and
deaths). Assume that the total human population size Nh(t) is divided into eight
classes: Sh(t), Eh(t), Ih(t), Ah(t), P (t), Hm(t), Hs(t), R(t). Here, Sh(t) repre-
sents the susceptible people, Eh(t) represents the exposed people(infected but not
infectious), Ih(t) represents the symptomatically infected people(contain of those
having mild symptoms and severe symptoms), Hm(t) represents the mild hospital
people, Hs(t) represents the severe hospital people, Ah(t) represents the asymp-
tomatically infected(exposed individuals that becomes infectious without showing
any clinical symptoms), P (t) represents the unreported infected people, R(t) rep-
resents the recovered people. Further, assume that the total mosquito population
Nm(t) is divided into three classes: Sm(t) representing the susceptible mosquito,
Em(t) representing the exposed mosquito(infected but not infectious mosquitoes),
Im(t) represents symptomatic mosquito.

Thus, the model for the dengue virus transmission in the human and mosquito
populations is given by the following deterministic ordinary differential equations
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(ODE) systems (2.1).

dSh
dt = πh − λhSh − µhSh,

dEh
dt = λhSh − σhEh − µhEh,

dAh
dt = (1− ρ)σhEh − (γa + δ + µh)Ah,

dIh
dt = ρσhEh − (γi + τ + ξ + ω + µh)Ih,

dP
dt = δAh + ωIh − (γp + µh)P,

dHm

dt = τIh + ψHs − (γm + φ+ µh)Hm,

dHs

dt = ξIh + φHm − (γs + ψ + µh)Hs,

dRh
dt = γaAh + γpP + γiIh + γmHm + γsHs − µhRh,

dSm
dt = πm − (λm + µm)Sm,

dEm
dt = λmSm − (σm + µm)Em,

dIm
dt = σmEm − µmIm.

(2.1)

Here, the rates of human infection and mosquito infection are given by λh = klβhIm
Nh

,
and λm = klβm(Ih+Ah+P+Hm+Hs)

Nh
, respectively.

The transfer diagram of the model (2.1) is shown in Figure 1.

Figure 1. Transfer diagram for the model (2.1).

In model (2.1), these parameters are described in Table 1. Excepting the 1− ρ
is the fraction of the asymptomatic humans.
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Table 1. Descriptions of the parameters in the model (2.1).

Parameter Description
πh/πm The constant recruitment rate of the population/mosquitoes

µh/µm The natural death rate of the population/mosquitoes

k Mosquitoes biting rate

l Maximum number of bites a human can receive per unit time

βh Transmission probability from infectious mosquitoes to susceptible population

βm Transmission probability from infectious humans to susceptible mosquitoes

σh/σm Progression rate of exposed humans/mosquitoes to infectious huams/mosquitoes

ρ Fration of symptomatically infected humans that are exposed

δ Progression rate from Ah to P

ω Progression rate from Ih to P

τ , ξ Progression rate from Ih to mild hospital, severe hospital, respectively

φ, ψ The transformation between mild hospital and severe hospital

γa,γp,γi,γm,γs Recovery rate of infectious huams from Ah, P , Ih, Hm, Hs,respectively

Define

Ω ={(Sh, Eh, Ah, Ih, P,Hm,Hs, RH , Sm, Em, Im) ∈ R11
+ :

0 ≤ Sh, Eh, Ah, Ih, P,Hm,Hs, RH ≤ Nh ≤ πh
µh
, 0 ≤ Sh, Eh, Ah ≤ Nm ≤ πm

µm
}.

Lemma 2.1. The solutions of model (2.1) are bounded and the set Ω is a positive
invariant set.

Proof. Adding the first eight equations and the last three equations in the model
(2.1), we have

dNh
dt =

dSh
dt +

dEh
dt +

dAh
dt +

dIh
dt +

dP
dt +

dHm

dt +
dHs

dt +
dRh
dt = πh − µhNh,

and

dNm
dt =

dSm
dt +

dEm
dt +

dIm
dt = πm − µmNm.

That means

0 ≤ Nh(t) ≤
πh
µh

+Nh(0)e
−µht, 0 ≤ Nm(t) ≤ πm

µm
+Nm(0)e−µmt,

where Nh(0) and Nm(0) are the initial values of the total population and the initial
values of the total mosquito, respectively. Hence, 0 ≤ lim

t→∞
supNh(t) ≤ πh

µh
and

0 ≤ lim
t→∞

supNm(t) ≤ πm

µm
. So, we get a positive invariant set of model (2.1) defined

by Ω. This completes the proof.
Thus, we consider dynamics of model (2.1) on the set Ω in rest part of this

paper.
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3. The Disease-free Equilibrium and its Dynamics

3.1. The Basic Number and Stability of the Disease-free Equi-
librium

Obviously, the model (2.1) always has a disease-free equilibrium given by: E0 =
(S0
h,E0

h, A0
h, I0h, P 0, H0

m, H0
s , R0

h, S0
m, E0

m, I0m)=(πh

µh
, 0, 0, 0, 0, 0, 0, 0, πm

µm
, 0, 0). In

this part, the basic reproduction number will be obtained by the method of the
next generation matrix in reference [37]. Model (2.1) can be written as

dx
dt = F(x)− V(x),

where x = (Eh, Ah, Ih, P,Hm,Hs, Em, Im)T ,F(x) = (λhSh, 0, 0, 0, 0, 0, λmSm, 0)
T ,

V(x) = (−u1Eh, (1− ρ)σhEh− u2Ah, ρσhEh− u3Ih, δAh+ωIh− u4P, ψHs+ τIh−
u5Hm, ξIh + φHm − u6Hs,−v1Em, σmEm − µmIm)T , here u1 = σh + µh, u2 =
γa+δ+µh, u3 = γi+τ+ξ+ω+µh, u4 = γp+µh, u5 = γm+φ+µh, u6 = γs+ψ+µh,
v1 = σm + µm.

According to the method of reference [37], the basic reproduction number R0 is

R0 = Rh ∗Rm,

where

Rh =

√
µhklβhσh

πh
[
(1− ρ)(δ + u4)

u1u2u4
+
ρ(ω + u4)

u1u3u4
+
ρ(ψξ + τu6 + τφ+ u5ξ)

(u5u6 − ψφ)u1u3
],

Rm =

√
klβmσmS0

m

v1µm
.

