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A FILLED PENALTY FUNCTION METHOD
FOR SOLVING CONSTRAINED
OPTIMIZATION PROBLEMS∗

Jiahui Tang1,†, Yifan Xu1 and Wei Wang2

Abstract An important method to solve constrained optimization problem
is to approach the optimal solution of constrained optimization problem grad-
ually by sequential unconstrained optimization method, namely penalty func-
tion method. And the filling function method is one of the effective methods
to solve the global optimal problem. In this paper, a class of augmented
Lagrangian objective filled penalty functions are defined to solve non-convex
constraint optimization problems, the authors call it filled penalty function
method. The theoretical properties of these functions, such as exactness,
smoothness, global convergence, are discussed. On this basis, a local opti-
mization algorithm and an approximate global optimization algorithm with
corresponding examples are given for solving constrained optimization prob-
lems.

Keywords Filled penalty function method, non-convex constrained opti-
mization problems, globally optimal point, convergence.
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1. Introduction
Consider the following non-convex constraint optimization problem

(P )
min f(x)

s.t. gi(x) ≤ 0, i ∈ I,

where f : Rn → R, gi : Rn → R, i ∈ I are assumed to be continuously differentiable,
I = {1, 2, . . . ,m} is a finite set of integers, X = {x ∈ Rn|gi(x) ≤ 0, i ∈ I} is the
feasible set of (P ).

Penalty function method is a prevailing method to find locally optimal solutions
of constrained optimization problems(see [1, 4–9, 18, 24]). Its main idea is to trans-
fer a constrained optimization problem into an unconstrained optimization problem.
In most cases, for the traditional interior point penalty function and exterior point
penalty function, the optimal solutions of constrained optimization problem can
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be obtained only when the penalty parameter of the traditional penalty function
approaches infinity. Based on traditional penalty functions, Hestenes(1969) and
Powell(1969) first replaced the objective function of equality constrained optimiza-
tion problem with Lagrangian function, so as to obtain the augmented Lagrangian
penalty function. Later, Rockafeller(1973) extended it to inequality constrained
optimization problems and established the augmented Lagrangian penalty function
for constrained optimization problems.

Augmented Lagrangian penalty function is composed of two part: Lagrangian
function with a Lagrangian parameter and penalty function with a penalty parame-
ter. An augmented Lagrangian method using the exponential penalty function was
proposed in Echebest etc [2]

L(x, µ, ρ) = f(x) +

m∑
i=1

µi

ρ
(eρgi(x) − 1)

where ρ > 0, µ ∈ Rm
+ . The boundedness of the penalty parameters is proved under

classical conditions.
In recent years, many articles ( [10, 12–14, 25]) on objective penalty functions

have been published. Meng etc [15] defined an objective penalty function

E(x,M) = Q(f(x)−M) +

m∑
i=1

P (gi(x)),

where M ∈ R is the objective penalty parameter, Q(t) and P (t) are continuous
differentiable functions with its own properties: Q(t) > 0 and P (t) > 0 are mono-
tonically increasing for t > 0 and Q(t) = P (t) = 0 for t ≤ 0. They obtained the
conclusion that the optimal point of this penalty problem is the optimal point of
problem (P ).

After word, Zheng etc [26] proposed an augmented Lagrangian penalty function

LM (x, u, v) = Q(f(x)−M) + uTG(x) + vTH(x), x ∈ Rn, u, v ∈ Rm
+ ,

where M ∈ R is the objective parameter, u and v are Lagrangian parameter and
penalty parameter respectively. They showed the exactness of the augmented La-
grangian function and presented an algorithm to find the locally optimal point to
problem (P ).

In most cases, the problem (P ) has more than one locally optimal value. At
present, it is difficult to use the traditional deterministic optimization algorithm to
determine the global optimal value. The main reasons are as follows: first, there
is no conditions to judge whether the current optimal point is the globally optimal
solution; the other is that it is difficult to find a feasible descending direction when
the traditional algorithm obtains the locally optimal solution.

Many researchers utilize the method of filled functions to solve global optimiza-
tion problems(see [3, 11, 16, 17, 20]). The main idea is to construct a filled function
based on one of the locally optimal solutions of the original problem and then min-
imize the filled function so as to find the locally best point of the original problem
which is better than the current locally best point. Then repeat this process to find
a better locally optimal solutions than the current one.
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Let x∗
l be one of the locally optimal points of problem (P ), a class of filled

functions has been defined in Wang etc [21]

T1(x, x
∗
l , τ) =

ϕ(τ [f(x)− f(x∗
l ) + h])

∥x− x∗
l ∥

,

where τ ≥ 1 and h > 0 are parameters, the function ϕ(·) satisfies: ϕ(0) = 0; for any

t ∈ [−t1,∞), ϕ′(t) > 0 (where t1 ≥ 0); lim
t→+∞

tϕ′(t)

ϕ(t)
= 0. The authors found another

locally optimal point x of (P ) by minimizing T1(x, x
∗
l , τ) and the new locally optimal

point x satisfies that f(x) < f(x∗
l ). Then, let point x be the new start point to find

the next locally optimal point.
In this paper, a class of augmented Lagrangian objective penalty functions is

introduced to find the locally optimal solutions for inequality constrained optimiza-
tion problems. Based on the locally optimal points, a new class of augmented
Lagrangian objective filled penalty functions is proposed to find an approximately
global minimizers of the non-convex constrained optimization problems. A local
search method and a global search method based on these functions are presented
respectively. Meanwhile, the convergence theorems based on these two algorithms
are proved. Finally, numerical experiments are listed to explain the rationality of
the two optimization algorithms.

2. Augmented Lagrangian objective penalty func-
tion method

In this section, we establish a class of augmented Lagrangian objective penalty
function to solve local optimization problems, and then a local search method based
on these functions is proposed. In order to analyze the properties of these functions,
we make the following assumption.
Assumption 2.1. lim

∥x∥→+∞
f(x) = +∞.

Let L(P ) be the set of locally optimal points of problem (P ) and G(P ) be the set
of globally optimal points of problem (P ). According to Assumption 2.1, a closed
bounded domain Y such that G(P ) ⊆ Y can be found and we only need to consider
the following optimization problem

(EP )

min f(x)

s.t. gi(x) ≤ 0, i ∈ I,

x ∈ Y.

Let G(EP ) be the set of globally optimal points of problem (EP ), G(EP ) =
G(P ) holds.

Two classes of continuously differentiable functions Q(·) and P (·) are given.
Q(t) is a continuously differentiable function satisfying

(1) Q′(t) > 0, t ∈ (0,+∞);
(2) Q(t) = 0 for per t ≤ 0;
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(3) limt→+∞ Q(t) = +∞.

P (t) is a continuously differentiable function satisfying

(1) P ′(t) > 0, t ∈ (0,+∞);

(2) P (t) = 0 for per t ≤ 0;

(3) lim
t→+∞

P (t)

t
= 1.

For example, Q(t)=max{0, t}3, P (t)=

t+e−t−1, t≥0

0, t<0;
and P (t)=


√
t2+4−2, t≥0

0, t<0.

From the properties of P (·), it is easy to obtain the following results

(4) γP (
t

γ
) ≥ P (t), γ > 0, t ∈ R;

(5) lim
γ→0+

γP (
t

γ
) = t+, where γ > 0, t+ = max{t, 0}.

Based on these two functions, the augmented Lagrangian objective penalty func-
tion can be defined as

L(x,M, u, β) = Q(f(x)−M) +

m∑
i=1

max{uigi(x), 0}3 + βγ

m∑
i=1

P (
gi(x)

γ
),

where M ∈ R is the objective parameter, u ∈ Rm
+ is the Lagrangian parameter,

β > 0 is the penalty parameter, and γ > 0 satisfies βγ > 1. Then we can solve this
unconstrained penalty optimization problem

(LOP ) min
x∈Y

L(x,M, u, β).

Definition 2.1. Let x∗
M be an optimal point of (LOP ). If there is an M

′
< 0

such that x∗
M is an optimal point for (P ) for all M ≤ M

′
, then L(x,M, u, β) is an

exact Lagrangian objective penalty function and M is an exact value of Lagrangian
objective penalty parameter.

Theorem 2.1. Let x∗
l be an optimal point of (P ) and x∗

M be an optimal point of
(LOP ). If x∗

M is feasible for (P ) and M ≤ f(x∗
l ), x

∗
M is an optimal point of (P ).

Proof. Since x∗
M is feasible for (P ) and M ≤ f(x∗

l ), there is M ≤ f(x∗
l ) ≤ f(x∗

M ).
This implies that 0 ≤ f(x∗

l )−M and 0 ≤ f(x∗
M )− f(x∗) ≤ f(x∗

M )−M.
It follows from x∗

M is an optimal point for (LOP ) that

Q(f(x∗
M )−M) ≤ Q(f(x∗

l )−M).

Thus, 0 ≤ f(x∗
M )−M ≤ f(x∗

l )−M, which implies that f(x∗
M ) ≤ f(x∗

l ), i.e., x∗
M is

an optimal point of (P ).

Theorem 2.2. Let x∗
M be a locally optimal point of (LOP ) and x∗ ∈ G(P ). The

following statements hold

(i) If L(x∗
M ,M, u, β) = 0, then x∗

M is feasible to (P ) and f(x∗) < f(x∗
M ) ≤ M.
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(ii) If L(x∗
M ,M, u, β) > 0 and x∗

M is not feasible to (P ), then M < f(x), f(x∗
M ) <

f(x) for all x ∈ N(x∗
M ) ∩X, where N(x∗

M ) is a neighborhood of x∗
M .

(iii) If L(x∗
M ,M, u, β) > 0 and x∗

M is feasible to (P ), then x∗
M is a locally optimal

point of (P ).

Proof. (i) The conclusion is obvious from the definition of L(x∗
M ,M, u, β).

(ii) For all x ∈ N(x∗
M ) ∩X, there is

0 < L(x∗
M ,M, u, β) ≤ L(x,M, u, β) = Q(f(x)−M).

From the definition of Q(·), we obtain M < f(x). If f(x∗
M ) ≤ M, then f(x∗

M ) ≤
f(x). If f(x∗

M ) > M, there is

0 < Q(f(x∗
M )−M) < L(x∗

M ,M, u, β) ≤ L(x,M, u, β) = Q(f(x)−M).