We all know that the ability of one virus to spread in the early stages of an epidemic
is measured by the basic reproductive number R0, which refers to the average
number of secondary cases produced by a case during its infection period. Further,
using the Theorem 2 of reference [37], we can get the local stability of the disease-free
equilibrium.

Theorem 3.1. The disease-free equilibrium E0 is locally asymptotically stable when
R0 < 1, but unstable when R0 > 1.

According to Lemma 3.1 and the threshold theory established by Van den Dreess-
che [37], when R0 < 1, the disease-free equilibrium of model (2.1) is locally asymp-
totically stable. That is, the disease will be controlled and become extinct as time
goes on. When R0 > 1, the disease-free equilibrium of model (2.1) is unstable, that
is, the disease will spread and become the endemic. Based on the characteristic
equation and Hurwitz criterion, the proof can be given easily. But, the dimension
of this model is higher. Thus, we omit the process of proof.

We give some numerical simulations to illustrate and extend our results. The
parameter values except βh = 0.04843 are given in the Table 2. It is easily obtained
that R0 = 0.4057 < 1. Thus the disease free equilibrium E0 of model (2.1) is locally
asymptotically stable according to the Theorem 3.1(see Figure 2).
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Figure 2. Disease free equilibrium E0 is locally asymptotically stable. (a)Eh, Ah and Ih; (b)P,Hm

and Hs.

3.2. Forward Bifurcation
The bifurcation analysis is carried out by using the center manifold theory as shown
in reference [3]. Thus, we have the following result.

Theorem 3.2. The disease-free equilibrium of model (2.1) undergoes forward bi-
furcation at R0 = 1 whenever the bifurcation coefficients a and b are negative and
positive, respectively.

Proof. By the central manifold theory described in reference [3], let Sh = x1, Eh =
x2, Ah = x3, Ih = x4, P = x5,Hm = x6,Hs = x7, Rh = x8, Sm = x9, Em = x10 and
Im = x11. Then the model (2.1) becomes

dx1
dt = πh − λhx1 − µhx1 := f1,

dx2
dt = λhx1 − σhx2 − µhx2 := f2,

dx3
dt = (1− ρ)σhx2 − (γa + δ + µh)x3 := f3,

dx4
dt = ρσhx2 − (γi + τ + ξ + ω + µh)x4 := f4,

dx5
dt = δx3 + ωx4 − (γp + µh)x5 := f5,

dx6
dt = τx4 + ψx7 − (γm + φ+ µh)x6 := f6,

dx7
dt = ξx4 + φx6 − (γs + ψ + µh)x7 := f7,

dx8
dt = γax3 + γpx5 + γix4 + γmx6 + γsx7 − µhx8 := f8,

dx9
dt = πm − (λm + µm)x9 := f9,

(3.1)

...
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...
dx10
dt = λmx9 − (σm + µm)x10 := f10,

dx11
dt = σmx10 − µmx11 := f11.

(3.1)

The Jacobian matrix J(E0) at the disease-free equilibrium E0 is

J(E0) =



−µh 0 0 0 0 0 0 0 0 0 −klβh

0 −u1 0 0 0 0 0 0 0 0 klβh

0 (1− ρ)σh −u2 0 0 0 0 0 0 0 0

0 ρσh 0 −u3 0 0 0 0 0 0 0

0 0 δ ω −u4 0 0 0 0 0 0

0 0 0 τ 0 −u5 ψ 0 0 0 0

0 0 0 ξ 0 φ −u6 0 0 0 0

0 0 γa γi γp γm γs −µh 0 0 0

0 0 −A0 −A0 −A0 −A0 −A0 0 −µm 0 0

0 0 A0 A0 A0 A0 A0 0 0 −v1 0

0 0 0 0 0 0 0 0 0 σm −µm


where, A0 = klβm

πmµh

µmπh
. Further, βh is chosen as bifurcation parameter. The value

of parameter βh is defined as β∗
h when R0 = 1. According to the Jacobian matrix

J(E0), it is clear that zero is a simple eigenvalue of J(E0). Hence, the theory of
reference [3] is used to analyze the system (3.1) when βh = β∗

h. When R0 = 1,
the J(E0) has a right eigenvector (matching up the zero eigenvalue), defined by
m = (m1,m2, · · · ,m11)

T , where

m1 = −T1
µh
m11,m2 =

T1
u1
m11,m3 =

(1− ρ)σhT1
u1u2

m11,m4 =
ρσhT1
u1u3

m11,

m5 =
1

u4

( (1− ρ)σhδT1
u1u2

+
ωρσhT1
u1u3

)
m11,m6 =

(u6 + ψ)ρσhT1
u1u3(u5u6 − φψ)

m11,

m8 =
1

µh

(γa(1− ρ)σhT1
u1u2

+
γiρσhT1
u1u3

+ γp(
δ(1− ρ)σhT1
u1u2u4

+
ωρσhT1
u1u3u4

)

+
γm(u6 + ψ)ρσhT1
u1u3(u5u6 − φψ)

+
γs(φ+ u5)ρσhT1
u1u3(u5u6 − φψ)

)
m11,

m7 =
(φ+ u5)ρσhT1
u1u3(u5u6 − φψ)

m11,m9 = − v1
σm

m11,m10 =
µm
σm

m11,m11 > 0,

here T1 = klβ∗
h. Similarly, the constituent part of the left eigenvector of J(E0)

(matching up the zero eigenvalue) is denoted by n = (n1, n2, · · · , n11), where

n1 = 0, n2 =
µm
T1

n11, n3 =
B

u2
,
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n4 =
1

u3
ωB +

1

u3

( τ(φ+ u6)

u5u6 − ϕψ
+
ξ(ψ + u5)

u5u6 − ϕψ
+ 1

)σm
v1
A0n11,

n5 = B,n6 =
(φ+ u6)

u5u6 − φψ

σm
v1
A0n11, n7 =

(ψ + u5)

u5u6 − φψ

σm
v1
A0n11,

n8 = n9 = 0, n10 =
σm
v1
n11, n11 > 0,

here B =
( [−u3(1−ρ)σh−u2ρσh(τ(ψ+u6)+ξ(ψ+u5)+1)]σmA

0

v1(u2ρσhω+u3δ(1−ρ)σh)(u5u6−φψ) + u1u2u3µm

T1

)
n11. Note that

the free variables are selected to be m11 = 1
Q1+Q2

and n11 = 1 respectively, where

Q1 =1 +
µm
u1

+
B(1− ρ)σhT1

u1u22
+
u3(1− ρ)σhµm

u2
+
ρσhT1
u1u23

+
B(1− ρ)σhδT1

u1u2u4

+
BωρσhT1
u1u3u4

+
(1− ρ)σhδT1
u3u4µm

+
ωρσh
u2u4µm

+
µm
v1
,

Q2 =
ρσT1σm
u1u23v1

(
τ(φ+ u6)

u5u6 − ψφ
+

ξ(ψ + u5)

u5u6 − ψφ
+ 1)A0

+

(
(u6 + ψ)(u6 + φ)ρσhT1
u1u3(u5u6 − ψφ)2

+
(u5 + ψ)(u5 + φ)ρσhT1
u1u3(u5u6 − ψφ)2

)
σm
v1
A0.