Thus, f(x∗
M ) < f(x) for all x ∈ N(x∗

M ) ∩X.
(iii) Since L(x∗

M ,M, u, β) > 0 and x∗
M is feasible to (P ),

0<Q(f(x∗
M )−M)=L(x∗

M ,M, u, β)≤L(x∗
M ,M, u, β)=Q(f(x)−M),∀x∈N(x∗

M )∩X.

It implies that f(x∗
M ) ≤ f(x) for all x ∈ N(x∗

M )∩X. Hence, x∗
M is a locally optimal

point of (P ).
Theorem 2.2 shows that the local minimizers of (LOP ) is also the local mini-

mizers of (P ) under some conditions. Based on this theorem, an algorithm can be
introduced to compute the locally optimal points of (P ), which is called Augmented
Lagrangian Objective Penalty Function Algorithm (ALOP Algorithm, for short).

Let the victor-valued function g(x) = [g1(x), · · · , gm(x)]T ,

∥g(x)∥∞ = max{|g1(x)|, · · · , |gm(x)|}.

ALOP Algorithm.
Step 1: Choose x0 ∈ Y, 0 < ε < 1, N > 1, p < 1. Given ui,1 > 1, i ∈ I, β1 > 1,

γ1 < 1 (there is β1γ1 > 1), a1 < minx∈X f(x) < b1, M1 =
a1 + b1

2
, let k := 1.

Step 2: Solve minx∈Y L(x,Mk, uk, βk) starting at xk−1, let xk be its locally
optimal solution.

Step 3: If L(x,Mk, uk, βk) = 0, go to Step 4; otherwise, go to Step 5.
Step 4: Let ak+1 = ak, bk+1 = Mk, Mk+1 =

ak+1 + bk+1

2
, γk+1 = pγk, k := k+1,

go to Step 2.
Step 5: If xk is not feasible to (P ), go to Step 6; otherwise, go to Step 7.
Step 6: Let ak+1 = Mk, bk+1 = bk, Mk+1 =

ak+1 + bk+1

2
. If ∥g(xk)∥∞ >

∥g(xk−1)∥∞ or ∥g(xk−1)∥∞ ≥ ∥g(xk)∥∞ >
1

4
∥g(xk−1)∥∞, uk+1 = Nuk, βk+1 =

Nβk, γk+1 = pγk, k := k + 1, and go to Step 2; if ∥g(xk)∥∞ ≤ 1

4
∥g(xk−1)∥∞,

uk+1 = Nuk, βk+1 = βk, γk+1 = pγk, k := k + 1, and go to Step 2.
Step 7: Stop and xk is a locally optimal point of (P ).

Remark 2.1. In Step 1, it is assumed that one can always obtain a1 < minx∈X f(x)
and any efficient methods available can be used in Step 2. In the process of algorithm



814 J. Tang, Y. Xu & W. Wang

iteration, we modify the penalty parameter and Lagrangian parameter alternately
based on the following considerations.

(1) If ∥g(xk)∥∞ > ∥g(xk−1)∥∞ or ∥g(xk−1)∥∞ ≥ ∥g(xk)∥∞ >
1

4
∥g(xk−1)∥∞,

the current iteration point has a tendency to deviate from the feasible region or the
trend of current iteration point approaching the feasible region is not obvious. It
can be obtained that both cases are related to unadjusted the penalty parameter.

(2) If ∥g(xk)∥∞ ≤ 1

4
∥g(xk−1)∥∞, the current iteration point approaches the

feasible region significantly, this indicates that the penalty parameter does not need
to be adjusted in the next iteration, but only Lagrangian parameter needs to be
adjusted.

Theorem 2.3. Let {xk} be the sequence generated by ALOP Algorithm, suppose
that the sequence {L(xk,Mk, uk, βk)} is bounded.

(i) If {xk}(k = 1, 2, . . . , k) is a finite sequence (i.e., the ALOP Algorithm stops
at the kth iteration), then xk is a local minimizer of (P ).

(ii) If {xk} is an infinite sequence, then {xk} is bounded and for any limit point
x∗
l of it, there exists ti ≥ 0, i ∈ I, such that

∇f(x∗
l ) +

∑
i∈I

ti∇gi(x
∗
l ) = 0,

gi(x
∗
l ) ≤ 0, tigi(x

∗
l ) = 0.

Proof. (i) If the ALOP Algorithm stops at the kth iteration and step 7 occurs,
from (iii) in Theorem 2.2, xk is a local minimizer of (P ).

(ii) From Theorem 8 in Meng etc [15], we obtain the sequence {ak} increases to
a∗ and {bk} decreases to b∗, Mk → M∗ with

ak < Mk =
ak + bk

2
< bk, bk+1 − ak+1 =

bk − ak
2

, k = 1, 2, . . . .

Obviously, a∗ = b∗ = M∗. Since {L(xk,Mk, uk, βk)} is bounded, so there is B > 0
such that

Q(f(xk)−Mk) ≤ L(xk,Mk, uk, βk) ≤ B, k = 1, 2, . . . .

Thus, {xk} is bounded. Without loss of generality, suppose that xk → x∗
l .

Form the definition of L(xk,Mk, uk, βk), we obtain ∇L(xk,Mk, uk, βk) = 0, i.e.,

Q′(f(xk)−Mk)∇f(xk) + 3

m∑
i=1

max{ui,kgi(xk), 0}2ui,k∇gi(xk)

+βk

m∑
i=1

P ′(
gi(xk)

γk
)∇gi(xk) = 0

for k = 1, 2, . . . . This is equivalent to

Q′(f(xk)−Mk)∇f(xk)+

m∑
i=1

(3ui,k max{ui,kgi(xk), 0}2+βkP
′(
gi(xk)

γk
))∇gi(xk) = 0.

Let
ck = 1 + 3ui,k max{ui,kgi(xk), 0}2 + βkP

′(
gi(xk)

γk
),
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then ck > 0, and it follows that

1

ck
Q

′
(f(xk)−Mk)∇f(xk)

+

m∑
i=1

3ui,k max{ui,kgi(xk), 0}2 + βkP
′(
gi(xk)

γk
)

ck
∇gi(xk) = 0.

Let

ηk =
1

ck
; λk =

1

ck
Q′(f(xk)−Mk); ωi,k = 0, i ∈ I1 = {i|gi(xk) ≤ 0, i ∈ I};

ωi,k =
3u3

i,kgi(xk)
2 + βkP

′( gi(xk)
γk

)

ck
, i ∈ I2 = {i|gi(xk) > 0, i ∈ I}.

For any k and i ∈ I, we have

ηk +
∑
i∈I

ωi,k = 1; ωi,k ≥ 0.

Note that ηk → η ∈ (0, 1), ωi,k → ωi ∈ [0, 1), Mk → M∗ as k → ∞, ∀i ∈ I.
Since xk is bounded, f(x) and Q(·) are continuous differentiable functions, then
Q(f(xk)−Mk) → Q(f(x∗

l )−M∗) and λk → λ > 0. Thus,

λ∇f(x∗
l ) +

∑
i∈I

ωi∇gi(x
∗
l ) = 0,

which implies

∇f(x∗
l ) +

∑
i∈I

ωi

λ
∇gi(x

∗
l ) = 0.

Let ti =
ωi

λ
≥ 0, we obtain

∇f(x∗
l ) +

∑
i∈I

ti∇gi(x
∗
l ) = 0.

Since {L(xk,Mk, uk, βk)} is bounded, so there is C > 0 such that

βkγk

m∑
i=1

P (
gi(xk)

γk
) ≤ L(xk,Mk, uk, βk) ≤ C, k = 1, 2, . . . .

Let k → ∞, γk → 0, βkγk > 1, we obtain gi(xk) ≤ 0, i.e., gi(x∗
l ) ≤ 0. Meantime,

there is ωi,k = 0, ti = 0 where i ∈ I1. Hence, tigi(x∗) = 0 holds.
From now on, we introduce a class of augmented Lagrangian objective penalty

functions and give an algorithm to find local optimal points of (P ). Based on the
locally optimal points, we can propose a class of augmented Lagrangian objective
filled penalty functions to get the approximate global minimizers of (P ).
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3. Augmented Lagrangian objective filled penalty
function method

In order to find an approximate global optimum point, we utilize the method of filled
functions to introduce an augmented Lagrangian objective filled penalty function.
The new objective filled penalty function might allow one to escape from the current
locally optimal point to a better local optimal point. Based on this new filled penalty
function, a global search method is presented and a convergence theorem for this
algorithm is given.

Definition 3.1. Let x∗
l be one of the locally optimal points of (P ), i.e., x∗

l ∈ L(P ).
S1(x

∗
l ) = {x|f(x) ≥ f(x∗

l ), gi(x) ≤ 0, i = 1, 2, . . . ,m} and S2(x
∗
l ) = {x|f(x) <

f(x∗
l ), gi(x) ≤ 0, i = 1, 2, . . . ,m}. A function T (x, x∗

l ) is called a modified filled
function of f(x) at x∗

l , if the following conditions hold.
(i) T (x, x∗

l ) has no stationary points in the region S1(x
∗
l ) except the prefixed

point x∗
l ;

(ii) If x∗
l ∈ L(P ) but x∗

l /∈ G(P ), there is a point x̂ ∈ S2(x
∗
l ) such that x̂ is a

minimizer of T (x, x∗
l ).

Let x∗
l be a locally optimal point of problem (P ), a class of augmented La-

grangian objective filled penalty functions can be expressed as

L(x, x∗
l ,M, u, β)

=Q(f(x)−M) +

m∑
i=1

max{uigi(x), 0}3 +max{um+1(f(x)− f(x∗
l ) + θ), 0}3

+ βγ

m∑
i=1

P (
gi(x)

γ
) + βγP (

h(x, x∗
l , γ)

γ
),

where
h(x, x∗

l , γ) =
f(x)− f(x∗

l ) + θ

γ +
1

γ
∥x− x∗

l ∥
,

um+1 > 1, 0 < γ < θ < min{|f(x∗
1) − f(x∗

2)|| : f(x∗
1) ̸= f(x∗

2);x
∗
1, x

∗
2 ∈ L(P )}, and

the definitions of Q(·), P (·), ui, i ∈ I, β, γ are the same as in Section 2.
Under Assumption 2.1, there is a closed bounded domain Y such that G(P ) ⊆ Y,

so the filled penalty problem becomes

(GOP ) min
x∈Y

L(x, x∗
l ,M, u, β).

We devote to using this filled penalty problem to find a better locally optimal point
of (P ) than the current locally optimal point x∗

l .