Hence, n ·m = 1.
Next, we calculate the branching coefficients a and b, respectively, which are

given by

a =

11∑
k,i,j=1

nkmimj
∂2fk(0, 0)

∂xi∂xj
, b =

11∑
k,i=1

nkmi
∂2fk(0, 0)

∂xi∂βh
,

where

a =− 2m2
11

klβmπh
µh

( (1− ρ)σh
u1u2

+
ρσh
u1u3

+
1

u4
(
(1− ρ)σhδ

u1u2
+
ωρσh
u1u3

)

+
(u6 + ψ)ρσh

u1u3(u5u6 − φψ)
+

(φ+ u5)ρσh
u1u3(u5u6 − φψ)

)
< 0.

b =
µhk

2l2βmσhσmπm
πhv1µm

(1− ρ

u1u2
+
δ(1− ρ)

u1u2u4
+

ωρ

u1u3u4

)
+
µhk

2l2βmσhσmπm
πhv1µm

( ρ

u1u3
+
ρ(ψξ + τu6 + τφ+ u5ξ)

(u5u6 − ψφ)u1u3

)
> 0.

We find that the coefficient b is always positive and a is often negative. In line
with Theorem 4.1 of [3], the model (2.1) appears a forward bifurcation when R0 = 1.
This completes the proof.

The forward bifurcation diagram of model (2.1) is illustrated in Figure 3. Ac-
cording to Theorem 3.2, the model (2.1) exists forward bifurcation at R0 = 1.
There is a local asymptotically stable disease-free equilibrium point when R0 < 1,
which indicates that the disease has not broken out. There are unstable disease-free
equilibrium point and the locally asymptotically stable endemic equilibrium point
coexist when R0 > 1, which indicates that the disease tends to be stable.
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Figure 3. Forward bifurcation diagram taking one parameter βh in R0 as bifurcation parameter.

4. The Endemic Equilibrium and its Dynamics
4.1. Existence of the Endemic Equilibrium
If R0 > 1 and u5u6 − ψφ > 0, then there exists one unique endemic equilibrium of
model (2.1), which is E∗ = (S∗

h, E
∗
h, A

∗
h, I

∗
h, P

∗,H∗
m,H

∗
s , R

∗
h, S

∗
m, E

∗
m, I

∗
m), where λ∗h

and λ∗m are given by

S∗
h =

πh
λh + µh

, E∗
h =

λhπh
u1(λh + µh)

, A∗
h =

(1− ρ)σhλhπh
u2u1(λh + µh)

, I∗h =
ρσhλhπh

u3u1(λh + µh)
,

P ∗ =
λhπhσh

u4u1(λh + µh)
[
δ(1− ρ)

u2
+
ωρ

u3
],H∗

m =
I∗hu6

u5u6 − ψφ
(
ψξ

u6
+ τ),

H∗
s =

I∗h
u6

[ξ +
φ

u5u6 − ψφ
(
ψξ

u6
+ τ)], S∗

m =
πm

λm + µm
,

E∗
m =

λmπm
v1(λm + µm)

, I∗m =
σmλmπm

µmv1(λm + µm)
,

R∗
h =

πhλh
µh(λh + µh)

[
γa(1− ρ)σh

u1u2
+
γpσh
u1u4

(
δ(1− ρ)

u2
+
ωρ

u3
) +

γiρσh
u1u3

+
γmu6ρσh

u1u3(u5u6 − ψφ)
(
ψξ

u6
+ τ) +

γsρσ

u1u3u6
(ξ +

φ

u5u6 − ψφ
(
ψξ

u6
+ τ))].

4.2. Uniform Persistence
Here, the uniform persistence of model (2.1) is demonstrated by the theory of uni-
form persistence proposed by Zhao [48]. There is at least one positive solution of
model (2.1) which is uniformly persistent when R0 > 1. Thus, we have the following
result.

Theorem 4.1. If R0 > 1, then there exists a positive constant ϵ > 0 such that the
solution of model (2.1) with each initial value Γ(0) satisfied

lim
t→∞

inf(Eh(t), Ah(t), Ih(t), P (t),Hm(t),Hs(t), Em(t), Im(t)) ≥ (ϵ, ϵ, ϵ, ϵ, ϵ, ϵ, ϵ, ϵ).
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Proof. Define

X = {(Sh, Eh, Ah, Ih, P,Hm,Hs, Rh, Sm, Em, Im) ∈ Ω},
X0 = {(Sh, Eh, Ah, Ih, P,Hm,Hs, Rh, Sm, Em, Im) ∈ X : X0 ∈ ℜ11

+ }.

Thus, ∂X0 = X − X0. It is easily that both X and X0 are positively invariant
for model (2.1), and X0 is relatively closed in X. In addition, by Theorem 3.1, the
model (2.1) is point dissipative. Hence, the model (2.1) exists a globally attractor.

Next, set

M∂ ={(Sh(0), Eh(0), Ah(0), Ih(0), P (0),Hm(0),Hs(0), Rh(0), Sm(0),

Em(0), Im(0)) ∈ ∂X0 : (Sh(t), Eh(t), Ah(t), Ih(t), P (t),Hm(t),

Hs(t), Rh(t), Sm(t), Em(t), Im(t)) ∈ ∂X0,∀t ≥ 0}.