Definition 3.2. Let x∗
M be an optimal point of (GOP ). If there is an M

′
< 0 such

that x∗
M ∈ S2(x

∗
l ) for all M ≤ M

′
, then L(x, x∗

l ,M, u, β) is an exact Lagrangian
objective filled penalty function and M is an exact value of Lagrangian objective
filled penalty parameter.

Theorem 3.1. Let x∗
g ∈ S2(x

∗
l ) be an optimal point of (P ) and x∗

M be an optimal
point of (GOP ). If x∗

M ∈ S2(x
∗
l ) and M ≤ f(x∗

g), then x∗
M is an optimal point of

(P ) which is better than x∗
l .
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The proof of this theorem is similar to that of Theorem 2.1 and is thus omitted.

Theorem 3.2. Let x∗
M be a locally optimal point of (GOP ) and x∗ ∈ G(P ). The

following statements hold

(i) If L(x∗
M , x∗

l ,M, u, β) = 0, then x∗
M ∈ S2(x

∗
l ) and f(x∗) < f(x∗

M ) ≤ M.

(ii) If L(x∗
M , x∗

l ,M, u, β) > 0 and x∗
M /∈ S2(x

∗
l ), then M < f(x), f(x∗

M ) < f(x)
for all x ∈ N(x∗

M ) ∩X, where N(x∗
M ) is a neighborhood of x∗

M .

(iii) If L(x∗
M , x∗

l ,M, u, β) > 0 and x∗
M ∈ S2(x

∗
l ), then x∗

M is a locally optimal point
of (P ) which is better than x∗

l .

The proof of this theorem is similar to that of Theorem 2.2 and is thus omitted.
Next, we will analyze filling properties of the augmented Lagrangian objective

penalty function L(x, x∗
l ,M, u, β).

Theorem 3.3. For sufficiently large u, β > 1 and sufficiently small γ > 0, where β
and γ are two constants satisfies βγ > 1, then the penalty function L(x, x∗

l ,M, u, β)
has no stationary points in the region S1(x

∗
l ) except the prefixed point x∗

l .

Proof. For any x ∈ S1(x
∗
l ) \ x∗

l , there is

(x− xl∗)T

∥x− x∗
l ∥

∇L(x, x∗
l ,M, u, β)

=
(x− xl∗)T

∥x− x∗
l ∥

(Q′(f(x)−M)∇f(x) + 3

m∑
i=1

max{uigi(x), 0}2ui∇gi(x)

+ 3um+1 max{um+1(f(x)− f(x∗
l ) + θ), 0}2∇f(x)

+ β

m∑
i=1

P ′(
gi(x)

γ
)∇gi(x) + β

m∑
i=1

P ′(
h(x, x∗

l , γ)

γ
)h′(x, x∗

l , γ))

=
(x− xl∗)T

∥x− x∗
l ∥

(Q′(f(x)−M)∇f(x) + 3u3
m+1(f(x)− f(x∗

l ) + θ)2
(x− xl∗)T

∥x− x∗
l ∥

∇f(x)

+ β

m∑
i=1

P ′(
h(x, x∗

l , γ)

γ
)h′(x, x∗

l , γ))

=
(x− xl∗)T

∥x− x∗
l ∥

Q′(f(x)−M)∇f(x) + 3u3
m+1(f(x)− f(x∗

l ) + θ)2
(x− xl∗)T

∥x− x∗
l ∥

∇f(x)

+
βγ

γ2 + ∥x− x∗
l ∥

m∑
i=1

P ′(
1

γ
h(x, xl∗, γ))[

(x− xl∗)T

∥x− x∗
l ∥

∇f(x)− 1

γ
h(x, x∗

l , γ)].

Since Q(·), f(·) are continuously differentiable, | (x−xl∗)T
∥x−x∗

l ∥
Q′(f(x)−M)∇f(x)| ≤

∥Q′(f(x)−M)∥∥∇f(x)∥, and 1
γh(x, xl∗, γ) is goes to a constant. At the same time,

βγ > 1 is a constant. Both of the first term and the third term are constants, while
the second term goes to infinity because of um+1 → ∞.

Then, (x−xl∗)T
∥x−x∗

l ∥
∇L(x, x∗

l ,M, u, β) > 0, when um+1 is sufficiently large. This
means L(x, x∗

l ,M, u, β) has no stationary points in the region S1(x
∗
l ) \ x∗

l .

Theorem 3.4. If x∗
l ∈L(P ), but x∗

l /∈G(P ), then filled penalty function L(x, x∗
l ,M, u, β)

has a minimizer x ∈ S2(x
∗
l ).
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Proof. Let x∗ ∈ G(P ). Since L(x, x∗
l ,M, u, β) is continuously differentiable on X,

there is a minimizer x ∈ X of L(x, x∗
l ,M, u, β) such thatL(x, x∗

l ,M, u, β) ≤ L(x∗, x∗
l ,M, u, β);

f(x∗) ≤ f(x).

Recalling the definition of L(·),Q(·) and P (·), we obtain

Q(f(x)−M) + u3
m+1 max{f(x)− f(x∗

l ) + θ, 0}3 + βγP (
h(x, x∗

l , γ)

γ
)

≤ Q(f(x∗)−M) + u3
m+1 max{f(x∗)− f(x∗

l ) + θ, 0}3 + βγP (
h(x∗, x∗

l , γ)

γ
),

and
Q(f(x∗)−M) ≤ Q(f(x)−M).

then we get

u3
m+1 max{f(x)− f(x∗

l ) + θ, 0}3 + βγP (
h(x, x∗

l , γ)

γ
)

≤ u3
m+1 max{f(x∗)− f(x∗

l ) + θ, 0}3 + βγP (
h(x∗, x∗

l , γ)

γ
) = 0,

it implies
f(x)− f(x∗

l ) + θ ≤ 0,

i.e., f(x)<f(x∗
l ). Hence, the function L(x, x∗

l ,M, u, β) has a minimizer x∈S2(x
∗
l ).

Theorems 3.3 and 3.4 show that the penalty function L(x, x∗
l ,M, u, β) has those

two filling properties. If x∗
l is not a globally optimal point, then the new function

can be used to find an optimal point with smaller value of objective function f(x).
Based on one of the locally optimal points of problem (P ), a global optimiza-

tion algorithm is given below. The algorithm is called the Augmented Lagrangian
Objective Filled Penalty Functions (ALOFP) Algorithm.

Let the victor-valued function g(x, xt) = [g1(x), · · · , gm(x), f(x)− f(xt) + θ]T ,

∥g(x, xt)∥∞ = max{|g1(x)|, · · · , |gm(x)|, |f(x)− f(xt) + θ|}.

ALOFP Algorithm.
Step 1: Given N > 1, 0 < δ < 1, 0 < eps < 1, 0 < p < 1 and let x1 be the last

or the limit iterate point of the ALOP Algorithm, t := 1.
Step 2: Choose x0 ∈ N(xt, δ) randomly, given ui,1 > 1, i ∈ I ∪ {m+ 1}, β1 > 1,

0 < γ1 < 1, a1 < minx∈X f(x) < b1, M1 =
a1 + b1

2
, 0 < γ1 < θ < 1, k := 1.

Step 3: Solve minx∈Y L(x, xt,M, u, β) starting at xk−1, let xk be a locally opti-
mal point of (GOP ).

Step 4: If L(x, xt,Mk, ui,k, βk) = 0, go to step 5; otherwise, go to Step 6.

Step 5: Let ak+1=ak, bk+1=Mk, Mk+1=
ak+1 + bk+1

2
, k := k+1, go to Step 3.

Step 6: If xk is not γk−feasible to (P ), go to Step 7; otherwise, let xt(k) := xk,
xt(k) is a γk−locally optimal point of (P), go to Step 8.
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Step 7: Let ak+1 = Mk, bk+1 = bk, Mk+1 =
ak+1 + bk+1

2
. If ∥g(xk, xt)∥∞ >

∥g(xk−1, xt)∥∞ or ∥g(xk−1, xt)∥∞ ≥ ∥g(xk, xt)∥∞ >
1

4
∥g(xk−1, xt)∥∞, then ui,k+1 =

Nui,k, βk+1 = Nβk, γk+1 = pγk, k := k + 1, and go to Step 3; if ∥g(xk, xt)∥∞ ≤
1

4
∥g(xk−1, xt)∥∞, then ui,k+1 = Nui,k, βk+1 = βk, γk+1 = pγk, k := k + 1, and go

to Step 3.

Step 8: If |bk − ak| < eps or γk < eps, stop and xk is an eps−globally optimal
point of (P ); otherwise, let xt = xt(k), θ := pθ, t := t+ 1, go to Step 2.

Remark 3.1. In Step 2, it is assumed that one can always obtain a1 < minx∈X f(x)
and any efficient methods available can be used in Step 3. This algorithm has a
nested algorithm, the inner loop is to find the locally optimal solutions of (P ),
meantime, the outer loop is to find a locally optimal point with a smaller value
of objective functions of (P ). That is, the ALOP Algorithm is a subroutine of the
ALOFP Algorithm.

We need to find an eps−globally optimal point to (P ) with these two algorithms,
thus some notation follows:

(i) x0 is the initial point to find locally optimal point of problem (P);
(ii) xk is the k−th iterate point to solve min

x∈Y
L(x, xt,M, u, β);

(iii) xt(k) is the k−th point in internal loops and becomes the t−th locally optimal
point in external loops;

(v) xt is the t−th locally optimal point of (P ).

Now we analyze the properties of the iterate sequence obtained by the ALOFP
Algorithm.

Theorem 3.5. Let {xt} be a sequence generated by the ALOFP Algorithm and let
{xk} be the sequence generated by solving minx∈Y L(x, xt0 ,M, u, β), for all xt0 ∈
{xt}. Suppose that the sequence {L(xk, xt0 ,Mk, uk, βk)} is bounded.

(i) In Step 6 of ALOFP Algorithm, there is a k0 ∈ N, k0 > 0, such that xk is
γk−feasible for problem (P ) for any k ≥ k0 and xk is a γk−locally optimal
point for (P ).

(ii) Suppose that ALOFP Algorithm stops at the t′th iteration, then the last point
of {xt} obtained by Step 7 is an eps−globally optimal point for problem (P )
and there is

f(xt′) < . . . < f(xt+1) < f(xt) < . . . < f(x1).

Proof. (i) Suppose that for any k > 0, there is a k0 ≥ k such that xk0 is not
γk−feasible for problem (P ).