We will prove that M∂ = {(Sh, 0, 0, 0, 0, 0, 0, 0, Sm, 0, 0) ∈ ∂X0 : Sh ≥ 0, Sm ≥ 0} ≜
M ′
∂ . It is clearly that M ′

∂ ⊆ M∂ . We only need to show the vality of M∂ ⊆ M ′
∂ .

Let Γ(t) be a solution of model (2.1) with initial condition Γ(0). Hence, for any

Γ(t)=(Sh(t), Eh(t), Ah(t), Ih(t), P (t),Hm(t),Hs(t), Rh(t), Sm(t), Em(t), Im(t))∈M∂

and Γ(t) ̸=M ′
∂ , for ∀t > 0, the following inequality are given

Eh(t) = e−(σh+µh)
[
Eh(0) +

∫ t

0

(klβh(ν)Im(ν)/Sh(ν) + Eh(ν) +Ah(ν)

+ Ih(ν) + P (ν) +Hm(ν) +Hs(ν))Sh(ν)dν
]
> 0,

Ah(t) = e−(γa+δ+µh)
[
Ah(0) +

∫ t

0

(1− ρ)σhEh(ν)dν
]
> 0,

Ih(t) = e−(γi+τ+ξ+ω+µh)
[
Ih(0) +

∫ t

0

ρσhEh(ν)dν
]
> 0,

P (t) = e−(γp+µh)
[
P (0) +

∫ t

0

(δAh(ν) + ωIh(ν))dν
]
> 0,

Hm(t) = e−(γm+ϕ+µh)
[
Hm(0) +

∫ t

0

(ψHs(ν) + τIh(ν))dν
]
> 0,

Hs(t) = e−(γs+ψ+µh)
[
Hs(0) +

∫ t

0

(φHm(ν) + ξIh(ν))dν
]
> 0,

Em(t) = e−(σm+µm)
[
Em(0) +

∫ t

0

(klβm(ν)(Ih(ν) +Ah(ν) + P (ν) +Hm(ν)

+Hs(ν))/Sh(ν) + Eh(ν) +Ah(ν) + Ih(ν) + P (ν) +Hm(ν)

+Hs(ν))Sm(ν)dν
]
> 0,

Im(t) = e−µm
[
Im(0) +

∫ t

0

σmEm(ν)dν
]
> 0.

There exists at least one of Eh(t), Ah(t), Ih(t), P (t),Hm(t),Hs(t), Em(t), and Im(t)
which is not one. This means that Γ(t) /∈ ∂X0 for t > 0, which contradicts the
hypothesis that Γ(t) ∈ M∂ . Therefore, we can get that M∂ ⊆ M ′

∂ which indicates
M∂ =M ′

∂ . We can obtain M∂ only has the E0(S
0
h, 0, 0, 0, 0, 0, 0, 0, S

0
m, 0, 0) and E0
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is isolate and compact invariant. And then we prove that W s(E0)∩X0 = ∅, where
W s(E0) indicates the stable manifold of E0. Then, there exists a positive constant
ϵ such that under the initial condition Γ(0) ∈ X0, the follow inequality is true for
any solution Γt(Γ(0)) of system

D(Γt(Γ(0)), E0)
∞ ≥ ϵ,

where D is a distance function in X0. Inverse, for ∀ϵ̄ > 0, we assume that
D(Γt(Γ(0)), E0)

∞ < ϵ̄. For ∀ϵ̄ > 0, there exists T > 0 such that πh

µh
− ϵ̄ ≤ Sh(t) ≤

πh

µh
+ ϵ̄, 0 ≤ Eh(t) ≤ ϵ̄, 0 ≤ Ah(t) ≤ ϵ̄, 0 ≤ Ih(t) ≤ ϵ̄, 0 ≤ P (t) ≤ ϵ̄, 0 ≤ Hm(t) ≤ ϵ̄,

0 ≤ Hs(t) ≤ ϵ̄, 0 ≤ Rh(t) ≤ ϵ̄, πm

µm
− ϵ̄ ≤ Sm(t) ≤ πm

µm
+ ϵ̄, 0 ≤ Em(t) ≤ ϵ̄,

0 ≤ Im(t) ≤ ϵ̄.
Further, we consider the following comparison system

dẼh
dt = λ̃h(

πh
µh

− ϵ̄)− σhẼh − µhẼh,

dÃh
dt = (1− ρ)σhẼh − (γa + δ + µh)Ãh,

dĨh
dt = ρσhẼh − (γi + τ + ξ + ω + µh)Ĩh,

dP̃
dt = δÃh + ωĨh − (γp + µh)P̃ ,

dH̃m

dt = τ Ĩh + ψH̃s − (γm + φ+ µh)H̃m,

dH̃s

dt = ξĨh + φH̃m − (γs + ψ + µh)H̃s,

dẼm
dt = λ̃m(

πm
µm

− ϵ̄)− (σm + µm)Ẽm,

dĨm
dt = σmẼm − µmĨm,

(4.1)

where λ̃h = klβh
Ĩm
Ñh

, and λ̃m = klβm
Ãh+Ĩh+P̃+H̃m+H̃s

Ñh
. System (4.1) can be repre-

sented as

x′ = F̄ (ϵ̄)x,

where

F̄ (ϵ̄) =



−u1 0 0 0 0 0 0 −klβhS0
hϵ̄

(1− ρ)σh −u2 0 0 0 0 0 0

ρσh 0 −u3 0 0 0 0 0

0 δ ω −u4 0 0 0 0

0 0 τ 0 −u5 ψ 0 0

0 0 ξ 0 φ −u6 0 0

0 Θϵ̄ Θϵ̄ Θϵ̄ Θϵ̄ Θϵ̄ −v1 0

0 0 0 0 0 0 σm µm



,
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here Θ = −klβmS0
h. Let U(F̄ (ϵ̄)) be the stability modulus of matrix F̄ (ϵ̄), which is

defined by

U(F̄ (ϵ̄)) = max{Re ℵ : ℵ is an eigenvalue of U(F̄ (ϵ̄))}.

Obviously, F̄ (ϵ̄) has non-negative off-diagonal elements and it is irreducible. Hence,
according to Theorem A. 5 in Zhao [47], U(F̄ (ϵ̄)) is a simple eigenvalue of F̄ (ϵ̄)
and has a positive eigenvector. By using the Theorem 2 in reference [37] and the
Lemma 2.1 in reference [40], we know that U(F̄ (ϵ̄)) < 0 if and only if R0 < 1,
inverse U(F̄ (ϵ̄)) > 0 if and only if R0 > 1.

Since U(F̄ (ϵ̄)) is continuous about ϵ̄. Let ϵ̄ be small enough such that U(F̄ (ϵ̄)) >
0. So, assume that x(t) = (Eh(t), Ah(t), Ih(t), P (t),Hm(t),Hs(t), Em(t), Im(t))T is
a positive solution of the comparison system (4.1), which is strictly increasing with
xi(t) → +∞ as t → +∞, i = Eh(t), Ah(t), · · · , Im(t). By comparison principle, we
have

lim
t→∞

Eh(t) = +∞, lim
t→∞

Ah(t) = +∞, lim
t→∞

Ih(t) = +∞, lim
t→∞

P (t) = +∞,

lim
t→∞

Hn(t) = +∞, lim
t→∞

Hs(t) = +∞, lim
t→∞

Em(t) = +∞, lim
t→∞

Im(t) = +∞.

This contracts with our assumption. Then, there exists W s(E0) ∩X0 = ∅. Hence,
the model (2.1) is uniformly persistent when R0 > 1. This completes the proof.

4.3. Sensitivity Analysis
We observe that the five parameters, namely, βh, βm, µm, γi and l are the pivotal
parameters which regulate the basic reproduction number R0. The sensitivity of
the basic reproduction number R0 to these parameters is given as follows:

dR0

dβm
=
Rh
2Rm

klπm
v1µ2

m

> 0,

dR0

dµm
=− Rh

2Rm
[

klβmπm
(σm + µm)2µ2

m

+
klβmπm

(σm + µm)µ3
m

] < 0,

dR0

dβh
=
Rm
2Rh

[µhklσh
πh

(
1− ρ

u1u2
+
δ(1− ρ)

u1u2u4
+

ωρ

u1u3u4
+

ρ

u1u3
)

+
µhklσh

πh(u5u6 − ψφ)

ρ(ψξ + τu6 + τφ+ u5ξ)

u1u3

]
> 0,

dR0

dl =
Rm
2Rh

[µhkβhσh
πh

(
1− ρ

u1u2
+
δ(1− ρ)

u1u2u4
+

ωρ

u1u3u4
+

ρ

u1u3
)

+
µhkβhσh

πh(u5u6 − ψφ)

ρ(ψξ + τu6 + τφ+ u5ξ)

u1u3

]
> 0,

dR0

dγi
=− Rm

2Rh

[µhklβhσh
πh

(
ωρ

u1u23u4
+

ρ

u1u23
)

+
µhklβhσh

πh(u5u6 − ψφ)

ρ(ψξ + τu6 + τφ+ u5ξ)

u1u23

]
< 0.
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When the partial derivative is positive, the basic reproduction number R0 increases
with the increase of parameters. When the partial derivative is negative, the basic
reproduction number R0 decreases with the increase of the parameter.

In order to understand the effect of the proportional changes of these parameters
on R0, we calculate the elasticity [35]. Elasticity is nothing more than a proportional
response to a proportional disturbance.

Eβm =
βm
R0

∂R0

∂βm
=

1

2R0

Rh
Rm

klβmπm
v1µ2

m

,

Eµm =
µm
R0

∂R0

∂µm
= − 1

2R0

Rh
Rm

(
klβmπm

(σm + µm)2µm
+

klβmπm
(σm + µm)µ2

m

),

Eβh
=
βh
R0

∂R0

∂βh
=

1

2R0

Rm
Rh

[µhklσhβh
πh

(
1− ρ

u1u2
+
δ(1− ρ)

u1u2u4
+

ωρ

u1u3u4
+

ρ

u1u3
)

+
µhklσhβh

πh(u5u6 − ψφ)

ρ(ψξ + τu6 + τφ+ u5ξ)

u1u3

]
,

El =
l

R0

∂R0

∂l
=

1

2R0

Rm
Rh

[µhklβhσh
πh

(
1− ρ

u1u2
+
δ(1− ρ)

u1u2u4
+

ωρ

u1u3u4
+

ρ

u1u3
)

+
µhklβhσh

πh(u5u6 − ψφ)

ρ(ψξ + τu6 + τφ+ u5ξ)

u1u3

]
,

Eγi =
γi
R0

∂R0

∂γi
= − 1

2R0

Rm
Rh

[µhklβhγiσh
πh

(
ωρ

u1u23u4
+

ρ

u1u23
)

+
µhklβhσhγi

πh(u5u6 − ψφ)

ρ(ψξ + τu6 + τφ+ u5ξ)

u1u23

]
.

From these expressions, it can be seen that βh, βm and l have a promoting effect on
R0, while the rest have a inhibiting effect on R0. That is, R0 is positively correlated
with βh, βm and l, but negatively correlated with µm and γi. In Figures 4 and 5,
the influence of parameters on R0 is more intuitively shown.

0

1 1

5

0.8 0.8

10

R
0

0.6 0.6

15

β
m

β
h

0.4 0.4

20

0.2 0.2

0 0

Figure 4. The influence of βh and βm on R0

From Figure 4, it shows that the effects of parameters βh and βm on R0 are pos-
itive. This suggests that controlling transmission between mosquitoes and human
can help curb the spread of the disease. From Figure 5(a), βh has more influence
on R0 than γi. Similarly, Figure 5(b) shows that increasing the mortality rate of
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Figure 5. The influence of each parameter on R0. (a) βh and γi; (b) βm and µm; (c) βh and l; (d) γi
and l.

mosquitoes can greatly control the spread of dengue fever. Figure 5(c) shows that
the effects of l and βh on R0 are basically equal. The effects of l and γi on R0 are
shown in Figure 5(d). From Figures 4 and 5, we can conclude that control policies
should aim to reduce transmission rates and increase the mortality of mosquitoes
and the recovery rate from treatment.