Let gm+1(x) = f(x)− f(x∗
l ) + θ, X = {x|gi(x) ≤ 0, i = 1, 2, . . . ,m+1}, there is

(P̂ )
min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m+ 1.
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Obviously, xk0
is also not γk−feasible for problem (P̂ ). Then, there is i0 ∈

{1, 2, . . . ,m + 1} such that gi0(xk0
) ≥ α0 > γk0

> 0 where α0 ∈ R+. So, we can
obtain that

Q(f(xk0
)−Mk0

) + u3
i0,k0

α3
0

≤ Q(f(xk0
)−Mk0

) + u3
i0,k0

g3i0(xk0
)

≤ L(xk0 , xt,Mk0 , ui0,k0 , βk0)

≤ L(x, xt,Mk0
, ui0,k0

, βk0
)

= Q(f(x)−Mk0
),

for any x ∈ N(xk0
)∩X. There is Q(f(xk0

)−Mk0
) + u3

i0,k0
α3
0 ≤ Q(f(x)−Mk0

). In
Step 6 of this algorithm, ui0,k0

is sufficiently large when k is sufficiently large, then
the left-hand side of this inequality tends to infinity, whereas the right-hand side
of this inequality is finite. This creates a contradiction, so there is a k0 > 0 such
that xk is γk−feasible for problem (P̂ ) for any k ≥ k0, and is also γk−feasible for
problem (P ).

In Step 6 of this algorithm, there is

0 < Q(f(xk)−Mk) ≤ L(xk, xt,Mk, ui,k, βk) ≤ L(x, xt,Mk, ui,k, βk) = Q(f(x)−Mk),

for any x ∈ N(xk) ∩X. It can be followed from the definition of Q(·) that f(xk) ≤
f(x). In other words, xk is a γk−locally optimal point for (P̂ ) and also a γk−locally
optimal point for (P ).

(ii) We suppose ALOFP Algorithm stops at the t′th iteration. Since {xt} is
γk−feasible to (P̂ ), there is f(xt+1)− f(xt) + θ ≤ 0, t = 1, 2, . . . , t′. Hence,

f(xt′) < . . . < f(xt+1) < f(xt) < . . . < f(x1).

Let x∗ be a globally optimal point for problem (P ), f∗ = min
x∈X

f(x). From The-
orem 3.6 in Tang etc [19], we obtain the sequence {ak} increases to a∗ and {bk}
decreases to b∗, Mk → M∗ with

ak < Mk =
ak + bk

2
< bk, bk+1 − ak+1 =

bk − ak
2

, k = 1, 2, . . . .

Obviously, a∗ = b∗ = M∗ = f∗. In Step 8 of this algorithm, there is

L(xk, xt,Mk, ui,k, βk)≤L(x∗, xt,Mk, ui,k, βk)=Q(f(x∗)−Mk) → Q(f(x∗)−f∗)=0,

when eps is sufficiently small. There is k0 > 0 such that L(xk, xt,Mk, ui,k, βk) ≤ 0
for all k ≥ k0. So, we obtain that Q(f(xk)−Mk) = 0, f(xk) ≤ Mk → f∗. Because
f∗ is globally optimal value of problem (P ), there is f(xk) ≥ f∗. Then, there is
f(xk) → f∗. Let xt′ := xt′ (k), f(xt′) can infinitely close to f∗, i.e., the last point
xt′ is an eps-globally optimal solution to problem (P ).

4. Numerical experiments
In this section, two numerical experiments to explain the rationality of the ALOP
Algorithm and ALOFP Algorithm are listed.
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Example 4.1. Consider the following problem, which is taken from Di Pillo etc [16]:

(P1)

min f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

s.t. g1(x) = 2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 − 5 ≤ 0,

g2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 ≤ 0,

g3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0.

Consider the augmented Lagrangian objective penalty function that is defined by

Q(t) = (t+|t|)4, P (t) =


√
t2 + 4− 2, t ≥ 0

0, t < 0.
Let eps = 10−5, a1 = −48, b1 = −47,

M1 = −47.5, u = (25, 25, 25)T , γ1 = 0.1, β1 = 9.045 and x0 = (−7, 11, 10, 7)T . The
authors ran the ALOP Algorithm to find local minimizers of (P1) on Matlab and
the results are listed in Table 1.

Table 1. Numerical Results of the ALOP Algorithm, f∗ = −44.2338

k Mk γk βk xk f(xk)

1 −47.5 0.1 9.045 (−7, 11, 10, 7)T

2 −47.25 0.01 904.5 (0.01029,−0.0087023, 2.4162,−0.84995)T −44.2986

Example 4.2 (Greenwank Function). Consider the following problem, which is
taken from Wang etc [22]:

(P2)
min f(x) =

n∑
i=1

(x2
i −

1

10
cos(5πxi))

s.t. − 1 ≤ xi ≤ 1, i = 1, . . . , n.