5. The Optimal Control

5.1. The Existence of Optimal Control

In the previous part, we mainly focus on the dynamical behavior of the model (2.1).
In this section, we will use three control variables. The control of using bed nets
to avoid exposure to mosquitoes is denoted as g1(t). Thus, the force of infection is
reduced by a factor of 1 − g1(t). The control variable g2(t) represents promoting
awareness of humans to protect themselves from dengue infection, such as increasing
the coverage of recovers, and g3(t) represents reducing mosquito population. Here,
we assume that the control set is

U = {(g1, g2, g3) | gi(t) ∈ L∞[0, tf ], 0 ≤ gi(t) ≤ ci, 0 < ci ≤ 1, i = 1, 2, 3}.
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The optimal control model is given as

dSh
dt = πh − (1− g1(t))λhSh − µhSh − g2(t)Sh,

dEh
dt = (1− g1(t))λhSh − σhEh − µhSh,

dAh
dt = (1− ρ)σhEh − (γa + δ + µh)Ah,

dIh
dt = ρσhEh − (γi + τ + ξ + ω + µh)Ih,

dP
dt = δAh + ωIh − (γp + µh)P,

dHm

dt = τIh + ψHs − (γm + φ+ µh)Hm,

dHs

dt = ξIh + φHm − (γs + ψ + µh)Hs,

dRh
dt = γaAh + γpP + γiIh + γmHm + γsHs + g2(t)Sh − µhRh,

dSm
dt = πm − (λm + µm)Sm − g3(t)Sm,

dEm
dt = λmSm − (σm + µm)Em − g3(t)Em,

dIm
dt = σmEm − µmIm − g3(t)Im.

(5.1)

For nonnegative initial conditions and bounded Lebesgue measurable controls,
system (5.1) has nonnegative bounded solutions. We consider an optimal control
problem to minimize the objective function

J(g1, g2, g3) =

∫ tf

0

[Eh(t) +Ah(t) + Ih + P +Hm +Hs + Em + Im

+
1

2
c1g

2
1(t) +

1

2
c2g

2
2(t) +

1

2
c3g

2
3(t)]dt.

(5.2)

Next, the existence of the optimal control pair in the system (5.1) is obtained
by using the results of Fleming and Rishel [9].

Theorem 5.1. Under the initial conditions, the system (5.1) exists an optimal
control pair {(g∗1 , g∗2 , g∗3) ∈ U, t ∈ [0, tf ]} such that

J(g∗1 , g
∗
2 , g

∗
3) = min

gi(t)∈U,i=1,2,3
J(g1, g2, g3).

Proof. To prove the existence of optimal control, the following conditions must
be satisfied:
(1) The control and related state variables are non-negative values.
(2) The control set U is convex and closed.
(3) The right-hand of the state system (5.1) is bounded and it is a linear function
of the control and the state variable.
(4) The integrand of the objective function on U is convex.
(5) There exist constants b1, b2 > 0 and α > 1 such that the integrant of the
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objective functional

L(t, g1, g2, g3) =Eh(t) +Ah(t) + Ih + P +Hm +Hs + Em + Im

+
1

2
(c1g

2
1(t) + c2g

2
2(t) + c3g

2
3(t))

satisfies
L(t, g1, g2, g3) ≥ b1[u

2
1(t) + u22(t) + u23(t)]

α
2 − b2.

It is obvious the conditions (1), (2) and (4) are satisfied. As for condition (3), we
have already proved that eleven state variable are bounded, therefore

dSh
dt ≤ πh,

dEh
dt ≤ (1− g1(t))λhSh,

dAh
dt ≤ (1− ρ)σhEh,

dIh
dt ≤ ρσhEh,

dP
dt ≤ δAh + ωIh,

dHm

dt ≤ τIh + ψHs,

dSm
dt ≤ πm,

dEm
dt ≤ λmSm,

dIm
dt ≤ σmEm,

dHs

dt ≤ ξIh + φHm,
dRh
dt ≤ γaAh + γpP + γiIh + γmHm + γsHs + g2(t)Sh.

For the condition (5), there exist b1 = min{ c12 ,
c2
2 }, b2 ∈ R+ and α = 2 such that

L(t, g1, g2, g3) ≥ b1[g
2
1(t) + g22(t) + g23(t)]

α
2 − b2,

which completes the existence of an optimal control.

5.2. Characterization of Optimal Control
According to the Pontryagin’s Maximum Principle [4], the necessary conditions for
the existence of optimal control of the system (5.1) are obtained. Now, we will for-
mulate the Hamiltonian from the governing dynamics and the objective functional
to get the optimality conditions. So, we have

H(Sh, Eh, Ah, Ih, P,Hm,Hs, Rh, Sm, Em, Im, g1, g2, g3, λi)

=L(Eh, Ah, Ih, P,Hm,Hs, Em, Im, g1, g2, g3)

+ λ1[πh − (1− g1(t))λhSh − µhSh − g2(t)Sh]

+ λ2[(1− g1(t))λhSh − σhEh − µhEh] + λ3[(1− ρ)σhEh − (γa + δ + µh)Ah]

+ λ4[ρσhEh − (γi + τ + ξ + ω + µh)Ih] + λ5[δAh + ωIh − (γp + µh)P ]

+ λ6[τIh + ψHs − (γm + φ+ µh)Hm] + λ7[ξIh + φHm − (γs + ψ + µh)Hs]

+ λ8[γaAh + γpP + γiIh + γmHm + γsHs + g2(t)Sh − µhRh]

+ λ9[πm − (λm + µm)Sm − g3(t)Sm] + λ10[λmSm − (σm + µm)Em − g3(t)Em]

+ λ11[σmEm − µmIm − g3(t)Im],

where λi, i = 1, 2, · · · , 11 are adjoint variables.

Theorem 5.2. There is an optimal control pairs (g∗1 , g
∗
2 , g

∗
3). Let Sh, Eh, Ah,

Ih, P,Hm,Hs, Rh, Sm, Em, and Im be the state solutions of system (5.1). Then
there exists adjoint variables λi, i = 1, 2, · · · , 11 satisfying

− dλi
dt =

∂H

∂i
(5.3)



A dengue fever model with unreported in Singapore 799

and with the terminal conditions

λi(tf ) = 0, i = 1, 2, · · · , 11. (5.4)

The optimality conditions is given by

∂H

∂gj
= 0, j = 1, 2, 3. (5.5)

Further, the control (g∗1 , g∗2 , g∗3) can be obtained from the following equations:

g∗1 = min{1, max{0, g∗1(t)}}, g∗2 = min{1, max{0, g∗2(t)}},
g∗3 = min{1, max{0, g∗3(t)}}.

Proof. By differentiating the Hamiltonian, we obtain the adjoint system can be
written as:

− dλ1
dt =

∂H

∂Sh
, λ1(tf ) = 0, −dλ2

dt =
∂H

∂Eh
, λ2(tf ) = 0,

− dλ3
dt =

∂H

∂Ah
, λ3(tf ) = 0, −dλ4

dt =
∂H

∂Ih
, λ4(tf ) = 0,

− dλ5
dt =

∂H

∂P
, λ5(tf ) = 0, −dλ6

dt =
∂H

∂Hm
, λ6(tf ) = 0,

− dλ7
dt =

∂H

∂Hs
, λ7(tf ) = 0, −dλ8

dt =
∂H

∂Rh
, λ8(tf ) = 0,

− dλ9
dt =

∂H

∂Sm
, λ9(tf ) = 0, −dλ10

dt =
∂H

∂Em
, λ10(tf ) = 0,

− dλ11
dt =

∂H

∂Im
, λ11(tf ) = 0.

The state adjoint system is given by

dλ1
dt = [(1− g1(t))λh + µh + g2(t)]λ1(t)− (1− g1(t))λhλ2(t)− g2(t)λ8,

dλ2
dt = −1 + (σh + µh)λ2(t)− (1− ρ)σhλ3(t)− ρσhλ4(t),

dλ3
dt = −1 + (γa + δ + µh)λ3(t)− δλ5(t)− γaλ8(t),

dλ4
dt = −1 + (γi + τ + ξ + ω + µh)λ4(t)− ωλ5(t)− γaλ8(t),

dλ5
dt = −1 + (γp + µh)λ5(t)− γpλ8(t),

dλ6
dt = −1 + (γm + φ+ µh)λ6(t)− φλ7(t)− γmλ8(t),

dλ7
dt = −1 + (γs + ψ + µh)λ7(t)− γsλ8(t),

dλ8
dt = µhλ8(t),

dλ9
dt = (λm + µh + g3(t))λ9(t)− λmλ10(t),



800 X. Y. Meng & C. Y. Yin

dλ10
dt = −1 + (σm + µm + g3(t))λ10(t)− σmλ11(t),

dλ11
dt = −1 + (µm + g3(t))λ11(t).

Further, by differentiating the Hamiltonian with respect to the controls, we have
the following optimality conditions:

∂H

∂g1
= ξ1g

∗
1(t) + (λ1(t)− λ2(t))λhSh = 0,

∂H

∂g2
= ξ2g

∗
2(t)− (λ1(t)− λ8(t))Sh = 0,

∂H

∂g3
= ξ3g

∗
3(t)− λ9(t)Sm − λ10(t)Em − λ11(t)Im = 0.

Thus, we have that

g∗1 =
[−(λ1(t)− λ2(t))λhSh]

ξ1
, g∗2 =

[(λ1(t)− λ8(t))Sh]

ξ2
,

g∗3 =
[λ9(t)Sm + λ10(t)Em + λ11(t)Im]

ξ3
.

This completes the proof.

6. One Case
6.1. Numerical Results
Numerical simulations are carried out by using MATLAB in this section. According
to the theory in reference [13], we estimate the parameters of our model on the basis
of the dengue data in Singapore in 2020 by carrying out the Markov Chain Monte
Carlo (MCMC) procedure. The actual infection is shown in Figure 6.
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Figure 6. The actual number of people infected in Singapore from 15 to 52 weeks in 2020 years.

In order to calculate the basic reproduction number R0 of dengue in Singapore
and predict changes in the next few years, it is essential to estimate the unknown
parameters of the model (2.1). The population size of the Singapore at the end of
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2020 is 568.0058 million. According to the relevant data of the Ministry of Health
Singapore (2020), we can get the birth rate in at the end of 2020 is 8.8682 per
thousand. Thus, we obtain that the yearly birth population of Singapore is about
49362, and the number of births per day is 133. The average life expectancy of the
population of Singapore is 75. So, we conclude that the yearly natural mortality
rate of the population in Singapore is approximately µ = 1/75 [39]. The incubation
period of dengue is 3−14 days. We assume that the average progress time of latent
individuals 1/γa is 7 days and 1/γi is 6 days, then the daily progress rate γa is 1/7
and γi is 1/6. We choose a set of values of other parameters in Table 2.

Table 2. The parameters description of the Dengue model.

Parameters Mean value Std 95% CI Reference
πh 133 - - [39]
πm 5000 - - [27]
µh 1/75 - - [39]
µm 1/14.49 - - [10]
k 0.66 - - [51]
l 0.4997 - - [46]
σh 1/6 - - [21, 27]
σm 1/7 - - [33]
ρ 0.82 - - [27]
φ 0.0341 - - assumed
γa 1/7 - - [21]
γi 1/7 - - [1, 6]
γs 0.18 - - [27]
βh 0.4843 0.0177 [0.4497, 0.5190] MCMC
βm 0.0803 0.0042 [0.0722, 0.0884] MCMC
δ 0.66 2.8944×10−05 [0.6599, 0.6601] MCMC
ω 0.18 0.08244 [0, 0.2466] MCMC
τ 0.1259 3.6396×10−06 [0.1242, 0.1257] MCMC
ξ 0.1799 2.5406×10−04 [0.1797, 0.1807] MCMC
ψ 0.8692 1.3915×10−05 [0.6691, 0.8692] MCMC
γp 0.3096 1.2497×10−04 [0.3093, 0.3098] MCMC
γm 0.06 7.9459×10−06 [0, 0.198] MCMC

According to the Table 2, infection rate of infected mosquito individuals to sus-
ceptible persons is βh = 0.4843. Infection rate of infected people individuals to
susceptible mosquito is βm = 0.0803. Thus, βh is more bigger than βm. This sug-
gests that people with dengue in infectious period may be more infectious than those
with dengue in the mosquito. We give the number of samples and the frequency
distribution of R0 by using MCMC procedure (seen Figure 7).

From Figure 7(a), we can clearly know that the basic reproductive number R0

satisfies the normal distribution. The value of the basic reproduction number R0 is
estimated as 1.6015 (95%CI: (1.5425-1.6675)), which is shown in Figure 7(a). This
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(a) (b)

Figure 7. Sample values of R0 and infectivity parameters and sample distributions. (a)The Markov
chain of the last 300000 samples of R0. The blue dots indicate the value of R0 within the 95% credible
intervals, the red pluses indicate the value of R0 outside the 95% credible intervals, and the black
lines indicate the upper and lower credible limits. The frequency distribution of R0. The red curve
is the probability density function curve of R0. (b)βh and βm’s Markov Chain Monte Carlo (MCMC)
parameters distribution.

means that dengue should be taken seriously in Singapore. From Figure 7(b), it
is the Markov chain sampling of βh and βm. It can be clearly seen that the two
samples obey normal distribution and the estimation effect is suitable.