The global optimal value of this problem is f(x∗
1, x

∗
2, . . . , x

∗
n) = − n

10 . Now, the
authors consider n = 10 and n = 15, the global optimal value is −1 and −1.5.
Consider the augmented Lagrangian objective filled penalty function that is defined

by Q(t) = (t+|t|)3, P (t) =


√
t2 + 4− 2, t ≥ 0

0, t < 0.
Let p = 0.1, eps = 10−2, a1 = −4,

b1 = 0, M1 = −5, γ1 = 0.5, β1 = 1.1.
Choose

x0 = (0, 0, 0, 0,−2,−1, 1,−1, 0, 1)T , u = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3)T

while n = 10 and

x0 = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0)T ,

u = (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)T

while n = 15. The authors ran the ALOP algorithm and ALOFP Algorithm on
Matlab and produced the numerical results listed in Table 2.
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Table 2. Locally and globally optimal point of Problem (P2)

n 10 15

locally optimal
point of ALOP

(0.0335, 0.1286,

−0.0018,−0.2581,

0.0063, 0.1645,

0.0825, 0.0160,

0.4175,−0.0049)T

(0.0134, 0.3573,−0.0269,

0.0345,−0.3531,−0.3979,

−0.2196, 0.1986, 0.1132,

−0.0393, 0.0445,−0.0046,

0.4476,−0.0678,−0.1024)T

globally optimal
point of ALOFP

(−0.0924, 0.2182,

−0.0006, 0.0410,

0.0185,−0.0651,

0.1276,−0.0197,

0.4331, 0.0394)T

(0.0134,−0.1024,−0.0269,

0.0345,−0.3531,−0.3979,

−0.2196, 0.3573, 0.1986,

0.1132,−0.0393, 0.0445,

−0.0046, 0.4476,−0.0678)T

locally optimal
value of ALOP

−0.9999 −1.5000

gobally optimal
value of ALOFP

−1.000 −1.5000

Example 4.3. Consider the following constrained nonconvex optimization prob-
lem, which is taken from Wu [23]:

(P3)

min f(x) = (x1 − 1.125)2 +
x2
2

4

s.t. x2
1 − x4

2 ≤ 0,

x1 ≥ 0.

Consider the augmented Lagrangian objective penalty function that is defined

by Q(t) = (t+ |t|)4, P (t) =

 t+ e−t − 1, t ≥ 0

0, t < 0.

This problem has two global optimal solutions: x1,∗ = (1, 1)T and x2,∗ =
(1,−1)T , with the optimal value f∗ = 0.2656. Let eps = 10−5, a1 = −2, b1 = 2,
M1 = 0, u = (5, 5, 5)T , γ1 = 0.1, β1 = 2 and x0 = (−0.58, 0)T . The authors ran the
ALOFP Algorithm to solve (P4) on Matlab and the results are listed in Table 3.

As shown in Table 3, the solution is obtained in the 1-st iteration by the Algo-
rithm with approximate global optimal value 0.26511.

Table 3. Numerical Results of the ALOFP Algorithm (the external loop)

t M x min

1 −0.5 (0.6268,−0.26008) 0.26511
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Example 4.4. Consider the following problem, which is taken from Meng [25]:

(P4)

min f(x) = 1000− x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

s.t. x2
1 + x2

2 + x2
3 − 25 = 0,

(x1 − 5)2 + x2
2 + x2

3 − 25 = 0,

(x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2 − 25 ≤ 0.

Consider the augmented Lagrangian objective penalty function that is defined by

Q(t) = (t+ |t|)4, P (t) =

 t+ e−t − 1, t ≥ 0

0, t < 0.
Let eps = 10−5, a1 = 100, b1 = 1000,

M1 = 550, u = (5, 5, 5)T , γ1 = 0.1, β1 = 3 and x0 = (2, 2, 2)T . The authors ran the
ALOFP Algorithm to find the approximate global optimal minimisers of (P3) on
Matlab and the results are listed in Tables 4 and 5.

As shown in Tables 4 and 5, the solution is obtained in the 3-th iteration by
the ALOFP Algorithm with approximate global optimal value 944.2015. while the
solution is obtained in the 4-th iteration in with 944.215662.

Table 4. Numerical Results of the ALOFP Algorithm (the internal loop)

k Mk βk xk min

1 550 3 (2, 2, 2)

2 775 25 (7.9574, 6.4354, 2.5958) 57.035

3 887.5 75 (6.6516, 3.3819, 3.2613) 33.4031

4 943.75 375 (5.9865, 3.5088, 3.3836) 26.7118

Table 5. Numerical Results of the ALOFP Algorithm (the external loop)

t M x min

1 775 (8.2751, 7.0082, 8.3031e− 2) 775.2985

2 887.5 (5.9021, 4.918, 1.0299e− 2) 887.7668

3 943.75 (2.9359, 4.1781, 1.2639e− 2) 944.2015

In fact, the ALOP Algorithm is implicit in the ALOFP algorithm. The authors
used the ALOP algorithm to find the locally optimal points firstly, if the current
point is one of the globally optimal points, then the ALOFP algorithm is the ALOP
algorithm; otherwise, the ALOFP algorithm is used to obtain the approximate
optimal solution next. It shows from these two numerical results that the two
algorithms are respectively applicable to search locally optimal solution and globally
optimal solution.

5. Conclusion
In this work, we introduce a class of augmented Lagrangian objective filled penalty
functions to construct a global optimization methods. Until we find approximate
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global optimal points, we use the filled penalty function to find a better locally
optimal points of optimization problems. Both of exactness of the filled penalty
function and convergence of the two algorithms have been proved. Finally, numerical
experiments have been showed to explain good applicability of the two algorithms.
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