6.2. Uncertainty Analysis
We study uncertainty and sensitivity analyses by using a Latin Hypercube Sampling
(LHS) method and evaluating the Partial Rank Correlation Coefficients (PRCCs)
[13,24] in this part. From Figure 8, the sensitivity analysis with the selected baseline

Figure 8. The Partial Rank Correlation Coefficients of R0 in model (2.1).

values shows that the most sensitive parameter is the rate of transmission between
humans and mosquitoes, where the transmission probability from infectious humans
to susceptible mosquitoes (βm) is slightly higher than that of mosquitoes to humans
(βh). A positive sensitivity index indicates that R0 increases as the parameter
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increases. On the contrary, a negative sensitivity index means that R0 decreases
as the parameter increases. In summary, R0 decreases with the increases of the
recovery rates for mild hospital individuals (γm) and severe hospital individuals
(γs), the progression rate from Ih to mild hospital (τ) and severe hospital (ξ).
Moreover, R0 increases with the increase of the probability of pathogens being
transmitted from infectious mosquitoes to susceptible humans (βm), the probability
of pathogens being transmitted from infectious humans to susceptible mosquitoes
(βh), the progression rate from Ah to unreported cases P (δ) and the progression
rate from Ih to unreported cases P (ω).

According to the Figure 8, we already know the effect of the parameters βh, βm,
γp, γm on the basic reproduction of reproduction R0. However, Figure 9 demon-
strates that the changing trend of single parameter and R0 is more clearly and
intuitively.
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Figure 9. The influence of partial parameter variation on R0. (a) The variation trend between βm and
R0. (b) The variation trend between γp and R0. (c) The variation trend between γm and R0. (d) The
variation trend between βh and R0.

In each subgraph, we change only one parameter and the other parameters
shown in Table 2. It can be seen from Figure 9(a) that R0 is less than 1 only
when βm < 0.03, which means that the disease can be controlled only when the
transmission power of humans to mosquitoes is less than 0.03. Figure 9(b) reveals
that the recovery rate of unreported cases is greater than 0.09. This can effectively
reduce the spread of the disease. In Figures 9(c) and 9(d), R0 decreases with an
increase in γm and a decrease in βh. When γm increases to 0.49 or βh decreases
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to 0.18, R0 is less than 1, which indicates that increased treatment and reduced
transmission from mosquitoes to humans can effectively control the spread of the
epidemic.

6.3. Optimal Control
According to the theory in reference [20], we will give the optimal solution of the
model (5.1) by using the numerical method. The initial values of model (2.1) are
Sh(0) = 5000000, Eh(0) = 10, Ah(0) = 10, Ih(0) = 100, P (0) = 10, Hm(0) =
10,Hs(0) = 10, R(0) = 10, Sm(0) = 10000000, Em(0) = 10000 and Im(0) = 10000.
We also select the parameter values are in Table 2. The period of the control is
50 weeks. In order to reveal the effect of the control strategies considered in our
paper, we will give the graphes of evolution in different compartment populations
under different controls. The number of people in different compartments when the
weights on objective function are c1 = 100, c2 = 500, c3 = 1000 and the different
values of u1, u2 and u3 (seen Figure 10).

It can be seen from Figure 10 that the system with control is obviously better
than the system without control. When u1 = 0, u2 = 0, u3 = 0, the number of people
in different compartments is the highest. However, when u1 = 0, u2 = 0.5, u3 = 0,
the number of people decreased significantly. But, dual control and optimal control
have almost the same effect and they are better than single control u2, while the
single control u2 is better than no control.

7. Discussions and Conclusions
We showed a dengue model with unreported cases and asymptomatic infected
classes. The basic reproduction number R0 is obtained by using the next genera-
tion matrix. Stability of the disease-free equilibrium and existence of the endemic
equilibrium are derived. Using the Pontryagin’s maximum principle, we get the
existence of the optimal control pair and the mathematical expression of the op-
timal control. The best-fit parameter values in our model are identified by the
MCMC algorithm based on the data of dengue fever in Singapore from 15 to 52
weeks. We also estimate that the basic reproduction number R0 is 1.6015 (95%CI:
(1.5425-1.6675)). Some numerical simulations and sensitivity analyses are carried
out to illustrate our main results, which show that reducing the infection rate and
increasing the reporting rate are beneficial to the control of dengue fever. This is
consistent with the results of in Musa et al. [27] and Xue et al. [42], which is also
better understood and a useful guide provided for better control of dengue fever in
the future.

Generally speaking, the epidemic situation in Singapore is grim. On the one
hand, the previous epidemics in Singapore were mainly dengue virus serotype 1 and
dengue virus serotype 2, so most residents were resistant to dengue virus serotype 1
and dengue virus serotype 2, but not to the current epidemic dengue virus serotype
3. As a result, the infected population of dengue virus serotype 3 was further
enlarged by the expansion of Aedes mosquitoes. On the other hand, everyone was
isolated and the mosquito control work could not be carried out normally, resulting
in a large number of Aedes mosquitoes. At the same time, a large amount of medical
resources were used to deal with the other epidemic. Thus, it was difficult to get
timely treatment. Dengue fever began to spread.
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Figure 10. Number of people in different compartment with c1 = 100; c2 = 500; c3 = 1000 and different
optimal control strategies. (a) Ah; (b) Hs; (c) Ih; (d) Eh; (e) P ; (f) Hm.

Our model is not a case study. To simplify the model, we consider some param-
eters as constants, but these parameters are rarely constants. In fact, there must
be a time interval between the spread of infection, and the spread from an infected
person to a susceptible population cannot be instantaneous. Similarly, infected
people may take some time to become infectious and symptomatic, and there may
be a time lag in recovery from the disease. In addition, the disease is subject to
temperature changes and is cyclical. Therefore, in the future work, these time-delay
and periodic behaviors can be incorporated into the system and its dynamic behav-
ior can be analyzed. So the model would be more realistic and more biologically
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meaningful. We will leave that for future research.
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